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Abstract

The robust glycolytic metabolism of glioblastoma multiforme (GBM) has proven them sus-

ceptible to increases in oxidative metabolism induced by the pyruvate mimetic dichloroace-

tate (DCA). Recent reports demonstrate that the anti-diabetic drug metformin enhances the

damaging oxidative stress associated with DCA treatment in cancer cells. We sought to elu-

cidate the role of metformin’s reported activity as a mitochondrial complex I inhibitor in the

enhancement of DCA cytotoxicity in VM-M3 GBM cells. Metformin potentiated DCA-induced

superoxide production, which was required for enhanced cytotoxicity towards VM-M3 cells

observed with the combination. Similarly, rotenone enhanced oxidative stress resultant from

DCA treatment and this too was required for the noted augmentation of cytotoxicity. Adeno-

sine monophosphate kinase (AMPK) activation was not observed with the concentration of

metformin required to enhance DCA activity. Moreover, addition of an activator of AMPK did

not enhance DCA cytotoxicity, whereas an inhibitor of AMPK heightened the cytotoxicity

of the combination. Our data indicate that metformin enhancement of DCA cytotoxicity is

dependent on complex I inhibition. Particularly, that complex I inhibition cooperates with

DCA-induction of glucose oxidation to enhance cytotoxic oxidative stress in VM-M3 GBM

cells.

Introduction

A consequence of the hallmark metabolic alterations associated with neoplastic growth is ele-

vated oxidative stress [1]. Hypoxia, mitochondrial abnormalities, and organellar inputs, such

as ER stress, not only direct cancer metabolism but also greatly influence the generation of

reactive oxygen species (ROS) and oxidative stress [2, 3]. Concurrently, these energetic and

redox stresses dictate a compensatory increase in antioxidant capacity that permits cancer cell

resilience and proliferation [4].
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ROS modulate cellular function and integrity through oxidation of macromolecular struc-

tures. Moderate oxidative stress can therefore contribute to the genomic instability that is

characteristic of cancer as well as enhance oncogenic signaling through oxidation of constitu-

ents of mitogenic pathways [5]. However, excessive ROS can promote membrane dysfunction

and the loss of mitochondrial integrity, ultimately leading to cell death [6].

Ionizing radiation as well as many traditional chemotherapies such as 5-fluorouracil and

doxorubicin elicit cytotoxicity towards cancer cells in part through induction of ROS and over-

whelming cellular redox balance [7]. Yet there is accumulating evidence that robust antioxi-

dant capacity contributes to chemo- and radiotherapy resistance and the eventual failure of

these therapies in patients [8–10]. Therefore, it is vital to identify adjuvant agents that further

enhance oxidative stress to overwhelm the antioxidant system and overcome this mechanism

of resistance.

The small-molecule pyruvate mimetic dichloroacetate (DCA) is being evaluated as an adju-

vant to chemotherapy because of its propensity to enhance oxidative stress [11–16]. DCA, an

inhibitor of pyruvate dehydrogenase kinase (PDK), promotes oxidative metabolism through

activation of the pyruvate dehydrogenase complex (PDH) and subsequent flux of glucose car-

bon through the citric acid cycle (TCA) [17]. PDK is upregulated in a number of cancers and

DCA is shown to reverse the glycolytic phenotype resultant from its enhanced activity [18].

A consequence of DCA-induced oxidative metabolism is ROS production, and this

enhanced oxidative stress is shown to promote cancer cell death [19–21]. DCA potentiates the

cytotoxicity of several chemotherapies and reverses HIF-mediated resistance to bevacizumab

in a model of glioblastoma [11–16]. Moreover, DCA promoted stable disease in patients with

malignant brain tumors in a Phase I trial [22]. However, following a separate Phase I dose-

escalation study, Siu-Chung Chu et al concluded that DCA will be minimally effective as a sin-

gle-agent and would be best used in combination with therapies that would benefit from

enhanced oxidative metabolism [23].

