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Topology is familiar mostly from mathematics, but also natural sciences have found its concepts useful.
Those concepts have been used to explain several natural phenomena in biology and physics, and they are
particularly relevant for the electronic structure description of topological insulators and graphene systems.
Here, we introduce topologically distinct graphene forms - graphene spirals - and employ density-functional
theory to investigate their geometric and electronic properties. We found that the spiral topology gives rise
to an intrinsic Rashba spin-orbit splitting. Through a Hamiltonian constrained by space curvature,
graphene spirals have topologically protected states due to time-reversal symmetry. In addition, we argue
that the synthesis of such graphene spirals is feasible and can be achieved through advanced bottom-up
experimental routes that we indicate in this work.

I
n mathematics, topology analyzes how the properties of objects preserve under continuous deformations. But
the interest to topological analysis is not restricted to mathematics alone; it spans also through biology,
chemistry and materials science. In protein systems topology determines when protein folding sustains the

rest of their cellular life1. In condensed matter physics, topology dominates several quantum phenomena, such as
quantum-Hall2, spin-Hall3, and Aharonov-Bohm4 effects, as well as the physics of topological insulators5.

In topological insulators, the surface electronic states are governed by topological features, making their
quantum information robust against impurity scattering. Such robustness, by being protected by time-
reversal-invariant Hamiltonian, could pave a reliable avenue toward fault-tolerant quantum-computing techno-
logy6. Experiments via angle-resolved photoemission spectroscopy performed in Bi2Se3 compounds7 and
Bi12xSbx alloys8 have shown signatures specific to topological insulators, such as large bulk energy gap and a
single-surface Dirac cone associated to its topologically protected state. Dirac cones make the physics of graphene
and topological insulators similar, even though graphene has two Dirac valleys with spin degeneracy while
topological insulators have only one Dirac valley without spin degeneracy9. In addition, graphene can exhibit
topologically protected quantum-Hall states with applied perpendicular and periodic magnetic fields10.

In the absence of structure inversion symmetry, surface states may split because of Rashba spin-orbit inter-
action11. This splitting has been verified in thin films12 and semiconductor heterostructures having an inversion
asymmetry of the confining potentials13–15. The splitting arises from the Rashba interaction Hamiltonian,
HR~a ~E|~p

� �
:~s, where a is the Rashba coefficient,~s is the spin of an electron moving with momentum~p~ ~k

in an electric field~E16. In a two-dimensional non-interacting electron gas, therefore, Rashba spin-orbit interaction
splits the parabolic energy bands in two, + kð Þ~ 2k2

�
2m�+ak, where m* is the effective mass17. Even though

spin-orbit interactions are often intrinsic, such as the spin-orbit-induced ,0.1 meV energy gap in graphene18,
Rashba splitting is interesting for applications because the control over an external electric field makes it extrinsic
and tunable19.

Extrinsic spin-orbit manipulation in graphene has been probed by external electric fields20, by doping21, by
mechanical folding22 and by depositing graphene on substrates23. Especially substrate interfaces, by always
involving inversion asymmetries, strengthen Rashba interaction24. In graphene-based structures, however, the
origin of the Rashba interaction is unlike in any other material: the interaction, although similar to the usual spin-
orbit effects, arises not from the real electron spin, but from the spin related to the two non-equivalent atomic sites
in the unit cell, the pseudospin. In graphene the Rashba splitting occurs around k-points displaying time-reversal
symmetry25, meaning that the splitting is seen around Brillouin zone centers and zone boundaries26. In graphene
the zone boundary points K and K9 are non-equivalent, but they have the same energy and they are connected by
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time-reversal symmetry27–29. This symmetry makes the connection to
topological insulators. The symmetry protects a pair of gapless hel-
ical edge modes in topological insulators belonging to Z2 class30. In a
prototype of such topological insulator, an intrinsic spinorbit coup-
ling induces a topological mass term in the electronic structure of an
atomic hexagonal frame31,32. Also, it is important to mention that
most often Z2 class materials are discussed, at least experimentally,
including heavy elements with strong spin-orbital coupling like
Bi2(Se,Te)3 compounds7.

