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Abstract The ecological importance of viruses is now widely recognized, yet our limited

knowledge of viral sequence space and virus–host interactions precludes accurate prediction of their

roles and impacts. In this study, we mined publicly available bacterial and archaeal genomic data

sets to identify 12,498 high-confidence viral genomes linked to their microbial hosts. These data

augment public data sets 10-fold, provide first viral sequences for 13 new bacterial phyla including

ecologically abundant phyla, and help taxonomically identify 7–38% of ‘unknown’ sequence space in

viromes. Genome- and network-based classification was largely consistent with accepted viral

taxonomy and suggested that (i) 264 new viral genera were identified (doubling known genera) and

(ii) cross-taxon genomic recombination is limited. Further analyses provided empirical data on

extrachromosomal prophages and coinfection prevalences, as well as evaluation of in silico

virus–host linkage predictions. Together these findings illustrate the value of mining viral signal from

microbial genomes.

DOI: 10.7554/eLife.08490.001

Introduction
Over the past two decades, our collective understanding of microbial diversity has been profoundly

expanded by cultivation-independent molecular methods (Pace, 1997;Whitman et al., 1998; Rappé and

Giovannoni, 2003; DeLong, 2009; Hanson et al., 2012). It is now widely recognized that interconnected

microbial communities drive matter and energy transformations in natural and engineered ecosystems

(Falkowski et al., 2008), while also contributing to health and disease states in multicellular hosts

(Clemente et al., 2012). Concomitant with this changing worldview is a growing awareness that viruses

modulate microbial interaction networks and long-term evolution with resulting feedbacks on ecosystem

functions and services (Suttle, 2007; Rodriguez-Valera et al., 2009; Forterre and Prangishvili, 2013;

Hurwitz et al., 2013; Brum et al., 2014; Brum and Sullivan, 2015).

However, our understanding of viral diversity and virus–host interactions remains a major

bottleneck in the development of predictive ecosystem models and unifying eco-evolutionary

theories. This is because the lack of a universal marker gene for viruses hinders environmental survey

capabilities, while the number of isolate viral genomes in databases remains limited: for comparison,

more than 25,000 bacterial and archaeal host genomes are available in NCBI RefSeq (January 2015),

whereas only 1,531 of their viruses were entirely sequenced and most (86%) of these derive from only

3 of 61 known host phyla (Roux et al., 2015a). Thus, although advances in high-throughput

sequencing expand the bounds of viral sequence space, these data sets are dominated by

uncharacterized sequences (usually 60–95%), termed ‘viral dark matter’ (Reyes et al., 2012;
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Youle et al., 2012; Mizuno et al., 2013; Brum and Sullivan, 2015). In the absence of closely related

isolates, viral genes and genomes remain unlinked to hosts, which greatly limits ecological and

evolutionary inferences.

Alternatively, viral sequence space can be explored in a known host context by revealing putative

viral sequences hidden in microbial genomes. Such signal was first analyzed through annotation of

prophages—viral genomes integrated in microbial genomes. Numerous tools exist to automatically

detect prophages (Fouts, 2006; Lima-Mendez et al., 2008a; Zhou et al., 2011; Akhter et al., 2012),

so prophage diversity and abundance are relatively well studied (Casjens, 2003; Canchaya et al.,

2004). Early estimations, when only a few hundred bacterial genomes were available, suggested that

prophages are common (62% of bacterial genomes tested contained at least one), existing as intact

and functional forms or in varying degrees of decay (Casjens, 2003). Given that tens of thousands

more microbial genomes are now publicly available, it is expected that many new prophages and

other viral sequences remain to be discovered.

Further, other viral signals might be prevalent in modern microbial genomic data sets. First, certain

types of prophage do not integrate into the host genome. These ‘extrachromosomal prophages’

(also termed ‘plasmid prophage’) exist outside the microbial chromosome until induced to undergo

lytic replication. These have been known to occur for decades (e.g., coliphage P1, Sternberg and

Austin, 1981), though their abundance in nature is unknown. Second, some phages can enter a

‘chronic’ cycle, in which they replicate in the cell outside of the host chromosome, and produce virions

that are extruded without killing their host (Abedon, 2009; Rakonjac et al., 2011). Third, a phage

eLife digest Viruses are infectious particles that can only multiply inside the cells of microbes

and other organisms. Little is known about the genetic differences between virus particles (so-called

‘genetic diversity’), especially compared to what we know about the diversity of bacteria, archaea,

and other single-celled microbes. This lack of knowledge hampers our understanding of the role

viruses play in the evolution of microbial communities and their associated ecosystems.

Studying the genetics of the viruses in these communities is challenging. There is no single

‘marker’ gene that can be used to identify all viruses in environmental samples. Also, many of the

fragments of viral genomes that have been identified have not yet been linked to their host

microbes. Many viruses integrate their genome into the DNA of their host cell, and there are

computational tools available that exploit this ability to identify viruses and link them to their host.

However, other viruses can live and multiply inside cells without integrating their genome into the

host’s DNA.

Earlier in 2015, researchers developed a new computational tool called VirSorter that can predict

virus genome sequences within the DNA extracted from microbes. VirSorter identifies viral genome

sequences based on the presence of ‘hallmark’ genes that encode for components found in many

virus particles, together with a reference database of genomes from many viruses.

Now, Roux et al.—including some of the researchers from the earlier work—use VirSorter to

predict viral DNA from publicly available bacteria and archaea genome data. The study identifies

over 12,000 viral genomes and links them to their microbial hosts. These data increase the number of

viral genome sequences that are publically available by a factor of ten and identify the first viruses

associated with 13 new types of bacteria, which include species that are abundant in particular

environments.

It is possible for several different viruses to infect a single cell at the same time. Some viruses are

known to be able to exchange DNA, and if this happens frequently in other viruses, it could have

a big impact on how viruses evolve. Roux et al.’s findings suggest that although it is common for

several different viruses to infect the same cell, it is relatively rare for these viruses to exchange

genetic material.

Roux et al.’s findings demonstrate the value of searching publicly available microbial genome data

for fragments of viral genomes. These new viral genomes will serve as a useful resource for

researchers as they explore the communities of viruses and microbes in natural environments, the

human body and in industrial processes.

DOI: 10.7554/eLife.08490.002
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‘carrier state’ has been observed, in which a lytic phage is maintained and multiplied within

a cultivated host population without measurable effect on cell growth (Bastı́as et al., 2010). This

phenomenon is thought to arise due to the presence of both resistant and sensitive cells that

frequently transition between these two states. Sometimes also termed ‘partial resistance’, such states

that enable the coexistence of phage and host in culture have now been observed in different systems

(Vibrio, Escherichia coli, Salmonella, Flavobacterium), and are linked to slight decreases in growth rate

or cell concentration but no host cell clearing as would be observed for ‘typical’ lytic viruses (i.e., plaque

formation), thus could go unnoticed in a microbial cell culture (Fischer et al., 2004; Carey-Smith et al.,

2006; Middelboe et al., 2009). All three of these lesser studied types of infection would result in the

assembly of viral sequences outside of the main host chromosome in a microbial genome sequencing

project and could be a new type of viral signal in modern microbial genomic data sets due to deep

sequencing and public release of draft (i.e., not completely assembled) genomic sequences.

Finally, single amplified genome (SAG) data sets, sourced from anonymously sorted, amplified, and

sequenced cells, are especially valuable for accessing the vast majority of environmental microbes that

remain uncultivated in the lab (Rinke et al., 2013; Kashtan et al., 2014). Single-cell amplified genomes

can reveal viral sequences directly linked to uncultivated hosts (Yoon et al., 2011; Roux et al., 2014;

Labonté et al., 2015). When combined with metagenomic sequences, these data provide information

on population dynamics, lineage-specific viral-induced mortality rates, relative ratios of prophages and

current lytic infections, as well as putative links between viral infection and host metabolic state (Roux

et al., 2014; Labonté et al., 2015). Thus, as microbial genomic data sets evolve from complete

genomes to fragmented draft and single-cell genomes, new windows into viral diversity and virus–host

interactions are opened.