There is recent evidence to suggest that DCA efficacy is enhanced by the anti-diabetic

drug metformin [24, 25]. Metformin, a cationic biguanide, readily accumulates in the mito-

chondria, where it inhibits complex I of the electron transport chain (ETC) [26, 27]. This ETC

inhibition induces energetic stress that promotes activation of adenosine monophosphate

kinase (AMPK), subsequently leading to catabolic metabolism that restores energetic homeo-

stasis [28]. Metformin is under intense investigation as an anti-cancer therapy for both tumor

cell-autonomous activity as well as indirect activities in lowering systemic glucose and insulin

that have largely been attributed to the reduced incidence of certain cancers in diabetic

patients taking metformin [29–32].

Metformin enhanced oxidative stress and cytotoxicity in several DCA-treated breast cancer

cell lines [24, 25]. DCA reversed metformin-induced glycolytic metabolism in these breast can-

cer cells suggesting that the enhanced oxidative stress observed with co-treatment many be

resultant from oxidative glucose metabolism in the presence of metformin inhibition of com-

plex I. Continued generation of the reducing equivalent nicotinamide adenine dinucleotide

(NADH) through TCA cycling in the presence of ETC dysfunction will promote superoxide

production following NADH oxidation at complex I.

We aimed to further characterize the mechanism of metformin enhancement of DCA cyto-

toxicity in a model of glioblastoma multiforme (GBM). Specifically, we sought to determine

the necessity of complex I inhibition and AMPK activation in the reported synergy. GBMs

may be particularly sensitive to a DCA and metformin combination as DCA treatment has

previously exhibited some efficacy in glioma patients and metformin is shown to specifically

target therapy-resistant glioblastoma stem cells (GSCs), which exhibit extraordinary antioxi-

dant capacity [22, 33–35].
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Methods

Cell culture

VM-M3/Fluc (VM-M3) cells were obtained as a gift from Dr. Thomas Seyfried (Boston Col-

lege, Chestnut Hill, MA). They were derived from a spontaneous brain tumor in a VM/Dk

inbred mouse and adapted to cell culture as previously described36. VM-M3 cells were cul-

tured in D-glucose, L-glutamine, and sodium pyruvate-free Dulbecco’s Modified Eagle

Medium (Gibco, Life Technologies) supplemented with 10% fetal bovine serum (Invitrogen),

25mM D-glucose (Fisher Scientific), 2mM L-glutamine (Gibco, Life Technologies), 1% peni-

cillin-streptomycin (Invitrogen), and 10mM HEPES buffer (Gibco, Life Technologies). Cells

were maintained at 37˚C in 95% air, 5% CO2 in a humidified incubator.

Lactate export

VM-M3 cells were seeded for 24 hours on 22-mm 12-well plates in triplicate at a density of

50,000 cells/well. The culture media was then replaced and treatment applied. To determine

lactate export, 10uL of treated culture media was aspirated and applied to a lactate detection

strip and lactate concentration determined with a LACTATE PLUS Lactate Meter (Nova Bio-

medical) at time of treatment application and every 12 hours over a period of 48 hours.

Cell viability

Cell viability was assayed with the LIVE/DEAD Viability/Cytotoxicity Kit (Invitrogen).

VM-M3 cells were seeded for 24 hours on 18-mm glass coverslips in 22-mm 12-well plates at a

density of 20,000 cells/well. The culture media was then replaced and treatment applied for 24

hours. Following the 24-hour treatment, cells were washed with D-PBS (Gibco, Life Technolo-

gies) and then incubated with 800uL of 2uM Calcein AM and 4uM Ethidium Homodimer-1

(EthD-1) in D-PBS for 30 minutes. Coverslips were then inverted and mounted onto glass

microscope slides and cells visualized with a Nikon TE2000E fluorescence microscope and a

10X objective lens. Calcein-AM readily passes through the membrane of intact cells and is

digested by cellular esterases that yield a fluorescent calcein product (Ex/Em: 495/515 nm) that

can be detected with a FITC filter as an indicator of live cells. EthD-1 (Ex/Em: 525/590 nm) is

cell-impermeable but emits a red fluorescence upon association with nucleic acid following

loss of membrane integrity that can be detected with a TRITC filter as an indicator of dead

cells. The live/dead ratios of 10 distinct fields of view were determined via direct cell count for

each treatment.