Till now spin-orbit effects with highly protected topological edge-
states in graphene have been obtained only by external perturbations
such as external fields, heavy mechanical distortions, or chemical
doping. In this letter, therefore, we investigate the above-discussed
topological signatures in distinct graphene systems: the graphene
spirals (see Fig. 1). As a central result, we find out that the spiral
topology creates an intrinsic Rashba splitting. While in canonical
illustrations of the effect in which an external magnetic field is
applied to induce electron precession, in graphene spirals the track
in which electrons move already displays an helical topology; elec-
trons are constrained to move along an helical path in k-space and,
due to unbreakable structure inversion symmetry, the Rashba-like
band structure topology becomes an intrinsic effect for this material
class. Our results demonstrate that graphene spirals naturally possess
robust topological states as those observed in topological insulators.

Results
Graphene spirals are distinct from the helical graphene motifs
reported earlier, such as graphene stripes and ribbons bent to
spiral-like shapes33–36. In those earlier motifs, the starting point has
been a graphene ribbon itself, with regular edges and curvature- or
strain-modified p-electron system37,38. In such systems there has
always been one-to-one mapping between the helical structure and
flat graphene. In other words, it is always possible to build such
systems by cutting them out of an infinite and flat graphene sheet.
On the contrary, in graphene spirals such a mapping does not exist
(see Fig. 1). Spirals are one-dimensional systems, while they still have
a graphite layered structure containing perfect hexagons. Edge pro-
files alternate between armchair and zigzag shapes. Since spirals’
local structures resemble graphene, they facilitate chiral topo-
logy without overly perturbing the p-electron system. The largest

perturbations take place at the inner edge of spirals where the strain
is largest.

First, we illustrate a notation scheme that we elaborated to identify
the graphene spiral models (see Fig. 2). This notation is based on the
number of armchair (ac) and zigzag (zz) segments used to complete
a full coil of the spiral along the inner and outer edges. We estab-
lished that the spiral axis goes through the center of a hexagon where
p/6-symmetry lines merge. Distinct spiral classes can be formed by
combining ac and zz segments. The logic of our notation scheme can
be better illustrated by projecting the spiral systems onto the plane.
According to our construction rules, the spirals can only be formed
by hexagons, their edges can simply contain ac- and zz-fragments
and there must be no untangled bonds. How wide is the spiral can be
determined by the outlined circles with radii r1, r2, …, rj being rj 5

1.23 1 2.46 j Å. These circles always enclose the first series of ac
segments crossing the symmetry line S1. The remaining of the spiral
is completed by as much zz segments required to maintain the
perfect hexagonal frame. In this way, we define the notation
ac[m]zz[nin-nout], where m is the number of ac units and nin/out is
the number of zz units used to complete, respectively, the spiral inner
and outer edges. Spirals with ac segments which are flipped towards
the origin have an additional ‘‘*’’ in their notation, e.g. ac*[2]zz[1–3]
[see Fig. 2 (c) and (d)]. These conventions impose the spirals to be
invariant under an axial translation of b (interlayer separation),
under an axial translation of b/6 combined with a rotation of p/3.
Furthermore, it is worth mentioning that almost any parametric
curve can be used to represent edges formed under such hexagonal
basis, however analysis involving more complex edge topologies
are far beyond the scope of this work. The geometry and electronic
structure of the built graphene spirals were investigated within
density functional theory (DFT) implemented within SIESTA
package39,40. To confirm our results, SIESTA calculations were com-
pared to other methods such as single p-band tight-binding (see
Supplementary material), density-functional tight-binding imple-
mented within DFTB1 code41,42, and VASP density-functional pack-
age43. Detailed description of the used parameters and calculation

Figure 1 | Examples of graphene spirals. (a) Right-handed spiral,

(b) interconnected right- and left-handed double spiral, and

(c) loxodrome-like spiral. (a-c) Mapping of the (a-c) structures into helical

stairs to highlight the topology of their curved space.