Here, we applied a recently developed and automated virus discovery pipeline, VirSorter (Roux

et al., 2015a), to mine the viral signal from 14,977 publicly available bacterial and archaeal genomic

data sets. This identified 12,498 high-confidence viral sequences with known hosts, ∼10-fold more

than in the RefSeqVirus database, that we then used to expand our understanding of viral diversity

and virus–host interactions.

Results and discussion

New viruses detected in public microbial genomic data sets with
VirSorter
VirSorter is designed to predict bacterial and archaeal virus sequences in isolate or single-cell draft

genomes, as well as complete genomes (Roux et al., 2015a). Briefly, VirSorter identifies viral sequences

through (i) statistical enrichment in viral gene content, using a reference database composed of viral

genomes of archaeal and bacterial viruses from RefSeq (hereafter named RefSeqABVir for ‘RefSeq

Archaea and Bacteria Viruses’) and assembled from viral metagenomes (database ‘Viromes’ in

VirSorter), or (ii) a combination of viral ‘hallmark’ gene(s) that code for virion-related functions such as

major capsid proteins or terminases (Koonin et al., 2006; Roux et al., 2014), and at least one viral-like

genomic feature: statistical depletion in genes with a hit in the PFAM database, statistical enrichment in

uncharacterized genes, short genes, or strand bias (i.e., consecutive genes which tend to be coded on

the same strand).

Applied to 14,977 publicly available microbial genomes (Figure 1—source data 1), VirSorter identified

12,498 high-confidence viral sequences representing either long genome fragments (>10 kb when linear)

or complete genomes (contigs detected as circular). These viral sequences were found in 5492 of the

microbial genomes (∼30%). Simply scanning the identified viruses for novel hosts extended the host range

of common viral families to now include several recently described phyla like Caldiserica (formerly known

as candidate phylum OP5), Marinimicrobia (SAR406 also known as Marine Group A), or Omnitrophica

(OP3), in addition to other understudied groups such as Poribacteria, Nitrospinae, Cloacimonetes

(WWE1), and Chloroflexi-type SAR202 (Figure 1, Figure 1—source data 2, Figure 1—source data 3).

Uncovering the first viruses infecting these major microbial groups is critical given that many candidate

phyla are abundant in understudied ecosystems and play substantial roles in coupled biogeochemical

cycling (Wright et al., 2012; Wrighton et al., 2012; Castelle et al., 2013; Kamke et al., 2013; Rinke

et al., 2013; Allers et al., 2013b; Emerson et al., 2015).

BLAST-based family-level affiliations suggested that 90.45% of these 12,498 sequences correspond

to Caudovirales, 6.82% to ssDNA viruses (predominantly Inoviridae family), and 2.73% could not be
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confidently assigned (Figure 1—figure supplement 1). Among the unassigned group, 7 sequences

lacked any hit to a viral reference genome. These 7 short (4.1 kb) near-identical circular contigs from

Bacteroides draft genomes were detected as viral based on sequence similarity with human gut viromes,

but contained two genes associated with plasmid replication (Figure 1—figure supplement 2A).

This could suggest a plasmid origin, but the high and even coverage of these genomes across

several CsCl-purified viromes from different studies (Kim et al., 2011; Minot et al., 2012)

suggests that they are derived from encapsidated particles typical of viruses (Figure 1—figure

supplement 2B). If confirmed, these sequences would represent the first complete genomes for

an entirely new viral order.

Figure 1. Distribution of viral sequences from the VirSorter curated data set across the bacterial and archaeal phylogeny. For each bacteria or archaea

phylum (or phylum-level group), corresponding viruses in RefSeq (gray) and VirSorter curated data set (red) are indicated with circles proportional to the

number of sequences available. Groups for which no viruses were available in RefSeq are highlighted in black.

DOI: 10.7554/eLife.08490.003

The following source data and figure supplements are available for figure 1:

Source data 1. List of data sets mined for viral signal.

DOI: 10.7554/eLife.08490.004

Source data 2. New virus–host associations detected in VirSorter sequences.

DOI: 10.7554/eLife.08490.005

Source data 3. Summary table of VirSorter data set sequences.

DOI: 10.7554/eLife.08490.006

Figure supplement 1. Viral diversity in the VirSorter data set.

DOI: 10.7554/eLife.08490.007

Figure supplement 2. Genome map comparison (A) and recruitment plot (B) of Bacteroidia virus sequences from a putative new order.

DOI: 10.7554/eLife.08490.008
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264 new putative viral genera identified through genome-based
network clustering
To better determine relationships between viral genomes and host range, we next built a network

based on shared gene content to quantify genetic relatedness between the 12,498 sequences

identified with VirSorter and the 1,240 taxonomically curated genomes available in RefSeqABVir

(Figure 2—figure supplement 1 and see ‘Materials and methods’). Despite the absence of a universal

marker gene, a long history of organizing viral sequence space through genome-to-genome comparison

exists using either gene content (Rohwer and Edwards, 2002; Lima-Mendez et al., 2008b) or nucleotide

composition (Sims and Jun, 2009; Labonté and Suttle, 2013). We used MCL (Markov Cluster Algorithm)

based on the number of shared genes between sequence pairs as it had been previously shown to

accurately recapitulate taxonomic relationships in the Caudovirales, which dominated our data set

(Enright et al., 2002; Lima-Mendez et al., 2008b).

Most (99.3% of 12,498) sequences affiliated to one of 614 virus clusters (VCs), of which 535

contained at least one complete genome or large genomic fragment (>30 kb), and approximately half

(271 of 535 VCs) included RefSeqABVir sequences (Figure 2A, Figure 2—source data 1). Those VCs

with RefSeqABVir sequences provided the opportunity to evaluate whether a VC corresponded to

any particular taxonomic level of ICTV classification. Of 43 RefSeq-curated viral genera, 27 have all

their sequences in the same VC, 12 were spread across two VCs, and 4 were spread across >2
VCs—these latter genera included the Spouna-like viruses (3 VCs), N4-like viruses (4 VCs), Lambda-

like viruses (9 VCs), and Inoviruses (11 VCs). Consistent with previous applications of this method,

VCs identified in this analysis were thus approximately equivalent to a RefSeq-curated viral genus

(Lima-Mendez et al., 2008b).

Given this level of taxonomic resolution and ignoring the 79 VCs that lacked large (>30 kb) genome

sequences, we identified a total of 264 new candidate viral genera (i.e., 264 VCs with no sequences

from RefSeqABVir, Figure 2—source data 1). These 264 candidate genera were derived from both

understudied and well-studied hosts (e.g., Gammaproteobacteria and Bacilli, Figure 2B) and included

5 of the 30 highest-membership VCs (Figure 2—source data 1), which confirms that our knowledge

of viral diversity is limited even in well-studied hosts and with prevalent viruses.

VirSorter curated data set includes extrachromosomal genomes and
improves virome affiliation
Of the 12,498 sequences, 5,232 were prophages (i.e., a viral genome integrated into a microbial

contig) and 1,756 were either complete (circularized) or large (>30 kb) genome fragments assembled

outside of the host chromosome (i.e., no microbial gene was detected on the contig, Figure 3A,

Figure 1—source data 1).

To estimate how often a large (>30 kb) genome fragment could be an integrated prophage and not

capture the microbial gene content, we simulated the process for 22 different prophage-containing

bacterial genomes ‘sequenced’ (in silico) at coverage of 5, 25, 50, 75, and 100× (see ‘Material and

methods’). These analyses suggested that only 2.3% of large (>30 kb) prophage-originating contigs

lacked any identifiable microbial genes. Thus, these latter 1,756 sequences must largely be

extrachromosomal sequences and so represent a unique data source for quantifying the

prevalence of under-studied viral infection modes including chronic infections, lytic viruses, or

extrachromosomal prophages.