Cytochrome c release

Apoptosis was assayed with the ApoTrack Cytochrome c Apoptosis Immunocytochemistry

Kit (Abcam). 105 VM-M3 cells were seeded on 22-mm glass coverslips in 35-mm 6-well plates

in triplicate for 24 hours. The culture media was then replaced and treatment applied. Follow-

ing treatment, cells were rinsed with D-PBS and fixed in 4% paraformaldehyde in D-PBS for

20 minutes. To improve detection signal, coverslips were then incubated in Antigen Retrieval

Buffer (100mM TRIS, 5% Urea, pH 9.5) at 95˚C for 10 minutes. Cells were then permeabilized

in 0.1% Triton X-100 for 10 minutes and coverslips blocked in 10% goat serum for one hour.

Coverslips were then incubated at 4˚C overnight with mouse monoclonal antibodies for cyto-

chrome c and mitochondrial complex Vα at a concentration of 2ug/ml. Coverslips were then

rinsed in 1% goat serum and incubated in goat IgG2a-FITC and IgG2b-TXRD secondary anti-

bodies for one hour. 10uL of DAPI mounting media was applied to a microscope slide and

coverslips were inverted and mounted. Following a ten-minute incubation, fixed cells were
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visualized with a Nikon TE2000E fluorescence microscope and a 40X objective lens. The cyto-

chrome c monoclonal antibody is of IgG2a isotype and cytochrome c was detected with a FITC

filter. The mitochondrial complex Vα monoclonal antibody is of IgG2b isotype and complex

Vα was detected with a Texas Red filter. Nuclear DNA was detected with a DAPI filter. Merged

images were taken of 5 fields of view for each treatment.

ROS production

Mitochondrial superoxide production was measured using the fluorescent probe, MitoSOX

Red (Molecular Probes, Invitrogen). 50,000 VM-M3 cells were seeded on 18-mm glass cover-

slips in 22-mm 12-well plates for 24 hours. Culture media was then replaced and treatment

applied. Coverslips were then rinsed with D-PBS and stained with 5uM MitoSOX Red in

Hank’s Balanced Salt Solution (HBSS) with Ca2+/Mg2+ (Gibco, Life Technologies) for 10 min-

utes at 37˚C. Coverslips were then inverted and mounted on glass microscope slides and Mito-

SOX Red fluorescence (Ex/Em: 510:580 nm) was detected with a TRITC filter and a Nikon

TE2000E fluorescence microscope and a 40X objective lens. The average relative fluorescence

intensity of individual cells within 10 fields of view were determined for each treatment.

Mitochondrial membrane potential

Mitochondrial membrane potential (ΔCm) was measured using the cationic fluorescent probe

tetramethylrhodamine (TMRE; Molecular Probes, Life Technologies). 50,000 VM-M3 cells

were seeded on 18-mm glass coverslips in 22-mm 12-well plates for 24 hours. Culture media

was then replaced and treatment applied. Coverslips were then rinsed with D-PBS and stained

with 250nM TMRE in culture medium for 30 minutes at 37˚C. Coverslips were counterstained

with 100nM MitoTracker Green (Molecular Probes, Invitrogen) in culture media for 20 min-

utes at 37˚C and then inverted and mounted on glass microscope slides. Cells were visualized

with a Nikon TE2000E fluorescence microscope and a 40X objective lens. TMRE fluorescence

(Ex/Em: 549/575 nm) was detected with a TRITC filter and MitoTracker Green fluorescence

(Ex/Em: 490/516 nm) was detected with a FITC filter. The average relative fluorescence inten-

sity of individual cells within 10 fields of view were determined for each treatment.