Figure 2 | Notation of graphene spirals edges: Right, Middle and left
panels depict three-dimensional (3D) top view, conventional, and
mirrored spirals with flipped ac segments, respectively. Note that on the

right panels only carbon-carbon bonds along the inner and outer edges of

the spirals are highlighted. Armchair (ac) segments are marked in red while

zigzag (zz) segments are drawn in green colour. S1, S2 and S3 black lines are

the hexagonal symmetry axes (p/6 wedge angles) and pass through the

origin point located on the center of the spiral. The blue circles outline

possible extensions that the spirals can hold along their inner and outer

edges. (a) 3D view of ac[1]zz[0-4], with its planar projection shown in (b).

(c) Planar projection of ac*[1]zz[0-4] spiral where ac segments are flipped.

(d) 3D view of ac*[2]zz[1-3], with its planar projection shown in (f).

(e) Planar projection of ac[2]zz[1-3] spiral.
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conditions are presented in the end of the manuscript. We obtained
the band structures for distinct graphene spiral models which had
their atomic configuration fully optimized.

Ab initio band structures obtained for graphene spirals of different
widths are shown in Fig. 3. One can see that the two narrower spirals
are semiconductors with an energy gap of approximately 2.3 and
1.0 eV for ac[1]zz[0] and ac[1]zz[0-1], respectively. Differently,
ac[1]zz[0-2] and ac[1]zz[0-3] reveal semimetallic states. However,
more intriguing than the change of electronic character in response
to geometrical variations is the peculiar band splitting at the Brillouin
zone center. These band splittings represent the Rashba effect, the
topological signatures in the electronic structure of graphene spirals.
This is our central result. The splitting is robust and present in all
spirals. The origin for the Rashba effect is related to how the Dirac
particles in graphene couple with the spiral curved space. Graphite
crystals, for instance, already manifest a natural splitting of the p-
bands close to the Fermi level due to the two non-equivalent carbon
atoms in the unit cell. Since the number of atoms in the spiral unit
cell - assumed to be an unique coil - is considerably higher, one
expects a superior number of splittings in these systems. In addition,
the interlayer interaction in spirals also plays an important role. The
usual graphite layer stacking provides an uniform potential profile
over the whole sample which is not the case for the spirals. They
possess chiral symmetry which leads to electron-hole symmetry
breaking. Under chiral symmetry operation Ŝt

h, the wavefunction
composed of a set of molecular orbitals within the unit cell get trans-
lated (by t) and rotated (by h) simultaneously44. The operator Ŝt

h
replaces the translation operator T̂ in Bloch’s theorem45. It is there-
fore important to distinguish reciprocal k-vectors of the linear (k)
and curved or chiral (k9) systems. These vectors are related by k9 5

(b/t)k, as can be demonstrated by applying Ŝ consecutively until a full

turn is completed. The enlarged Brillouin zone in chiral systems is
often referred to the Jones zone (JZ)46. It can be shown that in a
constantly curved space systems, a bisector reduction of whole the
Brillouin space must have two components as for any system
described by a Hamiltonian under chiral symmetry.