Although we identified no clear sequence-based marker for the first two infection types, we could

conservatively estimate the fraction of extrachromosomal prophages by identifying plasmid partition

genes (ParA and ParB, Davis et al., 1992; Saint Girons et al., 2000; see Figure 3—figure

supplement 1 for an example of a putative extrachromosomal prophage displaying ParA-ParB

genes). These genes were significantly more abundant in the 1,756 circular and large genome

fragments than in the rest of the data set (13% vs 1%, respectively; poisson test p-value < 10−05). Thus,

at least 13% of these sequences appear to be bona fide extrachromosomal prophages, whereas the

others might be lytic viruses in ‘carrier’ states, chronic infections, or extrachromosomal prophages

without detectable ParA/ParB genes.

Beyond this glimpse into under-studied viral infection modes, these new reference genomes are

likely to help improve taxonomic affiliation for the ‘viral dark matter’ in viromes. To quantify this, we

added these sequences to the RefSeqABVir database and assigned taxonomy to predicted genes in
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three large-scale virome data sets available. We found that the VirSorter curated data set improved

affiliation by 32 and 40%, respectively, in the marine Pacific Ocean Viromes (POV) (Hurwitz and

Sullivan, 2013) and Tara Oceans Viromes (TOV) (Brum et al., 2015) data sets, and more than doubled

the number of affiliated genes in human gut viromes (Minot et al., 2012, Figure 3B). This particularly

strong improvement in the human gut virome affiliation is presumably due to enterobacteria being

abundant among current publicly available microbial genomes.

Finally, both the detection of non-integrated viral genomes and the improved virome affiliation

suggest that the VirSorter curated data set includes not only integrated prophage data, but also

viruses actively infecting these microbes (i.e., not integrated in the host chromosome and producing

virions) with under-studied infection modes.

Long-term evolutionary patterns of bacterial and archaeal virus genomes
Examination of the VCs network beyond classification revealed additional higher order patterns.

First, bacterial and archaeal viruses clustered separately in >99% of VCs; the exception (VC_89)

included a single and unique (Garrett et al., 2010) archaeal virus (Hyperthermophilic Archaeal Virus 2,

NC_014321) that clustered with 21 bacterial viruses, presumably due to poor archaeal virus

representation. Second, >95% of these VCs contained exclusively one nucleic acid type (e.g., DNA or

RNA, and dsDNA or ssDNA, Figure 2—figure supplement 1), although RNA viral representation is

low because only RefSeq-curated families Cystoviridae and Leviviridae were available (no RNA viruses

were detected with VirSorter, presumably because DNA-based data sets were analyzed). The 15 VCs

including both ssDNA and dsDNA viral genomes are either associated with archaeal viruses for which

composite ssDNA/dsDNA genomes were already described (2 VCs; Sencilo et al., 2012) or more

Figure 2. Degree of novelty of viruses detected in VirSorter curated data set. (A) Viral clusters (VCs) are considered as putative new genera when including

at least one sequence larger than 30 kb, circular, or known to be a complete genome (from RefSeq). These putative genera were considered as ‘new’ when

the VC did not include any RefSeq sequence, and ‘known’ otherwise. (B) The proportion of new VCs (containing no RefSeqABVir), VCs with only one

RefSeqABVir sequence, and VCs with more than one RefSeqABVir sequence is displayed for host classes associated with more than 10 virl sequences.

Only ‘putative genera’ VCs were considered (i.e., clusters containing a RefSeqABVir genome, a circular sequence, or a sequence with more than 30

predicted genes).

DOI: 10.7554/eLife.08490.009

The following source data and figure supplements are available for figure 2:

Source data 1. Summary table of virus clusters (VCs).

DOI: 10.7554/eLife.08490.010

Figure supplement 1. Structure of viral sequence space sampled in VirSorter data set.

DOI: 10.7554/eLife.08490.011

Figure supplement 2. Benchmarks used to determine the best value for inflation and significance thresholds for virus clustering.

DOI: 10.7554/eLife.08490.012
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surprisingly with ssDNA Inoviridae, which clustered with Caudovirales in 13 VCs (Figure 2—source

data 1). For 9 of these 13 Inoviridae–Caudovirales VCs, some of the sequences were wrongly affiliated

due to genes shared by both viral families such as integrases, exonucleases, and replication-

associated proteins. Two other VCs corresponded to prophage sequences that include genes similar

to Inoviridae and Caudovirales and could actually be two different viruses integrated at the same

genome location. However, the 2 remaining mixed VCs (VC_128 and VC_215) include sequences

displaying a mix of Caudovirales and Inoviridae genes (VC_215 sequences also included Corticoviridae

genes). We posit that these might represent new composite genomes beyond the ones already

described for archaea viruses (Sencilo et al., 2012) and the recently discovered RNA–DNA chimeric

viruses (Diemer and Stedman, 2012; Roux et al., 2013; Krupovic et al., 2015).

We next evaluated the scale and range of viral co-infection, a phenomenon critical to viral genome

evolution and thought to blur this vertical gene inheritance signal used to classify genomes into VCs.

Indeed, the fact that super-infection of prophage-containing bacteria would provide genomic

proximity for gene acquisition via illegitimate recombination was posited more than a decade ago

(Mosig, 1998). However, viral co-infection rates remain unconstrained with the only data for natural

systems derived from a single large-scale single-cell genomic data set where ∼35% of infected cells

contained multiple viruses (Roux et al., 2014). Here, in the 5492 microbial genomes with detectable

viral signal, nearly half (2445) contained more than one detectable virus (Figure 4). Most (∼82%) of

these co-infections involved multiple Caudovirales, as previously observed (Casjens, 2003), and likely

provides mechanism for viral gene exchange and may be more common in some phages

displaying rampant mosaicism (e.g., the Siphoviridae, Hendrix et al., 1999) than others. The

second most commonly observed co-infections (9%) occurred between ssDNA Inoviridae and

dsDNA Caudovirales (Figure 4). These genomes represented the mixed VCs from the network

analyses and putative new composite genomes described above. Mechanistically, Inoviridaemight

be more prone to such co-infection due to their long infection cycle whereby they extrude their

Figure 3. Extrachromosomal prophages in VirSorter curated data set and improvement in virome affiliation. (A) The distribution of VirSorter

curated data set as ‘integrated’ (i.e., prophages integrated in the host chromosome), ‘extrachromosomal’ (i.e., >30 kb or circular sequences with

no microbial genes), or ‘undetermined’ (<30 kb linear with no microbial genes) is indicated for each host class with at least five VirSorter curated

data set sequences. The number of sequences associated with each host class in indicated above the histogram. (B) Improvement in the

proportion of affiliated genes from viromes with VirSorter data set. Predicted genes from the Pacific Ocean Viromes (Hurwitz and Sullivan,

2013), Tara Ocean Viromes (Brum et al., 2015), and Human Gut Viromes (Minot et al., 2012) were compared to RefSeqVirus (May 2015) and the

VirSorter data set (BLASTp, threshold of 50 on bit score and 0.001 on e-value). Predicted proteins affiliated to VirSorter (in blue) did not display

any significant similarity to a RefSeq sequence.

DOI: 10.7554/eLife.08490.013

The following figure supplement is available for figure 3:

Figure supplement 1. Contig map of a putative new extrachromosomal prophage.

DOI: 10.7554/eLife.08490.014
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filamentous virions without killing their host

(Rakonjac et al., 2011), with a dsDNA replica-

tion stage (Salim et al., 2008) that could

increase genomic exchanges with co-infecting

dsDNA viruses.