Lipid peroxidation

Oxidative lipid damage was measured using the phenylbutadiene-based reporter for lipid per-

oxidation, BOPIDY1 581/591 (Molecular Probes) per the ascribed Image-iT1 Lipid Peroxi-

dation Kit protocol (Life Technologies). 50,000 VM-M3 cells were seeded on 18-mm glass

coverslips in 22-mm 12-well plates for 24 hours. Culture media was then replaced and treat-

ment applied. 10uM of the lipid peroxidation sensor was added to each well and cells incu-

bated for 30 minutes. Cells were then washed three times with PBS and visualized with a

Nikon TE2000E fluorescence microscope and a 10X objective lens. The ratio of oxidized (Ex/

Em: 488/510nm, FITC filter) to reduced (Ex/Em: 580/590nm, TRITC filter) sensor fluores-

cence was determined for each cell in 5 distinct fields of view as an indication of the extent of

lipid peroxidation induced by each treatment.

Western blot analysis

VM-M3 cells were seeded on 35-mm 6-well plates for 24 hours at a density of 106 cells/well.

The culture media was then replaced and treatment applied. Cells were collected and lysed

in 200uL of RIPA lysis buffer containing complete protease and phosphatase inhibitors (Ther-

moFisher). Lysates were centrifuged at 13,200g for 15 minutes at 4˚C and the supernatant
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collected. Protein concentration was determined by BCA assay (ThermoFisher) and 20ug of

protein was loaded into a 10% Mini-PROTEAN TGX precast polyacrylamide SDS-PAGE gel

(BIO-RAD). Protein was transferred to nitrocellulose membranes, blocked with 5% non-fat

dairy milk in Tris-buffered saline and tween (TBS-T) and incubated overnight at 4˚C with pri-

mary antibodies for PDH-E1α (Abcam, ab110330), phospho-PDH-E1α (Ser293; Abcam,

ab92696), ACC1 (Cell Signaling, #4190), and phospho-ACC (Ser79; Cell Signaling, #3661).

Blots were washed with TBS-T and incubated with goat-anti-mouse and goat-anti-rabbit sec-

ondary antibodies coupled to horseradish peroxidase (HRP). HRP substrate was then applied

to the blots and antibody signal was detected with the ChemiDoc MP Imaging System

(BIO-RAD) or by exposure of X-ray film.

Analysis of p-AMPKα:AMPKα
The activation status of AMPKα was assayed using the CytoGlow AMPKα (Phospho-Thr172)

Colorimetric Cell-Based ELISA kit (Assay bioTech). 15,000 VM-M3 cells were seeded over-

night on 96-well plates. Cells were then treated for 4-hours, washed twice with TBS, and fixed

with 4% paraformaldehyde (w/v) in D-PBS) for 20 minutes. Cells were then washed 3X in

Wash Buffer (0.2% Kathon CG/ICP, 1% Tween in TBS) and then incubated in Quenching

Buffer (0.05% Sodium Azide, 1% H2O2 in TBS) for 20 minutes to inactivate endogenous per-

oxidase activity. Cells were then washed 3X with Wash Buffer and then blocked with Blocking

Buffer (0.05% Sodium Azide, 0.5% Triton X-100 in TBS) for 1-hour. Cells were then incubated

overnight with primary antibodies for p-AMPKα (Thr172), AMPKα or glyceraldehyde phos-

phate dehydrogenase (GAPDH), which served as an internal positive control. Following three

washes with Wash Buffer, the cells were incubated in HRP-conjugated secondary antibodies

for 90 minutes; Anti-Rabbit IgG for p-AMPK (Thr172) and AMPK, and Anti-Mouse IgG for

