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Abstract: This paper focuses on the convergence rate and numerical characteristics of the nonlinear
information consensus filter for object tracking using a distributed sensor network. To avoid the
Jacobian calculation, improve the numerical characteristic and achieve more accurate estimation
results for nonlinear distributed estimation, we introduce square-root extensions of derivative-free
information weighted consensus filters (IWCFs), which employ square-root versions of unscented
transform, Stirling’s interpolation and cubature rules to linearize nonlinear models, respectively.
In addition, to improve the convergence rate, we introduce the square-root dynamic hybrid consensus
filters (DHCFs), which use an estimated factor to weight the information contributions and shows a
faster convergence rate when the number of consensus iterations is limited. Finally, compared to the
state of the art, the simulation shows that the proposed methods can improve the estimation results
in the scenario of distributed camera networks.
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1. Introduction

Consensus based distributed estimation has attracted a lot of attention in the field, due to its
outstanding performance in many applications, e.g., distributed camera networks [1], mobile sensor
networks [2,3] and multi-agent systems [4,5]. Compared to the centralized estimation, the distributed
estimation has many advantages, such as good scalability, low computation cost and robustness
to the sensor failure [6]. In many applications, sensor nodes in the distributed network may have
multiple measurements of the target state. It is important to fuse all the measurement information
from sensor nodes to achieve a robust estimation result. In distributed sensor networks, there are no
central fusion nodes. Instead, a fusion result or a common estimation goal can be achieved by using
the novel consensus method. Consensus means reaching an agreement regarding a certain quantity
of interest which depends on the state of all sensor nodes [7]. In the consensus algorithm, the node
communicates to its neighbor nodes, and converges to a global mean result after a number of iterations,
e.g., arithmetic mean or geometric mean [8]. Due to the limited bandwidth of the real network,
only a limited number of iterations can be applied, so that the true convergence may not be always
reached [8]. Therefore, the convergence rate of the consensus algorithm is very important, which is the
main research aspect of this note.

In order to estimate the state of the node in the consensus architecture, the Kalman filter or
information filter and their extensions are often employed [2,8–13]. In [9], a Kalman filter is used
to work with the consensus algorithm, which is called Kalman consensus filter (KCF). The original
KCF algorithm works well when all nodes can observe the target, but has decreased performance
when the sensor node becomes naive, e.g., the node has limited observability [8]. As an alternative,
the information filter is introduced to replace the Kalman filter, which is the information consensus
filter (ICF) [2,10]. The information filter uses information matrix and information vector instead of
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the moments (mean and covariance) used in the Kalman filter to represent the Gaussian distribution.
In this way, the information filter has advantages to handle sensor fusion tasks and unknown prior
covariance conditions [14]. However, the ICF as well as the KCF did not address the naivety problem
and the redundancy problem. The redundancy problem is caused by the iterative information exchange
in consensus methods, which correlates the node estimation and delays the convergence to the optimal
result [12].

To overcome the naivety and redundancy problem, an information weighted consensus filter
(IWCF) was proposed in [1,15]. The IWCF solves the naivety and redundancy problem by giving less
weight to the prior information when the new information contribution is fused, since the redundancy
information is present only in the prior information. In addition, the IWCF can converge to the
centralized solution when the number of the consensus iterations to the infinity by setting the weight
as 1/N, where N is the number of sensor nodes. However, the sensor nodes can be overweighted in
the IWCF if only a limited number of consensus iterations is performed, and the consistence of the
local filter can be destroyed [11]. As an alternative weighting scheme, the inverse of an estimated
factor S/N can be used to weight the new information contributions, where S means the number of
valid sensor nodes that can observe the target currently. This choice has the desirable property of
preserving the consistence of local filters and the novel information is never overestimated. Since the
estimated value S/N is changing all the time due to the limited filed of view (FOV) of the sensor, we
call this new filter a dynamic hybrid consensus filter (DHCF).