Together, these findings suggest that

genome-based network analyses could be used

to identify novel viruses, as well as to infer host

domain (archaeal or bacterial, >99% accuracy)

and nucleic acid type (ssDNA or dsDNA, >95%
accuracy). Evolutionarily, we posit that while

co-infection by multiple viruses appears com-

mon, the consistency of so many VCs with ICTV

taxonomy suggests that most phage genomes

harbor a largely vertically inherited core gene

set as detected for marine T4-like populations

(Ignacio-Espinoza and Sullivan, 2012; Mar-

ston et al., 2012; Deng et al., 2014) rather

than the rampant mosaicism paradigm largely

derived from Siphoviridae genomes (Hendrix

et al., 1999). While data remain limited to

a subset of the known microbial phyla, it might

be that viral infection modes influence the

tempo of their genome evolution. Specifically,

we posit that horizontal gene transfer is more

prevalent in phages that occupy host cells

longer due to lysogenic or chronic infection

stages and/or infect densely packed hosts (e.g.,

biofilms or clumped life stages) as these

parameters would increase the probability of

co-infection. Perhaps then, at least for more

highly lytic viral groups, genome-based clustering

approaches can now be leveraged for their taxonomic predictive value as suggested over a decade ago

(Rohwer and Edwards, 2002).

Global virus–host network is confirmed as modular
Beyond charting diversity and taxonomic affiliation of viral sequence space, the VirSorter data set

provided a unique opportunity to explore virus–host interactions. Beyond the above-noted expansion

of viruses to novel hosts, we next examined these patterns on a global scale by constructing a

virus–host interaction network based on database-available taxa. When considering viral diversity at

the genus level, the network displays a modular topology (Figure 5 and Figure 5—figure

supplement 1). Such modularity in virus–host interaction networks suggests that hosts are specifically

associated with particular viruses (Weitz et al., 2012), probably reflecting long-term coevolution

between microbial hosts and their viruses. Such modular structure was expected, but not observed in

previous virus–host interaction network studies, likely due to the short phylogenetic distances

between hosts evaluated in available data sets (Flores et al., 2011). The modular network presented

here derives from a data set spanning 18 phyla across bacterial and archaeal domains. These results

confirmed the prediction that ‘at macroevolutionary scales, host–phage interaction matrices should

be typified by a modular structure’ (Flores et al., 2011), as also had been observed across 215 phage

types against 286 host types of unknown diversity (Flores et al., 2013).

Virus–host adaptation signals detected at the genome composition and
codon usage level
Finally, given the number of virus–host linkages revealed by VirSorter, we evaluated the adaptation of

viral genome composition within the host milieu—an idea practiced in the literature with limited

Figure 4. Scale and range of co-infection. (A) Number

of different viral sequences detected by host genome.

Numbers are based on the set of microbial genomes

with at least one viral sequence detected (5492

genomes). (B) Affiliation of viruses involved in multiple

infections of the same host. Affiliations are deduced

from best BLAST hits alongside the viral sequences,

as in Figure 1. Co-infections involving dsDNA and

ssDNA viruses are highlighted in bold.

DOI: 10.7554/eLife.08490.015
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Figure 5. Virus–host network between virus clusters and host classes (matrix visualization). A cell in the matrix is

colored when at least one virus from a virus cluster (VC, rows) was retrieved in a genome from a host class (columns).

This virus–host network is detected as significantly modular by lp-Brim (modularity Q = 0.45; the same index

computed from 99 randomly permuted matrices ranged from 0.02 to 0.17, with an average of 0.08). The different

Figure 5. continued on next page
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genomic information (Pride et al., 2006; Carbone, 2008; Cardinale and Duffy, 2011). To this end,

we computed the distance between viral and microbial genomes in terms of mono-, di-, tri-, tetra-

nucleotide frequency and codon usage, and compared the distances between the virus and its host

vs non-hosts in the data set. Every metric tested displayed a smaller distance between viruses and

their hosts than with non-host genomes, with tetranucleotide frequency (TNF) maximizing the host

to non-host distances (Figure 6).

Among dsDNA viruses, host-correlated genome composition patterns were robust across

integrated prophages and extrachromosomal genomes (i.e., viral sequences assembled outside of

the main host chromosome, Figure 6A, Figure6—figure supplement 1). Our expectations were that

prophages would be largely optimized towards the genome of their host, but that genome

composition of the extrachromosomal category would be less correlated. Particularly, as cyanophage

host range breadth scales with the number of tRNA genes encoded by the virus (Enav et al., 2012),

we expected that genome composition of viral genomes with many tRNA genes might have poor

correlation to that of their host genomes, assuming that the viral-encoded tRNA genes could

compensate for codon mismatches across hosts. However, these latter expectations were not met as

viral and host genome composition correlations were strong regardless of the number of viral-

encoded tRNA genes (Figure 6—figure supplement 1), which suggests that host-optimized viral

genome composition may be beneficial even when the virus encodes its own tRNA genes.

Among ssDNA viruses, nucleotide composition of viral genomes was also correlated to host

genomes, but less so than for dsDNA viruses (Figure 6A). This contrasts with a previous analysis of 500

phage genomes that did not detect any difference between dsDNA and ssDNA genomes adaptations

to their host’s genome (Cardinale and Duffy, 2011). One ssDNA viral group, the Microviridae, had

a reduced signal for genome composition metrics except for codon usage where its signal was

comparable to that of the dsDNA viruses (Figure 6A). Although this could indicate a bias linked to the

small genome size of these viruses (around 5 kb), dsDNA viruses’ genomes subsampled to similar sizes

displayed a minimal signal loss (Figure 6—figure supplement 2), which suggests other mechanisms

may be driving this lower genome composition adaptation in Microviridae. Another ssDNA group, the

Inoviridae had reduced genome composition and codon usage adaptation signals. Again, because

Inoviridae release virions without killing their hosts, it is possible that the virus is exposed to host

resources over a much longer time interval, lowering the selection pressure toward transcription and

translation speed and efficiency, which is the main mechanism thought to drive genome composition

and codon usage adaptation of viral genomes (Cardinale and Duffy, 2011).

Pragmatically, to assess whether this signal could be used to predict the host of a new virus, we

calculated the distance based on TNF vectors between each VirSorter curated data set sequence and

the 14,977 microbial genomes. The taxonomy of the microbial genome with the lowest distance to the

viral sequence (i.e., the predicted host) was then compared to the taxonomy of the actual host (i.e., the

genomic data set in which the viral sequence was identified). When the host database included all host

genomes, this host prediction was 99% accurate at both the family and genus level for virus–host TNF

distances lower than 4.10−04, 88%/51% (family/genus level) for TNF distances ranging between 4.10−04

and 1.10−03, and 70%/37% for distances greater than 10−03 (Table 1). When genomes from the actual

host species are excluded, the accuracy of host prediction drops slightly (95%, 83%/30%, 67%/30% for

the same distance ranges), and even more when all genomes from the host genus are excluded (70%

and 37% at the family level, no correct genus could be predicted in that case, and only one distance

Figure 5. Continued

modules are highlighted in color, with inter-module links in gray. Virus clusters are identified by their number and

their family-level affiliation (based on BLAST-based affiliation of the cluster members) is indicated next to each

cluster when available (virus clusters with inconsistent members affiliation are considered as ‘unclassified’, affiliations

are spread along the x-axis for spacing purpose). Host phylum and class are indicated for each host column, with

domains indicated above the corresponding hosts.

DOI: 10.7554/eLife.08490.016

The following figure supplement is available for figure 5:

Figure supplement 1. Virus–host network between virus clusters and host classes (network visualization).

DOI: 10.7554/eLife.08490.017
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lower than 4.10−04 was observed, Table 1). Hence, TNF comparison provides a promising in silico

approach to link new viral genomes to hosts at different levels of accuracy within the taxonomic

hierarchy when the suitable host reference genome is available.