GADPH. Cells were then washed 3X and incubated in HRP substrate (<0.02% H2O2 and<

0.1% 3,3’,5,5’-Tetramethylbenzidine [TMB]) for 30 minutes, after which 2N sulfuric acid was

added to stop the peroxidase reaction. The absorbance at 450nm was then read using a plate

reader (BioTek ELx800). Cells were then washed 3X and incubated with 0.05% Crystal Violet

for 30 minutes. After which, the cells were washed and then incubated with SDS to solubilize

the Crystal Violet for 1-hour. The absorbance was read at 595nm to quantify cell number.

Statistical analysis

GraphPad Prism 6 software was used for all statistical analysis. Parametric tests were per-

formed for all data sets as all groups were considered normally distributed. Paired student’s t
tests were performed for the comparison of two groups. One-Way ANOVA with a post hoc

Tukey’s multiple comparison test was performed for the comparison of more than two groups.

Results were considered significant when p< 0.05.

Results

DCA inhibition PDH complex phosphorylation associated with enhanced

ROS production

VM-M3 cells exhibit robust basal phosphorylation of the pyruvate dehydrogenase complex

(Fig 1A). DCA treatment reduced phosphorylation of the E1α subunit of the PDH complex in

a concentration dependent manner following a 4-hour incubation. As PDH complex phos-

phorylation is associated with Warburg metabolism, we sought to determine if DCA treatment

alters VM-M3 lactate production [36]. A 24-hour incubation with 5mM DCA resulted in a

Therapeutic enhancement of oxidative stress in VM-M3 glioblastoma cells
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28.1% reduction in lactate present in the culture medium, suggesting a shift towards glucose

oxidation and away from glucose fermentation (Fig 1B).

Given that oxidative metabolism is intrinsically linked to ROS generation, we evaluated

whether DCA activation of pyruvate dehydrogenase altered ROS production in VM-M3 cells.

MitoSox Red fluorescent microscopy indicated a greater than two-fold increase in fluorescence

intensity following 1-hour DCA treatment, indicating enhanced mitochondrial superoxide

production (Fig 1C).

Changes in flux through the ETC can alter mitochondrial membrane potential, therefore

we utilized tetramethylrhodamine fluorescence microscopy to determine changes in ΔCm

associated with DCA activity [37]. A 4-hour incubation with 5mM DCA resulted in significant

mitochondrial depolarization, whereas treatment with a lower concentration of 500μM pro-

moted hyperpolarization of VM-M3 mitochondria (Fig 1D). Together these results suggest

that DCA-induced activation of the PDH complex promotes oxidative metabolism, which

alters VM-M3 mitochondrial homeostasis.

Modulation of oxidative stress alters DCA cytotoxicity towards VM-M3

cells

To assess if the observed increase in mitochondrial superoxide was associated with oxidative

stress, we determined the extent of lipid oxidation following DCA treatment. Indeed, lipid per-

oxidation was significantly increased in VM-M3 cells following 4-hour incubation with DCA

(Fig 2A). This oxidative damage was attenuated with the addition of the antioxidant N-acetyl-

cysteine (NAC). NAC co-treatment also rescued the loss of ΔCm associated with 5mM DCA

Fig 1. DCA promotes superoxide production and dissipation ofΔΨm in VM-M3 cells. (a) Western blot analysis of p-PDH-E1α (Ser293) and

PDH-E1α in VM-M3 lysates following 4-hour treatment with DCA. Densitometric ratio of p-PDH to PDH was determined for each treatment relative to PBS

control. (b) Quantification of lactate concentration in culture medium following 24-hour incubation with indicated treatment. (c) Quantification of average

MitoSox Red fluorescence intensity as an indication of VM-M3 superoxide production following 1-hour incubation with DCA. (d) Quantification of average

tetramethylrhodamine (TMRE) fluorescence intensity as an indication of mitochondrial membrane potential following 4-hour DCA treatment. (b) Error bars

represent standard error of the mean (SEM) of three experimental replicates. (c-d) Error bars represent SEM of a single experiment replicated in triplicate;

* p<0.05, and ***p<0.001.

https://doi.org/10.1371/journal.pone.0180061.g001
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treatment (Fig 2B), suggesting the alterations to mitochondrial homeostasis are linked to oxi-

dative stress.