Let us now illustrate in detail the origin of the Rashba effect in our
graphene spirals by considering a linear chain model as starting point
(see also Supplementary material). The chain periodicity is given by
the unit cell length a, and chain’s one-dimensional potential obeys
V(z) 5 V(z 1 a). When the unit cell gets more atoms, the reciprocal
space shrinks, the bands fold and their number increases. For unit
cells with an even number of atoms, two types of bands exist: bands
crossing the Fermi level (i) at the C point and (ii) at the edges of the
Brillouin zone. At the C point, the energy states are quantized as for a
finite ring with M atoms, n kð Þ~{2t cos 2pn=Mð Þ, where n 5 1,…,
M and t is the hopping parameter. Only when 2n/M 5 61/2,63/
2,65/2,…, a band will cross the Fermi level at C point. For unit cells
with an odd number of atoms, the band crossing is shifted from C
point and an energy gap opens. A reminiscence of this cosine trend
exists also in polyacetylene-like spiral (not shown). For spirals with
large circumference arcs, the low-energy band slopes at the edges of
the JZ are markedly higher, meaning curvature-dependent Fermi-
velocities. This dependence is absent in single-p band tight-binding
model since it cannot account for curvature effects. Furthermore, in
these spirals the chiral operation changes the orbital orientation. The
angular parts of the p-orbitals can be written as px(l) 5 px cos(lh),
py(l) 5 py sin(lh), and pz(l) 5 pz, where l is an integer number for
consecutive units cells of two non-equivalent carbon atoms. This
orbital orientation changes the phase of the wavefunction, a 180u turn
flips its sign; this property modifies the profiles of bonding and anti-
bonding bands markedly, due to additional cross-coupling terms46,47.
In the simpler spiral example shown on Fig. 3(a), its valence band
develops minima at X-points and maxima around the C-point. As the
spiral becomes wider, the electronic structure becomes richer but still
such peculiar band offset is maintained. This energy uplift and con-
comitant maximum development around the C point arises because
the states become more antibonding due to chiral symmetry.

Zooming over the low energy bands around C point [bottom
panels of Fig. 3], one can notice that they display intriguing antic-
rossings close to the Fermi energy as the spirals get wider. This occurs
due to certain selection rules (similar to those manifested in ordinary
atomic rings) that the helical states must obey combined with the
chiral symmetry of the curved space. These anticrossings between
such chiral branches can be finely tuned by means of external fields.
This is shown on Fig. 4 which depicts the band structure for the spiral
ac[1]zz[0-2] while a high intense external electric field is applied
perpendicularly its axial direction. At such intense electric fields,
one would expect more impacting changes on the electronic struc-
ture of the spirals. Nonetheless, such robustness is simply a remark-
able proof that these helical modes are protected by time-reversal
symmetry. We can allude the nature of these states by assuming that
the spirals are composed of q concentric rings embedded in the same
unit cell. if the spiral respects hexagonal symmetry, i.e. each ring
contains a number of atoms such as M 5 6, 18, 30, 42, …, according
to a tight-binding description, whenever q is even, an energy gap
opens in the electronic structure (see Fig. 2 in supplementary
information). Otherwise, metallic edge-states touching the Bril-
louin zone boundaries will form. The same opening-closing rules
for the energy gap fail for the first principle results since they take
into account curvature effects. However the low energy states still
retain its edge-nature as can be seen from the isosurface plots of the
local density of states at the Fermi energy for the spiral ac[1]zz[0-2]
(see Fig. 3 in supplementary material). Ultimately, by comparing the
results derived from ab initio and tight-binding methods, we suc-
cessfully confirmed that the electronic structure of graphene spirals
couples to the helical space backbone.

Figure 3 | Band structures of graphene spirals. (a) ac[1]zz[0],

(b) ac[1]zz[0-1], (c) ac[1]zz[0-2], and (d) ac[1]zz[0-3]. Fermi energy is set

at 0 eV. Vertical axes span the k-vector intervals [-p/b,p/b]. Narrow spirals,

semiconductors with 2.3 – 1.0 eV energy gaps; wide spirals, semimetals.

Bottom panels depict a zoom over low energy bands around the C. The

band closest to the Fermi energy is highlighted in red while the second

closest is colored in blue.

www.nature.com/scientificreports
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Discussion
Previous works have reported that ripples in graphene can be mod-
eled by coupling the Dirac equation to a curved metric space defined
phenomenologically from corrugations observed in experiments48,49.
Such covariant formalism gives rise to an effective Hamiltonian
where it is possible to identify that the electrons on the deformed
space exhibit a new Fermi velocity. The latter is smaller than the flat
graphene case. Their findings were confirmed by Raman spectro-
scopy measurements performed in folded graphene samples50. In our
spiral examples, electrons propagating along the helical track with
stronger bending would then manifest smaller effective Fermi velo-
cities in comparison to those with smoother curvature. This differ-
ence can be clearly seen on the band structures of 3 where the low
energy bands associated to each spiral have distinct slopes. Such
velocity reduction cannot be captured by the single p-band tight
binding approximation since curvature is invisible within this
description. Another prominent feature that can be distinguished
from the effective covariant Hamiltonian is the appearance of an
effective magnetic field pointing perpendicularly to the deformed
graphene sheet49,51. In other words, mechanical strain loaded on
the distorted section of the graphene mimics the same effects caused
by an external magnetic field (see supplementary information where
we demonstrate how the Rashba-like Hamiltonian can be derived
from an illustrative toy-model example). The field intensity is strictly
related to how sharp the curvature is. This effective field appears