To handle the nonlinear system, the extended information weighted consensus filter (EIWCF) was
introduced in [12], where the extended information filter is used to handle the nonlinearity. However,
the IWCF and the EIWCF use a fixed consensus rate in the consensus algorithm, which is not optimal
for achieving a fast convergence rate. As an alternative, the Metropolis weight and Maximum-degree
weight have been proposed to work with the consensus approaches [2,11,16,17]. The Metropolis
weight can achieve a faster convergence rate than the Maximum-degree weight proved in [16], which
means it can achieve more accurate results when a limited number of consensus iterations is performed.
Therefore, it is interesting to see how well the IWCF and the EIWCF work with the Metropolis weight.
In addition, the EIWCF employs the first order of Taylor series to linearize the nonlinear models,
which has low accuracy compared to other modern optimized linearization techniques, i.e., Stirling’s
interpolation [18,19], unscented transform [20,21], spherical cubature rules [22,23] and their square-root
extensions [14,24–26]. These optimized linearization methods can be called sigma-point filters since
they use a number of sampled sigma-points to approximate the distribution of the state variables,
and then propagate these sigma-points through the nonlinear functions to get predicted state and
observations. The posterior statistics are then calculated by a weighted summation of all sigma-points.
The main difference between these sigma-point filters is how to set the weights in the summation.
Furthermore, these weights can affect the positive definite property of the covariance, which can make
the filter numerically unstable. For instance, the parameter used in classical unscented transform can
lead to the negative weights and further destroy the positive definite property of the covariance as
shown in [14,27,28]. However, the cubature rules as a special kind of unscented transform is more
stable by setting the parameter α = 1, β = 0, κ = 0 [27]. On the other hand, Stirling’s interpolation also
shows improved numerical performance compared to the classical unscented transform by making
the weights positive [14]. Recently, a square-root cubature information weighted consensus filter
(SRCIWCF) based on cubature rules has been developed for distributed object tracking, which shows
that the SRCIWCF is more numerically accurate and stable than the EIWCF [13,29]. Motivated by the
development of the nonlinear IWCF and its square-root extension, we developed a class of square-root
sigma-point information consensus filters here, which employ Stirling’s interpolation, unscented
transform and cubature rules for linearization in the framework of IWCF and DHCF, respectively.
The comprehensive performance comparison between the state-of-the-art and proposed square-root
sigma-point information consensus filters is also demonstrated using a simulated camera network.
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The structure of this note is the following: first, the nonlinear information weighted consensus
filters are introduced in Section 2, which are based on the first order of Taylor expansion, Stirling’s
interpolation, unscented transform and cubature rules, respectively. Second, the nonlinear dynamic
hybrid consensus filters are proposed in Section 3, which use an alternative consensus weighting
scheme and can keep the consistency of local filters. Finally, a sparse of camera network is simulated
to illustrate the performance of proposed square-root sigma-point information consensus methods in
Section 4.

2. Nonlinear Information Weighted Consensus Filters

In the following sections, we consider that the sensor network has N nodes, which construct an
undirected graph G = (C, E) where C = {1, 2, 3, · · · , N} denotes vertex set and E ⊂ {{i, j}|i, j ⊂ C}
means the edge set. The neighbor nodes of the ith node can be defined as Ni = {j ∈ C|{i, j} ∈ E},
which has Ni nodes.

Algorithm 1 Extended Information Weighted Consensus Filter

• Initialization: Consensus rate ε, number of consensus iteration L, process noise Q and
measurement noise R.

• For k = 1, · · · , ∞:

1. Prediction for the next time step:
x̂i,k = f (xi,k−1), (1)

Ŷi,k = (JkY−1
i,k−1 JT

k + WkQkWT
k )
−1, (2)

ŷi,k = Ŷi,k x̂i,k. (3)

2. Compute consensus proposals

v0
i,k =

1
N

ŷi,k + φi,k, (4)

V0
i,k =

1
N

Ŷi,k + Φi,k. (5)

3. Perform consensus on v0
i,k and V0

i,k
for l = 1 to L do

(a) Send vl−1
i,k and Vl−1

i,k to all neighbors j ∈ Ni

(b) Receive vl−1
j,k and Vl−1

j,k from all neighbors j ∈ Ni

(c) Update consensus terms:

vl
i,k = vl−1

i,k + ε ∑
j∈Ni

(vl−1
j,k − vl−1

i,k ), (6)