Data set availability
As evidenced by the improvement in virome taxonomic affiliation (Figure 3B), VirSorter curated data

set should represent a useful reference data set for future virome studies. This data set also likely

harbor novel biology beyond the global patterns of viral diversity and virus–host interactions

presented in this manuscript, to be revealed through analyses targeted toward specific viral or host

Figure 6. Adaptation of viral genome composition and codon usage to the host genome. K–S distances between

distributions of virus–host distances and virus–non-host distances for each metrics (in color) and different subsets of

the viral sequences (all sequences, by type, and by taxonomy). Only families with more than 5 genomes are

displayed (although it should be noted that the VirSorter data set includes only 6 Microviridae sequences).

The number of sequences in each category is indicated in brackets. Distributions used to compute distances are

displayed in Figure 6—figure supplement 1.

DOI: 10.7554/eLife.08490.018

The following figure supplements are available for figure 6:

Figure supplement 1. (A) K–S distances between distributions of virus–host distances and virus–non-host distances

for each metrics (in color) and different subsets of the viral sequences (based on the number of tRNA genes

detected).

DOI: 10.7554/eLife.08490.019

Figure supplement 2. Distance between k-mer frequency vectors of virus genome subsamples and host genomes

for Caudovirales.

DOI: 10.7554/eLife.08490.020
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subgroups. To facilitate these follow-up studies, VirSorter curated data set is made available through

two complementary websites: MetaVir and iVirus. MetaVir (project ‘VirSorter’, data set ‘VirSorter

curated data set’) provides an automatic annotation of each sequence, with multiple visualization tools

to explore and compare genome maps, as well as multiple ways of searching the data (by host, by

phage affiliation, by taxonomic or functional affiliation of predicted genes, etc) and extract a specific

subset of interest (these tools are under the tab ‘Contig maps’). Nucleotide sequences from the

VirSorter curated data set are also hosted at iVirus, alongside the viral clusters annotation and network

(as cytoscape-ready text files), the virus–host matrix, and the complete list of viral sequence

predictions in the 14,977 archaeal and bacterial genomic data sets including the category 3

predictions that are not in VirSorter curated data set (http://mirrors.iplantcollaborative.org/

browse/iplant/home/shared/ivirus/VirSorter_curated_dataset). Finally, a summary of the sequen-

ces and clusters is provided as Figure 1—source data 1 and Figure 2—source data 1, and a Data

Dryad package including all annotated genbank files from the VirSorter curated data set is

available (http://dx.doi.org/10.5061/dryad.b8226; Roux et al., 2015b).

Conclusion
While recent advances in high-throughput sequencing and viral metagenomics continue to expand

the bounds of viral sequence space (e.g., Reyes et al., 2012; Mizuno et al., 2013; Brum and Sullivan,

2015), such viruses are typically unlinked to cognate hosts, severely limiting ecological and evolutionary

inferences. Concurrently, emerging methods provide new virus–host linkage capabilities, but do not scale

well with increasing data set size and complexity (e.g., Andersson and Banfield, 2008; Tadmor et al.,

2011; Allers et al., 2013a; Deng et al., 2014). Here, the mining of publicly available microbial genomic

data proved to be a useful complement to these approaches as it enables the exploration of host-linked

viral diversity. The resulting viral sequences hidden in microbial genomes represent a powerful data set,

increasing the number of known, host-linked viruses by an order of magnitude, with analyses of these data

elucidating viral dark matter in ocean and human gut viromes, as well as augmenting our understanding of

viral taxonomy, viral genome evolution, and virus–host interactions on multiple fronts. While this current

Table 1. Accuracy of host prediction based on distance (d) between tetranucleotide frequencies of viral

and microbial genomes

Predicted

Host order Host family Host genus

Correct Ratio (%) Correct Ratio (%) Correct Ratio (%)

All reference sequences

d < 4 × 10−04 98 97 98.98 97 98.98 97 98.98

4 × 10−04 ≤ d < 1 × 10−03 10,173 9361 92.02 8971 88.18 5261 51.72

1 × 10−03 ≤ d 2508 1872 74.64 1757 70.06 917 36.56

Host species excluded

d < 4 × 10−04 21 20 95.24 20 95.24 20 95.24

4 × 10−04 ≤ d < 1 × 10−03 10,003 9067 90.64 8372 83.69 2992 29.91

1 × 10−03 ≤ d 2755 1981 71.91 1840 66.79 818 29.69

Host genus excluded

d < 4 × 10−04 1 0 0.00 0 0.00 0 0.00

4 × 10−04 ≤ d < 1 × 10−03 9085 7303 80.39 6181 68.04 0 0.00

1 × 10−03 ≤ d 3693 1768 47.87 1388 37.58 0 0.00

For each viral genome, the order, family, and genus of its host were predicted from the taxonomy of the closest

microbial genome (based on the mean absolute difference between tetranucleotide frequency vectors) and

compared to the order, family, and genus of the actual host (i.e., the taxonomy of the genome with which the virus

was identified). These predictions were computed with (i) all microbial genomes, (ii) excluding specifically all

genomes from the host species, and (iii) excluding all genomes from the host genus. Cases with over 75% of

prediction accuracy are highlighted in gray.

DOI: 10.7554/eLife.08490.021
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VirSorter data set remains limited by the cultivation bias inherent in the publicly available complete and

draft microbial genomes, such bias will progressively be eliminated as SAGs are used to better map

microbial dark matter (e.g., Rinke et al., 2013). Such a drastically improved map of the virosphere,

together with advances in experimental approaches and theory (Brum and Sullivan, 2015), will help reveal

the eco-evolutionary forces shaping virus–host interactions across diverse ecosystems and eventually shift

our inference capability from observation to prediction.

Materials and methods

Application of VirSorter to public bacterial and archaeal genomes
A total of 14,977 bacterial and archaeal genomes (complete and draft) included in RefSeq and WGS

databases (Pruitt et al., 2009) were downloaded from the NCBI ftp website in March 2014 (RefSeq

release 64). The 264 new candidate phyla (‘Microbial Dark Matter’) SAGs’ (Rinke et al., 2013) raw

reads were downloaded from the JGI portal page and assembled with SPAdes Genome Assembler

(Bankevich et al., 2012) (default parameters). Finally, 127 SUP05 SAGs that we previously analyzed

manually were added to the cellular genome pool (Roux et al., 2014). This data set included 4240

complete genomes and 10,547 draft genomes (as there is no clear annotation of a genome as ‘draft’

or ‘complete’ at the NCBI, we identified as ‘draft’ genomes all genome projects including more than 5

different sequences, to avoid considering genomes split into different chromosomes or including one

or several plasmids as ‘draft’).

Genomes were processed with VirSorter (Roux et al., 2015a) separately for each class (except for

Cyanobacteria, SUP05 SAGs, and the Microbial Dark Matter data set that were all processed together),

first using the RefSeqABVir database, and then using the Viromes database, yielding 89,301 total

predicted viral sequences. Among these, 938 correspond to Enterobacteria phage PhiX174, which is used

for quality control during Illumina sequencing, and were thus discarded.

Selection of a relevant subset of viral sequences: the VirSorter data set
We focused on a subset of the putative viral sequences extracted from RefSeq, WGS and the

Microbial Dark Matter and SUP05 SAGs (89,301 sequences), and targeted the active prophages and

lytic virus signatures. To this end, we discarded all predictions lacking a viral hallmark gene or a viral

gene enrichment (i.e., category 3 predictions, Roux et al., 2015a), and all prophage detections

displaying viral gene enrichment only and lacking viral hallmark genes, as these are likely defective

prophages for which boundaries are difficult to predict in silico and that often include bacterial genes.