naturally from covariant formalism where Dirac equation is solved
on curved space. Once the metric of the deformed space is known,
this information is plugged on the Dirac equation and techniques
resembling to perturbation theory can be used if one assumes that the
curvature is rather smooth. The solution for this problem can be
often recognized as the standard graphene Dirac model in the pres-
ence of an effective potential generated by its own curvature. Such
method is very efficient in dealing with smooth ripples or light cor-
rugations on the graphene sheet. Extending such interpretation to
our systems, one can already expect that the highly intensified curv-
ature of the graphene spirals will affect enormously their electronic
response. Since the curvature of the graphene spirals is so remark-
able, the use of covariant methods following expansion procedures is
unreliable. In this sense, we must indeed rely on robust ab initio
methods where all the structures are fully optimized and the effects
of the curvature are naturally incorporated in the Hamiltonian.

But even if unreliable, the formalism can help understand the
origin of the Rashba splitting. In Aharonov-Bohm (AB) devices real
magnetic fields induce electron wavefunctions an additional phase
due to the breaking of time-reversal. The phase is proportional to
magnetic flux penetrating the device geometry and depends on
whether electron moves clockwise or anticlockwise52. For the sake
of simplicity, let us consider a spiral chain with 18 atoms in its unit
cell (C18) and investigate its density of states while varying the unit
cell length or the curvature of its helix [see Fig. 5(b)]. This result was
obtained within density functional tight-binding (DFTB) formalism
in which the atomic structure of the system-chain could be fully
optimized for each unit cell length. Electrons moving clockwise
(k1) and anticlockwise (k2) acquire different phase factors in their
wavefunctions depending on the local curvature of the spiral. Thus,
an oscillatory pattern akin to AB interference emerges in the density
of states [see Fig. 5 (a)]. Only here the AB oscillations arise not from a
real magnetic field but from a pseudo-magnetic field defined by the
system topology; the curvature can be seen as a parameter replacing a
real external magnetic field to produce the same effect. As a result,
electrons having different pseudospin and being coupled to the
pseudo-magnetic field can move in opposite directions and still pre-
serve time-reversal symmetry while exhibiting non-zero AB phase.

Because of electronic properties similar to topological insulators,
graphene spirals could naturally be used in quantum computing.

Figure 5 | (a) Aharonov-Bohm-like oscillations in elongated C18 atomic

chain being gradually deformed into a spiral shape. Normalized density of

states vs. energy and elongation of the unit cell (in Angstroms). Line at Ef,

Fermi-level. Horizontal lines highlight the results for some chain

geometries that are displayed on panel (b).

Figure 4 | (red lines) Band structure for the graphene spiral ac[1]zz[0-2]
(top panel) under the influence of an external electric field of intensity
0.6 V/Å and applied perpendicularly to its axial direction. Horizontal line

marks the Fermi energy (not shifted to zero). Dotted black lines are the

energy dispersion for the same spiral for null electric field.

www.nature.com/scientificreports
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Furthermore, the spiral geometry itself suggests usage as electronics
components, as nano-solenoids to produce local magnetic fields. We
can estimate the magnetic field intensity, B, created by electrons
traveling around the spiral of radius R. By setting the Lorentz force
and the centripetal force equal, we obtain B 5 mvF/eR, where m is the
electron mass, e the electron charge, and vF the Fermi velocity.
Assuming R < 1 nm and vF < 106 m/s (Fermi-velocity of flat gra-
phene) we obtain an estimate for graphene spiral -generated mag-
netic field as B 5 103 T. The estimate depends on the Fermi-velocity,
which our results shows to depend on the precise atomic structure of
the spiral. The spiral structure can hence be used to sensitively cus-
tomize the solenoid properties.