Vl
i,k = Vl−1

i,k + ε ∑
j∈Ni

(Vl−1
j,k −Vl−1

i,k ). (7)

end for

4. Compute the posterior at k time step

yi,k = NvL
i,k, (8)

Yi,k = NVL
i,k, (9)

xi,k = Y−1
i,k yi,k. (10)
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2.1. Extended Information Weighted Consensus Filter

For the nonlinear system, the motion model of the target and the measurement model of the
sensor can be described as

xk = f (xk−1, qk), (11)

zi,k = hi(xk, vi,k), (12)

where f and hi are the state transition function and measurement function of the ith sensor node,
respectively, and qk and vi,k are zero mean white Gaussian noises with covariance matrix Qk and Ri,k,
respectively. In the case of the nonlinear function f and/or hi, the extended information filter (EIF)
can be used for the linearization. According to [12], the EIF based consensus algorithm EIWCF can be
summarized as Algorithm 1. In the prediction step, the Jk and Wk in (2) are Jacobians of function f
with respect to xk and wk, respectively. To calculate the consensus quantity v0

i,k and V0
i,k in (4) and (5),

the information contributions are derived as

φi,k = JT
h,kR−1(zi,k − hi(x̂i,k) + Jh,k x̂i,k), (13)

Φi,k = JT
h,kR−1 Jh,k, (14)

where Jh,k is Jacobian of function hi with respect to xk.
The iterations of consensus are performed in a loop through (6) and (7), where ε is the consensus

weight which determines the convergence rate of the algorithm. Normally, the ε is between 0 and
1/∆max, where ∆max is the maximum degree of the graph G. The original IWCF algorithm in [8] uses a
deterministic value ε = 0.65/∆max, which is not optimal for convergence as we show in the following
sections. In addition, the fixed ε used here requires the knowledge of the global maximum degree of
the graph, which is not robust for handling the network topology changing problem. As suggested
in [16], the Metropolis weights can offer a faster convergence rate without the knowledge the number
of sensor nodes N, which is defined as

εi,j,k =


1

1+max{di,k ,dj,k}
i f j ∈ Ni,

1−∑j∈Ni
εi,j,k i f i = j,

0 otherwise,

(15)

where di,k and dj,k are the degrees of the node i and node j, respectively. The Metropolis weight only
needs to know the local degree of the neighbor nodes, whereas the fixed consensus weight used in
the original EIWCF algorithm requires the global knowledge of the maximum degree of the graph.
Therefore, the Metropolis weight is more robust to handle the network topology changing problem.
By using Metropolis weight (15) in the consensus steps (6) and (7), the new version of EIWCF algorithm
can be derived which is called EIWCFM in the following part of this note.

The advantage of the EIWCF and EIWCFM would guarantee convergence to the optimal
centralized estimation when the number of consensus iterations L→ ∞. However, due to the limited
communication resources, the number of consensus iterations is limited. Therefore, it is important
for the EIWCF and EIWCFM to have a faster convergence rate when a finite number of consensus
iterations is performed.
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2.2. Square-Root Central Difference Information Weighted Consensus Filter

Algorithm 2 Square-Root Central Difference Information Weighted Consensus Filter (SRCDIWCF)

• Initialization: Number of consensus iteration L, process noise Q = SqST
q and measurement noise

R = SrST
r .

• For k = 1, · · · , ∞:

1. Prediction for the next time step:

x̂i,k =
2m

∑
τ=0

wx
τX x

i,τ,k|k−1, (16)

Ŝx
i,k = qr{[A; B]}, (17)

Ŝy
i,k = qr{(Ŝx

i,k)
−1 I}, (18)

ŷi,k = (Ŝx
i,k)
−T(Ŝx

i,k)
−1 x̂i,k. (19)

2. Compute consensus proposals

v0
i,k =

1
N

ŷi,k + φi,k, (20)

V0
i,k = qr{[ 1√

N
Ŝi,k; Φi,k]}. (21)