We next removed all linear sequences shorter than 10 kb except for sequences detected with the non-

Caudovirales score where a threshold of 5 kb was used, as these viruses can frequently have genomes

smaller than 10 kb. We also discarded all circular contigs (which should represent complete genomes)

smaller than 3 kb as these are likely short repeat regions (the smallest known genome for a bacteria or

archaea virus is ∼5 kb). The resulting 13,391 sequences were then manually curated to remove false

positives. These false positives corresponded to defective prophages (wherein most are expected to be

smaller than 10 kb), plasmid-like sequences, GTA gene clusters, and low complexity regions. In addition,

this manual curation step allowed us to adjust the boundaries of some prophage predictions and/or

modify the prophage vs complete viral contig automatic prediction. Consequently, 892 sequences were

discarded (false-positive rate of 6.7%), leaving 12,498 curated sequences.

Among these, 7266 sequences were entirely viral (thus potentially represent lytic, chronic, or

extrachromosomal lysogenic infections assembled in draft genomes), and 5232 were prophages (viral-

like regions detected within a cellular genome fragment). Among the sequences detected as entirely

viral, 6 were tagged in the NCBI database as bacteriophages, and 108 as plasmids. Viruses and

plasmids can be difficult to distinguish, as gene exchange is known to occur between these two types

of mobile genetic elements (Leplae et al., 2010). Here, 84 out of these 108 ‘plasmid’ sequences

displayed conclusive evidence of a viral origin as they contained viral hallmark genes (coding for

terminase large subunits or major capsid proteins) and originated from draft unpublished genomes,

hence likely to have been named ‘plasmid’ because they formed extrachromosomal circular assembly

(see e.g., sequence gi:383080718 available at RefSeq). The 24 others were more ambiguous

(highlighted in orange in Figure 1—source data 1) since the automatic annotation from NCBI did not

display any viral-like gene, yet these sequences all displayed statistical viral-like gene enrichment, and

as such were maintained in the VirSorter curated data set.
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Finally, one additional ambiguous sequence, considered as entirely viral by VirSorter, was detected

in the Caldiserica SAG (Caldiserica_bacterium_sp_JGI_0000059-M03_ID_3757). Even though this

sequence looks indeed like a complete Inoviridae genome, it displayed a high level of similarity (99%

identity) to the complete genome of Delftia acidovorans SPH-1 (gi:160361034, from coordinates

2300885 to 2307389). Such high similarity with another virus is suspicious, as well as the fact that the

matching genome is Delftia, a bacterium known to contaminate some MDA reagents. This sequence

was maintained in the VirSorter data set as there is no definite proof of the contamination, but the

existence of a Caldiserica-infecting Inoviridae should be considered as uncertain until further evidence

is available (and is displayed as such in Figure 2—source data 2).

Protein and virus clustering of the VirSorter curated data set
The pool of 450,047 proteins predicted from the 12,498 viral sequences was clustered with all proteins

from RefSeq and the viral metagenomes (i.e., sequences from the Viromes database) with MCL based

on reciprocal best BLAST hit (threshold of 50 on score and 0.001 on e-value, Enright et al., 2002).

Most of these sequences (423,618) could be included in 22,460 protein clusters (PCs). About a third

(7742) of these PCs also contained sequences from the RefSeqABVir database, and the remainder

formed new PCs.

This protein clustering was then used to cluster genomes as in Lima-Mendez et al. (Enright et al.,

2002; Lima-Mendez et al., 2008b). Briefly, the number of shared PCs between each pair of sequences

(either RefSeq or VirSorter) is computed, and a significance value is deduced by comparing it to an

expected number of shared PCs (modeled with a hypergeometric formula taking into account the

number of genes of both sequences).

We used ICCC (intracluster clustering coefficient, which estimates cluster homogeneity by

measuring around each node how many of its neighbors are part of the same cluster) to determine the

best inflation value (from 1.5 to 5 by 0.25 increments) and significance threshold (i.e., which minimum

significance was required to draw an edge between two sequences, from 1 to 50). As expected, the

number of VCs formed increased with inflation and with significance. ICCC was clearly higher with the

lowest threshold in significance (sig ≥ 1), regardless of the inflation value used. For the lowest

significance threshold, ICCC increased with inflation, usually with a first small peak around 2 and

plateau around 4. These different values of inflation did not have a major impact on the clustering

though, as 95–99% of pairs of sequences were clustered similarly using inflations values of 2.75, 3,

3.25, 3.5, 3.75, 4, 4.25, 4.5, 4.75, or 5. We eventually settled for the combination yielding the highest

ICCC: a significance threshold of 1 and inflation of 4 (Figure 2—figure supplement 2).

Taxonomic and functional affiliation of sequences and VCs
Taxonomic affiliation of sequences was based on hits to the RefSeqABVir database. Each profile in the

database was first affiliated based on the origin of its members, with a 75% majority rule: at each

taxonomic level, a profile is affiliated to a taxon if more than 75% of the profile sequences are

affiliated to this taxon. Then, for each of the 12,498 viral sequences identified by VirSorter, a set of

relevant hits was selected: (i) first the profile with the best hit across all genes along the sequence, and

(ii) the best hit from other genes with a score close to this ‘absolute’ best hit in the sequence (>75% of

the score of the first best hit). The sequence was then affiliated to the Lowest Common Ancestor (LCA)

of this set of relevant hits. Hence, a predicted protein will only be affiliated if pointing toward

sequences or profiles typical of a viral group, and a sequence detected by VirSorter will only be

affiliated if its best hits are consistent. Functional affiliation for each PC was based on the comparison

of its members (predicted proteins) with PFAM (v. 27, threshold of 50 on score). VCs were affiliated

based on its members affiliations if >75% were consistent.

For the detection of new genera in the VCs, we chose to ignoring the 79 VCs that lacked large

(>30 kb) genome sequences. This 30 kb threshold is conservative as it avoids considering short

genome fragments as new genera but would also overlook small non-circular viral genomes (such as

some Tectiviridae). However, because the latter comprise a minority (∼0.1% of 12,498 sequences) of

the VirSorter data set (Figure 2), we chose to retain the larger, more conservative threshold.

The 7 short circular sequences from Bacteroidia only detected with the Viromes database

(gi 319430465, 298484481, 329959038, 423221334, 423242675, 423298785, 345651594) were targeted

for further examination. Hits to PFAM domains could be found on two proteins: a relaxase (PF03432.9,

score ∼170), and one replication initiator protein (PF01051.16, score ∼80). Genome organization was
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compared with Easyfig (Sullivan et al., 2011) after aligning all genomes to the same starting point (one

base before the start of the Rep-domain protein). Recruitment plots of virome contigs (extracted from

Kim et al., 2011; Minot et al., 2012) were generated with ggplot2 and based on blastn comparison.

Host range and co-infection
The virus–host network was assessed considering only VCs with more than 10 sequences. Hosts were

grouped at the class level. The modularity Q value of the virus–host matrix was computed with the

lp-BRIM module in R software (https://github.com/tpoisot/lp-brim). The virus–host matrix had

a modularity of 0.45. The same index computed from 99 randomly permuted matrices ranged from

0.02 to 0.17, with an average of 0.07.

Co-infection was defined as the detection of several distinct viruses in one genome project (one

complete genome or one SAG). However, different viral contigs in a single draft genome could also

originate from a single viral genome mis-assembled in several different contigs. This will be especially

true for Caudovirales that are the most detected viruses as well as the ones with the largest genomes.

To limit the over-estimation of co-infection due to mis-assembled Caudovirales genomes, co-infection

was only considered in the cases where multiple copies of the large subunit of the terminase were

detected, because this gene is present in single copy in Caudovirales genomes, and usually detected

even in new viruses (due to a high level of sequence conservation).