Finally, we discuss the feasibility to realize spirals experimentally.
We note that natural growth often favors chiral molecules, first and
most notable example being the DNA. Second example is carbon
nanotubes grown into helical conformations by using controlled
creation of pentagon and heptagon defects during the growth pro-
cess53,54. To synthesize graphene spirals, however, the most relevant
experiment was the recent controlled synthesis of narrow graphene
nanoribbons55. Ribbons were synthesized for controlled ribbon
widths, controlled edge shapes and —in particular— controlled
topologies. The control was achieved by organic chemical reactions
on gold surfaces, where the topology of the nanoribbon was deter-
mined by the topology of the precursor monomers. Here, we propose
that graphene spirals could be synthesized by the same controlled
bottom-up approach. One would only need to choose appropriate
precursor monomers, preferably from an organic polymer family
with a helical motif. There are also other synthesizing alternatives.
Namely, the graphene spiral ac[1]zz[0-1] is already a familiar mole-
cule, the helicene56. Fairly long helicenes have been synthesized, and
perhaps related techniques could be extended to synthesize also
wider graphene spirals33,57. Yet another alternative to spiral synthesis
is to use the viewpoint of array of screw dislocations54,58. It was
reported recently, that in nature closely related structures can be
found as shown by Rakovan & Jaszczak59.

To conclude, the electronic structure of graphene spirals show
Rashba splitting as a distinct topological signature. The splitting
can be understood as a consequence of the intrinsic curvature present
in graphene spirals, as a consequence of the coupling between
pseudo-spin and the curved helical geometry. The splitting mech-
anism is similar to the mechanism of band inversion in topological
insulators60,61. The split, low-energy states around C-point are loca-
lized at the edges and are protected by the spiral topology, being thus
robust against impurities or lattice distortions. These unique elec-
tronic properties require neither an external magnetic field nor spin-
orbit interaction, which is unlike any typical quantum Hall system.
Therefore, graphene spirals ought to deserve a prominent role as a
fundamental graphene topology, comparable to the topologies of
carbon nanotubes and graphene nanoribbons.

Methods
Presented band structure calculations were performed using the SIESTA39,40 package
within generalized gradient approximation for the exchange and correlation
energies62,63. Norm-conserving pseudopotentials64 with relativistic corrections and a
split-valence double-f basis of pseudoatomic orbitals with an orbital confining energy
of 0.05 eV and an energy cutoff of 150 Ry were used, with Perdew-Burke-Ernzerhof
functional62,63. The k-point sampling contains 6 k-points along the spiral axis
(simulation cell has length b along spiral axis). Spirals were optimized using
Hellmann-Feynman forces down to 0.01 eV/Å tolerance65,66. Because of an elastic
axial stress, the relaxation resulted in an average layer separation of b < 3.2 Å,
somewhat smaller than graphite interlayer distance. Therefore, because van der
Waals forces are much weaker than elastic forces, and because their role for the
electronic structure is insignificant, they could be safely neglected. Also discussion in
this work weakly might be affected by the fact that super cell optimization shows a
possible for smallest spiral to change a hexagonal base to a pentagonal. For VASP
calculations, the projector augmented wave and generalized gradient approximation
for exchange and correlation energy were used62,63. Kohn-Sham orbitals were
expanded in plane-wave basis set with energies up to 550 eV and the Brillouin zone
was sampled over 1 3 1 3 4 Monkhorst-Pack grid. For the pseudopotentials,

Vanderbilt’s ultrasoft potentials67 with cutoff energy of 58 Ry was used. All used
first-principle methods gave results in excellent agreement.

1. Von Heijne, G. Membrane-protein topology. Nature Reviews 7, 909 (2006).
2. Avron, J. E., Osadchy, D. & Seiler, R. A Topological look at Quantum Hall effect.