3. Perform consensus on v0
i,k and V0

i,k
for l = 1 to L do

(a) Send vl−1
i,k and Vl−1

i,k to all neighbors j ∈ Ni

(b) Receive vl−1
j,k and Vl−1

j,k from all neighbors j ∈ Ni

(c) Update consensus terms:

vl
i,k = vl−1

i,k + ε ∑
j∈Ni

(vl−1
j,k − vl−1

i,k ), (22)

Vl
i,k = qr{[

√
1− εNiVl−1

i,k ;
√

εVl−1
j=1,k; · · · ;

√
εVl−1

j=Ni ,k
]}. (23)

end for

4. Compute the posterior at k time step

yi,k = NvL
i,k, (24)

Sy
i,k =

√
NVL

i,k, (25)

xi,k = (Sy
i,k)
−T(Sy

i,k)
−1yi,k. (26)

The core of the proposed square-root central difference information weighted consensus
filter (SRCDIWCF) is the Stirling’s interpolation for linearization. It first generates a number of
sample sigma-points according to the current augmented state and covariance. The sampled state
X x

i,τ,k−1 together with its sampled process noise X q
i,τ,k−1 construct the sampled augmented state

X aq
i,τ,k−1 = [X x

i,τ,k−1 X
q
i,τ,k−1]

T generated by

X aq
i,τ,k−1 =


xaq

i,k−1, τ = 0,

xaq
i,k−1 + (hSaq

i,k−1)τ , τ = 1, · · · , m,

xaq
i,k−1 − (hSaq

i,k−1)τ , τ = m + 1, · · · , 2m,

(27)
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where xaq
i,k−1 = [xi,k−1 q̄i,k−1]

T and Saq
i,k−1 =

√
Paq

i,k−1 =
√

diag{Pi,k−1, Qi,k−1} are the augmented state
and square root of augmented covariance, τ indicates the τth column of the matrix, and m is the
dimension of the augmented state. The parameter h ≥ 1 is the scalar central difference step size. If the
random variables obey a Gaussian distribution, the optimal value of h is

√
3 [19]. We can see that

the square root calculation of the covariance in (27) requires that the covariance matrix Paq
i,k−1 must

be symmetric and positive definite. However, due to the errors introduced by arithmetic operations
performed on finite word-length digital computers, or ill-conditioned nonlinear filtering problems,
the positive definite property of the covariance can be destroyed. In the literature, the square-root
representation of the covariance is preferred to handle such an issue. Therefore, we here present the
SRCDIWCF summarized in Algorithm 2, which can avoid square-root operation, improve numerical
accuracy, have double order precision and preserve symmetry of the covariance.

After the generation of the sigma-points in (27), we can propagate them through the nonlinear
state transition function of (11), and sum them up to derive the predicted state as in (16). Therefore,
no Jacobian matrix calculation is required here. The predicted square-root of covariance Ŝx

i,k can be
calculated using QR decomposition as in (17), where

A =
√

wp1
1

(
X x

i,1:m,k|k−1 −X
x
i,m+1:2m,k|k−1

)
, (28)

B =
√

wp2
1 (X x

i,1:m,k|k−1 +X
x
i,m+1:2m,k|k−1 − 2X x

i,0,k|k−1). (29)

The corresponding weights for the predicted mean and square-root of covariance are defined as

wx
0 = h2−m

h2 ,
wx

τ = 1
2h2 ,

wp1
τ = 1

4h2 ,
wp2

τ = h2−1
4h4 , τ = 1, · · · , 2m,

(30)

where we can see that weights wp1
τ and wp1

τ for the covariance updating are all non-negative values
since h ≥ 1, which is an important property of the proposed SRCDIWCF, since it can protect the
positive property of the covariance matrix and further improve the numerical characteristics of the
proposed method [14]. Because we are interested in the information form representation, the predicted
information vector and information matrix can be computed from predicted mean and covariance as
shown in (19) and (18), respectively.