Evaluation of virus–host genome adaptation
Relative frequencies of k-mers (mono-, di-, tri-, and tetra-nucleotide) were computed with Jellyfish

(Marçais and Kingsford, 2011) for every VirSorter sequence and every bacterial and archaeal

genome initially mined. Mean absolute error (i.e. average of absolute differences) between k-mer

frequency vectors were then computed with an in-house perl script for each pair of VirSorter sequence

and cellular genome, and used as a distance metric between viruses and putative hosts. For each

VirSorter sequence, a set of distances that included its host (i.e., the genome with which the sequence

was initially associated) alongside 10 randomly selected sequences from the same genus, the same

family, and a different order than the host were factored into in the distance distribution

(Figure 6—figure supplement 1).

Codon usage adaptation was evaluated with cusp and cai from the European Molecular Biology

Open Software Suite (EMBOSS, Rice and Longden, 2000). First, codon usage bias of each bacterial

and archaeal genome was computed. Then, the codon usage adaptation index (cai) was calculated for

each gene between VirSorter sequences and cellular genomes. The global distribution displays

the average (across genes) adaptation index for each VirSorter sequence and (as for the k-mer

distances) a subset of cellular genomes including its host and 10 randomly selected sequences

from respectively the same genus, the same family, and a different order than the actual host.

Function-specific codon usage bias was based on the gene-by-gene adaptation between each

VirSorter sequence and its host.

For each category studied, the distance between distribution of distances to host genome (in red

on Figure 5—figure supplement 1) and distribution of distances to non-host genomes (in purple on

Figure 5—figure supplement 1) was evaluated with a Kolmogorov–Smirnov (K–S) statistic. The codon

usage adaptation indexes for the different functional categories were compared to the ‘other

functions’ values with a Wilcoxon signed-rank test to detect categories with statistically different

averages. Both statistics were computed with R software.

To evaluate the effect of small genome size on distance between k-mer frequencies, a sub-sample

of 1000 Caudovirales was randomly taken at different sizes (from 2000 to 20,000 bp), and the same

procedure as for complete sequences was used to determine the distance between host and non-host

distributions of k-mer distances. Even though the signal was slightly less strong for shorter fragments,

this simulation indicates that genome size is not the only factor that could explain such low viral–host

genome adaptation for ssDNA viruses.

The prediction of the host taxonomy for each viral sequence was based on the microbial genome

with the lowest tetramer frequency distance to the viral sequence. A prediction was considered as

‘correct’ when this closest microbial genome taxonomy was the same as the original genome in which

the viral sequence was detected. This prediction was computed using (i) all microbial genomes, (ii) only

genomes from a different species than the actual host (i.e., the genome in which the viral sequence was

originally detected), and (iii) only genomes from a different genus than the actual host.
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Estimation of virome affiliation improvement and prophage assembly
efficiency
Protein sequences predicted from the POV (Hurwitz and Sullivan, 2013), TOV (Brum et al., 2015),

and human gut viromes (Minot et al., 2012) data sets were compared to RefSeqABVir (Jan. 2014)

using BLAST (blastp, threshold of 50 on bit score and 0.001 on e-value). Those proteins that did not

affiliate at >50 bit score and <0.001 e-value thresholds were considered ‘unclassified’ and then used

as queries in a secondary BLAST (blastp with the same thresholds) against the predicted proteins from

the VirSorter curated data set. Any unclassified proteins matching the VirSorter data set better were

considered newly affiliated.

To evaluate the efficiency of prophage assembly, we simulated genome sequencing from 23

bacterial genomes with identified prophages (NC_000907 NC_000913 NC_000964 NC_002570

NC_002655 NC_002662 NC_002695 NC_002935 NC_003030 NC_003212 NC_003295 NC_003366

NC_003997 NC_004070 NC_004307 NC_004310 NC_004431 NC_004557 NC_004567 NC_004668

NC_004722 NC_005085 NC_005362). NeSSM (Jia et al., 2013) was used to simulated HiSeq Illumina

reads (100 bp paired-ends) with a coverage of the prophage region varying between 5×, 25×, 50×,
75×, and 100×. Reads were then assembled with Idba_ud (Peng et al., 2012), and viral contigs were

predicted with VirSorter (Roux et al., 2015a). On the 481 contigs larger than 30 kb detected as viral

by VirSorter, 11 were considered as ‘entirely viral’ even though these originated from integrated

prophages, resulting in a ‘false-positive’ ratio of integrated prophages wrongly considered as

extrachromosomal viral genomes of 2.3% for contigs of 30 kb and more. As could be expected, this

same ‘false-positive’ ratio was higher for smaller contigs (12.06% for contigs <20 kb, and 22.81% for

contigs <10 kb), so that we considered the origin of these small contigs as ‘undetermined’, since they may

come from integrated prophages or extrachromosomal genomes.

All scripts used in this study are available on the TMPL wiki as a zip package: http://tmpl.arizona.

edu/dokuwiki/doku.php?id=bioinformatics:scripts:vsb and on github: http://github.com/simroux/

virsorter-curated-dataset-scripts-package.

Acknowledgements
We thank Natalie Solonenko and Sheri Floge and TMPL members for their comments on the manuscript.

This work was performed under the auspices of the Gordon and Betty Moore Foundation (#3790) through

grants awarded to MBS and the Natural Sciences and Engineering Research Council (NSERC) of Canada,

Canada Foundation for Innovation (CFI), the Canadian Institute for Advanced Research (CIFAR), and the

Tula Foundation funded Centre for Microbial Diversity and Evolution, G Unger Vetlesen and Ambrose

Monell Foundation through grants awarded to SJH. The work conducted by the U.S. Department of

Energy Joint Genome Institute, a DOE Office of Science User Facility, is supported under Contract No.

DE-AC02-05CH11231.

Additional information

Funding

Funder Grant reference Author

Gordon and Betty Moore
Foundation

3790 Matthew B
Sullivan

Natural Sciences and
Engineering Research Council of
Canada (Conseil de Recherches
en Sciences Naturelles et en
Génie du Canada)

Steven J Hallam

Canada Foundation for
Innovation (Fondation
canadienne pour l’innovation)

Steven J Hallam

Canadian Institute for Advanced
Research (L’Institut Canadien de
Recherches Avancées)

Steven J Hallam

Tula Foundation Steven J Hallam

Roux et al. eLife 2015;4:e08490. DOI: 10.7554/eLife.08490 16 of 20

Tools and resources Ecology | Genomics and evolutionary biology

http://tmpl.arizona.edu/dokuwiki/doku.php?id=bioinformatics:scripts:vsb
http://tmpl.arizona.edu/dokuwiki/doku.php?id=bioinformatics:scripts:vsb
http://github.com/simroux/virsorter-curated-dataset-scripts-package
http://github.com/simroux/virsorter-curated-dataset-scripts-package
http://dx.doi.org/10.7554/eLife.08490


Funder Grant reference Author

Ambrose Monell Foundation Steven J Hallam

G. Unger Vetlesen Foundation Steven J Hallam

U.S. Department of Energy
(Department of Energy)

Joint Genome Institute (DE-
AC02-05CH11231)

Tanja Woyke

The funders had no role in study design, data collection and interpretation, or the
decision to submit the work for publication.

Author contributions

SR, MBS, Conception and design, Acquisition of data, Analysis and interpretation of data, Drafting or

revising the article; SJH, TW, Conception and design, Drafting or revising the article

Additional files

Major dataset
The following dataset was generated:

Author(s) Year Dataset title
Dataset ID
and/or URL

Database, license, and
accessibility information

Roux S, Hallam SJ, Woyke
T, Sullivan MB

2015 Data from: Viral dark
matter
and virus-host interactions
resolved from publicly
available microbial
genomes

http://datadryad.org/
resource/doi:10.5061/
dryad.b8226

Available at Dryad Digital
Repository under a
CC0 Public Domain
Dedication.