Physics Today, 38, August 2003.
3. Bernevig, B. A., Hughes, T. L. & Zhang, S. C. Quantum Spin Hall effect and

Topological Phase Transition in HgTe Quantum Wells. Science 314, 1757 (2006).
4. Kobe, D. H. Berry phase, Aharonov-Bohm effect and topology. Journal of Physics

A: Mathematical and General 24, 3551 (1991).
5. Brumfiel, G. Star Material. Nature (News feature) 466, 310 (2010).
6. Moore, J. Topological insulators: the next generation. Nature Physics 5, 378

(2009).
7. Pan, Z.-H. et al. Electronic Structure of the Topological Insulator Bi2Se3 Using

Angle-Resolved Photoemission Spectroscopy: Evidence for a Nearly Full Surface
Spin Polarization. Physical Review Letters 106, 257004 (2011).

8. Roushan, P. et al. Topological surface states protected from backscattering by
chiral spin texture. Nature 460, 1106 (2009).

9. Dubois, S. M.-M., Zanolli, Z., Declerck, X. & Charlier, J.-C. Electronic properties
and quantum transport in Graphene-based nanostructures. The European
Physical Journal B 72 1-24 (2009).

10. Haldane, F. D. M. Model for a Quantum Hall Effect without Landau levels:
Condensed-Matter realization of the Parity Anomaly. Physical Review Letters 61,
2015 (1988).

11. Shan, W.-Y., Lu, H.-Z. & Shen, S.-Q. Effective continuous model for surface states
and thin films of three-dimensional topological insulators. New Journal of Physics
12, 043048 (2010).

12. Zhang, Y. et al. Crossover of the three-dimensional topological insulator Bi2Se3 to
the two-dimensional limit. Nature Physics 6, 584 (2010).

13. Krebs, O., Rondi, D., Gentner, J. L., Goldstein, L. & Voisin, P. Inversion
Asymmetry in Heterostructures of Zinc-Blende Semiconductors: Interface and
External Potential versus Bulk Effects. Physical Review Letters 80, 5770 (1998).

14. Pfeffer, P. Effect of inversion asymmetry on the conduction subbands in GaAs-
Ga12xAlxAs heterostructures. Physical Review B 59 15902 (1999).

15. Lechner, V. et al. Tuning of structure inversion asymmetry by the d-doping
position in (001)-grown GaAs quantum wells. Applied Physics Letters 94, 242109
(2009).

16. Rashba, E. I. Fiz. Tverd. Tela (Leningrad) 2, 1224 (1960).
17. Smirnov, S., Bercioux, D. & Grifoni, M. Bloch’s theory in periodic structures with

Rashba’s spin-orbit interaction. European Physics Letters 80, 27003 (2007).
18. Min, H. et al. Intrinsic and Rashba spin-orbit interactions in graphene sheets.

Physical Review B 74, 165310 (2006).
19. De Carvalho, H. B. et al. Electric-field inversion asymmetry: Rashba and Stark

effects for holes in resonant tunneling devices. Physical Review B 74, 041305(R)
(2006).

20. Gmitra, M., Konschuh, S., Ertler, C., Ambrosch-Draxl, C. & Fabian, J. Band-
structure topologies of graphene: Spin-orbit coupling effects from first principles.
Physical Review B 80, 235431 (2009).

21. Pi, K. et al. Manipulation of Spin Transport in Graphene by Surface Chemical
Doping. Physical Review Letters 104, 187201 (2010).

22. Abdelouahed, S., Ernst, A., Henk, J. & Mertig, I. Spin-split electronic states in
graphene: Effects due to lattice deformation, Rashba effect, and adatoms by first
principles. Physical Review B 82, 125424 (2010).

23. Gong, S. J. et al. Spintronic properties of graphene films grown on Ni(111)
substrate. Journal of Applied Physics 110, 043704 (2011).

24. Dedkov, Y. S., Fonin, M., Rudiger, U. & Laubschat, C. Rashba effect in the
graphene/Ni(111) system. Physical Review Letters 100, 107602 (2008).