The second step is to compute the consensus quantities v0
i,k and v0

i,k defined as (20) and (21),
where φi,k and Φi,k are information contributions calculated as

Φi,k = Ŝy
i,k(Ŝ

y
i,k)

T P̂i,xzS−T
r,i,k, (31)

φi,k = Φi,k(Sr,i,k)
−1(zi,k − ẑi,k + P̂T

i,xzŷi,k), (32)

where zi,k and ẑi,k are real and predicted sensor measurements of the target object, respectively.
The predicted ẑi,k can be calculated using Stirling’s interpolation according to the predicted state of the
target as

ẑi,k =
2m

∑
τ=0

wx
τZi,τ,k|k−1, (33)

Zi,τ,k|k−1 = h(Xi,τ,k|k−1), (34)

Xi,τ,k|k−1 =


x̂i,k, τ = 0,

x̂i,k + (hŜx
i,k)τ , τ = 1, · · · , m,

x̂i,k − (hŜx
i,k)τ , τ = m + 1, · · · , 2m,

(35)
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where Xi,τ,k|k−1 is the generated sigma point according to the predicted state and covariance, and
Zi,τ,k|k−1 is the predicted sigma point of the measurement. The cross-covariance P̂i,xz between the state
and the measurement calculated as

P̂i,xz =
√

wp1
1 Ŝx

i,k(Zi,1:m −Zi,m+1:2m)
T . (36)

From (20) and (21), we can see that both the prior information vector ŷi,k and prior information matrix
Ŷi,k are weighted by 1/N. The reason to do this weighting is to remove the information redundancy
during information sharing between sensor nodes.

The third step is to perform consensus iteratively. The sensor node exchanges the consensus
quantities vl

i,k and V l
i,k with neighbor nodes for L steps, and then update its local estimation using (22)

and (23), where ε ∈ (0, 1/∆max) is defined as the same constant parameter as the EIWCF presented
in [12]. If the Metropolis weight is used for ε instead of the fixed one, the SRCDIWCF is called
SRCDIWCFM for distinguishment. Therefore, the basic idea of the consensus is to get the weighted
summation of information quantities, so the information from neighbor nodes can be fused. To output
the final results, the fourth step is to derive the estimated information vector yi,k, information matrix
Sy

i,k and state xi,k from the final information quantities using (24)–(26).

2.3. Square-Root Unscented Information Weighted Consensus Filter

Here, we present the unscented transform based square-root unscented information weighted
consensus filter (SRUIWCF). The main difference between the SRUIWCF and SRCDIWCF is the
weighting scheme for the sigma points to calculate the predicted mean, covariance and information
contributions. For the SRUIWCF, the sigma-points are generated by

X aq
i,τ,k−1 =


xaq

i,k−1, τ = 0,

xaq
i,k−1 + (γSaq

i,k−1)τ , τ = 1, · · · , m,

xaq
i,k−1 − (γSaq

i,k−1)τ , τ = m + 1, · · · , 2m,

(37)

where γ =
√
(λ + m) is the composite scaling parameter, m is the dimension of the state, and

λ = α2(m + κ)−m. α and κ are scaling parameters that determine how far the sigma points spread
from the mean value. The predicted mean and the square-root of covariance can be derived by

x̂i,k =
2m

∑
τ=0

wx
τX x

i,τ,k|k−1, (38)

Ŝx
i,k = cholupdate{C, D, sign{wp

0}}, (39)

C = qr{
√

wp
1 (X

x
i,1:2m,k|k−1 − x̂i,k)}, (40)

D =
√

wp
0 (X

x
i,0,k|k−1 − x̂i,k), (41)

where the weights defined by

wx
0 = λ

m+λ ,
wp

0 = λ
m+λ + (1− α2 + β),

wx
τ = wp

τ = 1
2(m+λ)

, τ = 1, · · · , 2m.
(42)

Since the weight wp
0 might be negative, we need an additional cholupdate to update the Cholesky

factor Ŝx
i,k in (39), whereas the SRCDIWCF does not need this step since all weights used for the

covariance update are positive. The negative update might destroy the positive definite property
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of the Cholesky factor, such that the SRCDIWCF is preferable to the SRUIWCF concerning the
numerical stability.