References
Abedon ST. 2009. Phage evolution and ecology. Advances in Applied Microbiology 67:1–45. doi: 10.1016/S0065-
2164(08)01001-0.

Akhter S, Aziz RK, Edwards RA. 2012. PhiSpy: a novel algorithm for finding prophages in bacterial genomes that
combines similarity- and composition-based strategies. Nucleic Acids Research 40:1–13. doi: 10.1093/nar/gks406.

Allers E, Moraru C, Duhaime MB, Beneze E, Solonenko N, Canosa JB, Amann R, Sullivan MB. 2013a. Single-cell and
population level viral infection dynamics revealed by phageFISH, a method to visualize intracellular and free
viruses. Environmental Microbiology 15:2306–2318. doi: 10.1111/1462-2920.12100.

Allers E, Wright JJ, Konwar KM, Howes CG, Beneze E, Hallam SJ, Sullivan MB. 2013b. Diversity and population
structure of Marine Group A bacteria in the Northeast subarctic Pacific Ocean. The ISME Journal 7:256–268.
doi: 10.1038/ismej.2012.108.

Andersson AF, Banfield JF. 2008. Virus population dynamics and acquired virus resistance in natural microbial
communities. Science 320:1047–1050. doi: 10.1126/science.1157358.

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski
AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome
assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology 19:455–477.
doi: 10.1089/cmb.2012.0021.

Bastı́as R, Higuera G, Sierralta W, Espejo RT. 2010. A new group of cosmopolitan bacteriophages induce a carrier
state in the pandemic strain of Vibrio parahaemolyticus. Environmental Microbiology 12:990–1000. doi: 10.1111/
j.1462-2920.2010.02143.x.

Brum J, Ignacio-Espinoza J, Roux S, Doulcier G, Acinas SG, Alberti A, Chaffron S, Cruaud C, de Vargas C, Gasol
JM, Gorsky G, Gregory AC, Ogata H, Pesant S, Poulos BT, Schwenck SM, Speich S, Dimier C, Kandels-Lewis S,
Picheral M, Searson S, Tara Oceans Coordinators, Bork P, Bowler C, Sunagawa S, Wincker P, Karsenti E, Sullivan
MB. 2015. Patterns and ecological drivers of ocean viral communities. Science 348:1261498. doi: 10.1126/
science.1261498.

Brum JR, Jeffrey Morris J, Décima M, Stukel MR. 2014. Mortality in the oceans : causes and consequences.
Association for the Sciences of Limnology and Oceanography. In: Kemp PF, editor. Eco-DAS IX Symposium
Proceedings. p. 16–48.

Brum JR, Sullivan MB. 2015. Rising to the challenge: accelerated pace of discovery transforms marine virology.
Nature reviews. Microbiology 13:147–159. doi: 10.1038/nrmicro3404.

Canchaya C, Fournous G, Brüssow H. 2004. The impact of prophages on bacterial chromosomes. Molecular
Microbiology 53:9–18. doi: 10.1111/j.1365-2958.2004.04113.x.

Carbone A. 2008. Codon bias is a major factor explaining phage evolution in translationally biased hosts. Journal of
Molecular Evolution 66:210–223. doi: 10.1007/s00239-008-9068-6.

Roux et al. eLife 2015;4:e08490. DOI: 10.7554/eLife.08490 17 of 20

Tools and resources Ecology | Genomics and evolutionary biology

http://datadryad.org/resource/doi:10.5061/dryad.b8226
http://datadryad.org/resource/doi:10.5061/dryad.b8226
http://datadryad.org/resource/doi:10.5061/dryad.b8226
http://dx.doi.org/10.1016/S0065-2164(08)01001-0
http://dx.doi.org/10.1016/S0065-2164(08)01001-0
http://dx.doi.org/10.1093/nar/gks406
http://dx.doi.org/10.1111/1462-2920.12100
http://dx.doi.org/10.1038/ismej.2012.108
http://dx.doi.org/10.1126/science.1157358
http://dx.doi.org/10.1089/cmb.2012.0021
http://dx.doi.org/10.1111/j.1462-2920.2010.02143.x
http://dx.doi.org/10.1111/j.1462-2920.2010.02143.x
http://dx.doi.org/10.1126/science.1261498
http://dx.doi.org/10.1126/science.1261498
http://dx.doi.org/10.1038/nrmicro3404
http://dx.doi.org/10.1111/j.1365-2958.2004.04113.x
http://dx.doi.org/10.1007/s00239-008-9068-6
http://dx.doi.org/10.7554/eLife.08490


Cardinale DJ, Duffy S. 2011. Single-stranded genomic architecture constrains optimal codon usage. Bacteriophage
1:219–224. doi: 10.4161/bact.1.4.18496.

Carey-Smith GV, Billington C, Cornelius AJ, Hudson JA, Heinemann JA. 2006. Isolation and characterization of
bacteriophages infecting Salmonella spp. FEMS Microbiology Letters 258:182–186. doi: 10.1111/j.1574-6968.
2006.00217.x.

Casjens S. 2003. Prophages and bacterial genomics: what have we learned so far? Molecular Microbiology 49:
277–300. doi: 10.1046/j.1365-2958.2003.03580.x.

Castelle CJ, Hug LA, Wrighton KC, Thomas BC, Williams KH, Wu D, Tringe SG, Singer SW, Eisen JA, Banfield JF.
2013. Extraordinary phylogenetic diversity and metabolic versatility in aquifer sediment. Nature Communications
4:2120. doi: 10.1038/ncomms3120.

Clemente JC, Ursell LK, Parfrey LW, Knight R. 2012. The impact of the gut Microbiota on human health: an
integrative view. Cell 148:1258–1270. doi: 10.1016/j.cell.2012.01.035.

Davis MA, Martin KA, Austin SJ. 1992. Biochemical activities of the ParA partition protein of the P1 plasmid.
Molecular Microbiology 6:1141–1147. doi: 10.1111/j.1365-2958.1992.tb01552.x.

DeLong EF. 2009. The microbial ocean from genomes to biomes. Nature 459:200–206. doi: 10.1038/nature08059.
Deng L, Ignacio-Espinoza JC, Gregory A, Poulos BT, Weitz JS, Hugenholtz P, Sullivan MB. 2014. Viral tagging
reveals discrete populations in Synechococcus viral genome sequence space. Nature 513:242–245. doi: 10.
1038/nature13459.

Diemer GS, Stedman KM. 2012. A novel virus genome discovered in an extreme environment suggests
recombination between unrelated groups of RNA and DNA viruses. Biology Direct 7:13. doi: 10.1186/1745-6150-
7-13.

Emerson JB, Thomas BC, Alvarez W, Banfield JF. 2015. Metagenomic analysis of a high CO2 subsurface microbial
community populated by chemolithoautotrophs and bacteria and archaea from candidate phyla. Environmental
Microbiology. doi: 10.1111/1462-2920.12817.
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Labonté JM, Suttle CA. 2013. Previously unknown and highly divergent ssDNA viruses populate the oceans. The
ISME Journal 7:2169–2177. doi: 10.1038/ismej.2013.110.

Leplae R, Lima-Mendez G, Toussaint A. 2010. ACLAME: a CLAssification of Mobile genetic Elements, update 2010.
Nucleic Acids Research 38:D57–D61. doi: 10.1093/nar/gkp938.

Lima-Mendez G, Van Helden J, Toussaint A, Leplae R. 2008a. Prophinder: a computational tool for prophage
prediction in prokaryotic genomes. Bioinformatics 24:863–865. doi: 10.1093/bioinformatics/btn043.

Lima-Mendez G, Van Helden J, Toussaint A, Leplae R. 2008b. Reticulate representation of evolutionary and
functional relationships between phage genomes. Molecular Biology and Evolution 25:762–777. doi: 10.1093/
molbev/msn023.
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