25. Oguchi, T. & Shishidou, T. The surface Rashba effect: a k? p perturbation
approach. Journal of Physics: Condensed Matter 21, 092001 (2009).

26. Nagano, M., Kodama, A., Shishidou, T. & Oguchi, T. A first-principles study on
the Rashba effect in surface systems. Journal of Physics: Condensed Matter 21,
064239 (2009).

27. Morpurgo, A. F., & Guinea, F. Intervalley Scattering, long-range disorder, and
effective time-reversal symmetry breaking in graphene. Physical Review Letters
97, 196804 (2006).

28. L. Lenz & Bercioux, D. Dirac-Weyl electrons in a periodic spin-orbit potential EPL
96, 27006 (2011).

29. Ortix, C., Yang, L. & Van den Brink, J. Graphene on incommensurate substrates:
trigonal warping and emerging Dirac cone replicas with halved group velocity.
Phys. Rev. 86, 081405 (2012).

30. Imura, K.-I., Mao, S., Yamakage, A. & Kuramoto, Y. Flat edge modes of graphene
and of Z2 topological insulator. Nanoscale Research Letters 6, 358 (2011).

31. Kane, C. L. & Mele, E. J. Quantum Spin Hall Effect in Graphene. Physical Review
Letters 95, 226801 (2005).

32. Kane, C. L. & Mele, R. J. Z2 Topological order and the Quantum Spin Hall Effect.
Physical Review Letters 95, 146802 (2005).

33. Sehnal, P. et al. An organometallic route to long helicenes, PNAS 106, 13169
(2009).

34. Xu, Z. P. & Buehler, M. J. Geometry Controls Conformation of Graphene Sheets:
Membranes, Ribbons, and Scrolls. ACS Nano, 4, 3869-3876 (2010).

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 1632 | DOI: 10.1038/srep01632 5



35. Li, Y., Sun, F. & Li, H. Helical Wrapping & Insertion of Graphene Nanoribbon to
Single-Walled Carbon Nanotube. The Journal of Physical Chemistry C 38, 18459
(2011).

36. Kit, O. O., Tallinen, T., Mahadevan, L., Timonen, J. & Koskinen, P. Twisting
Graphene Nanoribbons into Carbon Nanotubes. Physical Review B 85, 085428
(2012).

37. Bets, K. V. & Jacobson, B. I. Spontaneous Twist & Intrinsic Instabilities of Pristine
Graphene Nanoribbons. Nano Research 2, 161 (2009).

38. Koskinen, P. Electromechanics of twisted graphene nanoribbons. Applied Physics
Letters 99, 013105 (2011).

39. Artacho, E., Sanchez-Portal, D., Ordejón, P., Garcı́a, A. & Soler, J. M. Linear-
scaling ab-initio calculations for large and complex systems. Phys. Stat. Sol. 215,
809 (1999).

40. Soler, J. M. et al. The Siesta method for ab initio order-N materials simulation.
J. Phys. Cond. Matter 14, 2745 (2002).

41. Density Functional based Tight Binding (DFTB1, 2012), http://www.
dftb-plus.info.

42. Elstner, M. et al. Self-consistent-charge density-functional tight-binding method
for simulations of complex materials properties. Physical Review B 58, 7260
(1998).

43. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy
calculations using a plane-wave basis set. Physical Review B 54, 11169 (1996).

44. Blumen, A. & Merkel, C. Energy Band Calculations on Helical Systems. Physica
Status Solidi (b) 83, 425 (1977).

45. Koskinen, P. & Kit, O. O. Efficient approach for simulating distorted
nanomaterials. Physical Review Letters 105, 106401 (2010)

46. Glassey, W. V. & Hoffmann, R. Band structure representations of the electronic
structure of one-dimensional materials with helical symmetry. Theoretical
Chemistry Accounts 107, 272 (2002).

47. Kollmar, C. & Hoffmann, R. Polyisocyanides: Electronic or Steric Reasons for
their Presumed Helical Structure? Journal of the American Chemical Society 112,
8230 (1990).
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