For calculating information contributions, the predicted measurement Zi,τ,k|k−1 and the
cross-covariance P̂i,xz are given by

ẑi,k =
2m

∑
τ=0

wx
τZi,τ,k|k−1, (43)

P̂i,xz =
2m

∑
τ=0

wp
τ(Xi,τ,k|k−1 − x̂i,k)(Zi,τ,k|k−1 − ẑi,k)

T . (44)

The consensus quantities and iterations steps of the SRUIWCF are same as the SRCDIWCF.

2.4. Square-Root Cubature Information Weighted Consensus Filter

Basically, the cubature rule is a special case of the unscented transform defined by

X aq
i,τ,k−1 =

{
xaq

i,k−1 + (
√

mSaq
i,k−1)τ , τ = 1, · · · , m,

xaq
i,k−1 − (

√
mSaq

i,k−1)τ , τ = m + 1, · · · , 2m,
(45)

and the weights used for calculating posterior mean and covariance given by

wx
τ = wp

τ = 1
2m , τ = 1, · · · , 2m. (46)

By setting the parameter of the unscented transform as α = 1, β = 0 and κ = 0, the unscented
transform becomes the cubature rule [27,28]. Therefore, the square-root cubature information weighted
consensus filter (SRCIWCF) can be derived from SRUIWCF by using this specific parameter. Since the
weights used in SRCIWCF are positive, the SRCIWCF is more numerically stable than the SRUIWCF.

3. Nonlinear Dynamic Hybrid Consensus Filters

The IWCFs can converge to the centralized solution when the number of consensus L is infinity.
However, for the real-time requirements of the real applications, L is usually small. In such a case,
the weight 1/N used in IWCFs can overweight the prior information for some sensor nodes, which
can affect the convergence rate of the algorithm. Here, we present an alternative way to weight
the information, in order to ensure that the sensor node never get overweighted, and has a faster
convergence rate if a small L is used.
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Algorithm 3 Square-Root Central Difference Dynamic Hybrid Consensus Filter (SRCDDHCF)

• Initialization: Number of consensus iteration L, process noise Q = SqST
q and measurement noise R = SrST

r .

• For k = 1, · · · , ∞:

1. Prediction for the next time step:

x̂i,k =
2m

∑
τ=0

wx
τX x

i,τ,k|k−1, (47)

Ŝx
i,k = qr{[A; B]}, (48)

Ŝy
i,k = qr{(Ŝx

i,k)
−1 I}, (49)

ŷi,k = (Ŝx
i,k)
−T(Ŝx

i,k)
−1 x̂i,k. (50)

2. Compute consensus proposals
if i ∈ S then

Φi,k = Ŝy
i,k(Ŝ

y
i,k)

T P̂i,xzS−T
r,i,k, (51)

φi,k = Φi,k(Sr,i,k)
−1(zi,k − ẑi,k + P̂T

i,xz ŷi,k), (52)

bi,k = 1, (53)
else

Φi,k = 0, φi,k = 0, bi,k = 0. (54)
end if

3. Perform hybrid consensus iterations

Initialization: b0
i,k = bi,k, (ŷ0

i,k = ŷi,k, Ŝ0
i,k = Ŝy

i,k) and (φ0
i,k = φi,k, Φ0

i,k = Φi,k)

for l = 1 to L do
(a) Send bl−1

i,k , (ŷl−1
i,k , Ŝl−1

i,k ) and (φl−1
i,k , Φl−1

i,k ) to all neighbors j ∈ Ni

(b) Receive bl−1
i,k , (ŷl−1

i,k , Ŝl−1
i,k ) and (φl−1

i,k , Φl−1
i,k ) from all neighbors j ∈ Ni

(c) Update consensus terms:
yl

i,k = ∑
j∈Ni

εi,j,kyl−1
j,k , (55)

Sl
i,k = qr{[√εi,j,kSl−1

j=1,k; · · · ;
√

εi,j,kSl−1
j=Ni ,k

]}, (56)

φl
i,k = ∑

j∈Ni

εi,j,kφl−1
j,k , (57)

Φl
i,k = qr{[√εi,j,kΦl−1

j=1,k; · · · ;
√

εi,j,kΦl−1
j=Ni ,k

]}, (58)

bl
i,k = ∑

j∈Ni

εi,j,kbl−1
j,k . (59)

end for
4. Compute the posterior at k time step

ωL
i,k =

{
1/bL

i,k i f bL
i,k 6= 0,

1 otherwise,
(60)

yi,k = ŷL
i,k + ωL

i,kφL
i,k, (61)

Sy
i,k = qr{[SL

i,k;
√

ωL
i,kΦL

i,k]}, (62)

xi,k = (Sy
i,k)
−T(Sy

i,k)
−1yi,k. (63)

To keep the consistence of local filters, the inverse of an estimated factor S/N can be used for
weighting information contributions derived by

ωl
i,k =

{
1/bl

i,k i f bl
i,k 6= 0,

1 otherwise,
(64)
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where bl
i,k is an estimation of the fraction S/N at lth iterative step via the consensus algorithm

bl
i,k = ∑

j∈Ni

εi,j,kbl−1
j,k . (65)

The initialization of b0
i,k is set as 1 if the ith node can observe the target, i.e., i ∈ S , where S

means the set of these effective nodes, whereas it is set as 0 for other nodes as shown in (54). Here,
the consensus weight εi,j,k employs the Metropolis weight. In such a way, the quantity ωL

i,kεi,j,k ≤ 1
for any pair of (i, j) since bL

i,k = ∑j∈Ni
εi,j,k. Therefore, the information contributions will not get

overweighted and the consistence of the local filter has been kept [11]. In addition, compared to the
IWCFs, no prior knowledge of network connections is required here. To summarize, based on this new
weighting schemes, the square-root central difference dynamic hybrid consensus filter (SRCDHCF) can
be derived as in Algorithm 3. In a similar way, the square-root unscented dynamic hybrid consensus
filter (SRUDHCF) and the cubature dynamic hybrid consensus filter (SRCDHCF) can be further
developed. However, the DHCFs require more consensus quantities to be shared with other neighbor
nodes than IWCFs, i.e., prior information (ŷl−1

i,k , Ŝl−1
i,k ) , information contributions (φl−1

i,k , Φl−1
i,k ) and

bl−1
i,k , which means the algorithms of DHCFs require more data bandwidth.

4. Simulation

To show the performance of the proposed square-root sigma-point information consensus filters,
a sparse network is simulated using nine cameras (c1 to c9) as shown in [12], which has a maximum
connection degree ∆max = 2. Each camera has a fixed field of view (FOV), i.e., 200× 200. When the
target moves, some of the camera nodes may lose the measurement information. Therefore, the
estimated value S/N for the algorithm DHCFs is time varying,

In this simulation, the state transition model and measurement model of the object are nonlinear
functions. The state of the target is defined as xk = [xk, yk, vx,k, vy,k, δk]

T , and the motion model of the
target is given as

xk+1 =


xk + vx,kδk + axδ2

k /2
yk + vy,kδk + ayδ2

k /2
vx,k + axδk
vy,k + ayδk

δk + e

 , (66)

where (xk, yk), (vx,k, vy,k) and (ax, ay) are the position, velocity and acceleration of the target,
respectively. The acceleration is modeled as Gaussian noise. δk is the time step between two consecutive
measurements. The synchronization error among cameras is also considered as a Gaussian variable e.
The vector w = [ax, ay, e]T is considered as the Gaussian noise vector with zero mean and covariance
Q = diag{1, 1, 0.01}. We consider a nonlinear measurement model of the camera node i as

zi,k =

[
ui,k
vi,k

]
=

[H11xk+H12yk+H13
H31xk+H32yk+H33
H21xk+H22yk+H23
H31xk+H32yk+H33

]
+ vi,k, (67)

where (ui,k, vi,k) is the pixel coordinates of the target in the image, and (H11, · · · , H33) are elements of
the homography matrix defined as

H =

397.2508 95.2020 287280
51.7437 396.9189 139100
0.0927 0.1118 605.2481

 , (68)

which are taken from one of the cameras of the APIDIS dataset [12].
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4.1. Normal Measurement

The measurement noise vi,k is defined as Gaussian noise with zero mean and covariance R =

diag{15, 15}. The initial covariance matrix of the state for each camera node is set to be a diagonal
matrix P = diag{0.1, 0.1, 0.1, 0.1, 0.0001}.
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Figure 1. The comparison of mean errors (ME) of proposed square-root sigma-point information
consensus filters and the state-of-the-art extended information weighted consensus filter (EIWCF) for
50 Monte Carlo simulations. The details of the (a) is shown in (b) for iterations 2–7 and (c) for iterations
8–20.
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We here demonstrate the simulation for 50 Monte Carlo runs, and the result is shown in Figure 1.
Figure 1a shows the overall performance comparison for the number of consensus iterations L from 1
to 20, whereas the Figure 1b shows the first half part of Figure 1a for L from 2 to 7, and the Figure 1c
shows the second half part of Figure 1a for L from 8 to 20. By analyzing the result data, we can derive
following conclusions: first, the square-root sigma-point information consensus filters outperform the
EIWCF as shown in Figure 1b,c, since they can capture higher order terms of Taylor expansion. Because
the dimension of the state is small, the differences between the Stirling’s interpolation, unscented
transform and cubature rule based methods are minor, e.g., the SRCDDHCF, SRUDHCF and SRCDHCF
are almost overlapped in Figure 1 (blue lines). Second, the DHCFs have a faster convergence rate than
IWCFs, i.e., the DHCFs are close to a convergence state at the iteration L = 4 as shown in Figure 1b.
The reason is that IWCFs based methods can overweight some sensor nodes, which can decrease
the convergence rate for smaller consensus iteration value L. Third, the IWCFs can achieve more
accurate results than DHCFs by running more iterations, e.g., L > 7. Fourth, the Metropolis weight
indeed can improve the performance of IWCFs compared with the fixed one, e.g., SRCDIWCFM,
SRUIWCFM and SRCIWCFM using Metropolis weight have better performance than SRCDIWCF,
SRUIWCF and SRCIWCF using 0.65/∆max. Therefore, the Metropolis weight is more preferred for
square-root sigma-point information consensus filters.

4.2. Ill Condition: Near Perfect Measurement

The ill condition can lead the filter system to be unstable due to the accumulated round-off errors
in the computational system. The square-root filters have shown their advantages with handling
such problems in previous publications [13,14,25,26]. Here, we use a similar idea to compare the
performance of SRCIWCFM, SRCDHCF and original EIWCF by setting the measurement covariance to
be a very small value R = diag{2−52, 2−52} for a normal 32-bit operational system. The simulations are
demonstrated for 20 Monte Carlo runs with the iterations L = 1, · · · , 10. The experimental results are
shown in Figure 2. We can see that the performance of SRCIWCFM and SRCDHCF are very close to
each other, whereas the EIWCF becomes unstable when the iteration number is equal to 3. In addition,
the simulation software MATLAB (R2010a, The MathWorks Inc, Natick, MA, USA) always shows
the warning message “Matrix is close to singular or badly scaled” when the EIWCF algorithm runs
with the near perfect measurements. In contrast, the SRCIWCFM and SRCDHCF are robust to such ill
conditions and converge to a very stable result.
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Figure 2. The comparison of mean errors (ME) of square-root cubature information weighted consensus
filter with Metropolis weights (SRCIWCFM), square-root cubature dynamic hybrid consensus filter
(SRCDHCF) and the original EIWCF for 20 Monte Carlo simulations.
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5. Conclusions

In this paper, we proposed two kinds of square-root sigma-point information consensus filters,
which are based on the IWCF and DHCF methods, respectively. By comparing to the state-of-the-art
method, the proposed methods can achieve more accurate estimation results than the EIWCF by
using Stirling’s interpolation, unscented transform and cubature rules for linearization of nonlinear
models. Furthermore, we also show that the DHCF based methods are preferred for a small number of
consensus iterations, since they can achieve faster convergence rate. However, the IWCF based methods
can offer more accurate results when the number of consensus iterations is large enough, especially
when the redundancy information between the sensor nodes is equally distributed. Currently, the
topology of sensor networks in our experiment has a fixed connection, which is a limitation if the
sensors are dynamic, e.g., robots. An interesting and possible future extension of current work is using
an M-matrix approach to handle such issues [30,31].
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