To determine if this induction of oxidative stress is associated with cytotoxicity, we assayed

VM-M3 viability following DCA treatment. DCA exhibits concentration-dependent cytotoxic-

ity towards VM-M3 cells following a 24-hour incubation (Fig 2C). Treatment with 20mM DCA

promotes robust cell death marked by extensive mitochondrial release of cytochrome c, indica-

tive of apoptotic cell death (S1 Fig). Consistent with this immunofluorescent data, the addition

of the pan-caspase inhibitor Z-VAD-FMK attenuated DCA cytotoxicity [38, 39] (S1 Fig).

To further establish an association between the observed increases in oxidative stress and

cell death with DCA treatment, we evaluated the effects of modifying antioxidant capacity on

DCA cytotoxicity. Co-incubation of 5mM DCA with the glutathione synthesis inhibitor

buthionine sulfoximine (BSO) significantly enhanced cytotoxicity (Fig 2D). Conversely, addi-

tion of NAC attenuated the modest increase in cell death associated with 5mM DCA treat-

ment. This was confirmed through immunofluorescent microscopy, which showed retention

of an expansive mitochondrial network with resident cytochrome c following incubation with

Fig 2. DCA cytotoxicity is dependent on oxidative stress. (a) Ratiometric detection of BOPIDY® 581/591 oxidation as an indicator of lipid

peroxidation in VM-M3 cells following 4-hour treatment with DCA ±NAC. (b) Quantification of average TMRE fluorescence intensity following

4-hour DCA treatment ±N-acetylcysteine (NAC). (c) Analysis of VM-M3 viability following 24-hour treatment with DCA. Bars represent fraction of

cells stained positively for ethidium homodimer-I (Ethd-1). (d) Evaluation of VM-M3 viability following 24-hour DCA treatment in the presence of

modulators of glutathione availability. (a-b) Error bars represent SEM of a single experiment replicated in triplicate (c-d) Error bars represent SEM

of three experimental replicates; *p<0.05, **p<0.01, and ***p<0.001.

https://doi.org/10.1371/journal.pone.0180061.g002
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both DCA and NAC (S1 Fig). These data suggest that DCA-induced oxidative stress promotes

loss of mitochondrial integrity and ultimately cell death in VM-M3 cells.

Metformin enhances DCA cytotoxicity through further induction of

oxidative stress

Given the observed association between induction of ROS and cytotoxicity with DCA treat-

ment, we hypothesized that the addition of an insult to the electron transport chain would fur-

ther enhance this anti-cancer activity. To assess this, we utilized the complex I inhibitor

metformin. DCA promoted a modest dephosphorylation of the PDH complex (n.s., p = 0.2)

even in the presence of metformin, which alone promoted a trend towards enhanced PDH

phosphorylation and an associated increase in VM-M3 lactate production following a 24-hour

incubation (Fig 3A, S2 Fig). Indeed, the addition of metformin further enhanced ROS produc-

tion in the presence of DCA over DCA treatment alone (Fig 3B). In agreement, metformin co-

treatment significantly enhanced lipid peroxidation in response to DCA treatment (Fig 3C).

This oxidative damage was attenuated by NAC co-treatment.

Though metformin treatment did not elicit VM-M3 cell death (S2 Fig), the addition of

100μM metformin significantly enhanced DCA cytotoxicity following 24-hour co-treatment

(Fig 3D). This effect was amplified as the concentration of either agent was increased (Fig 3E).

Metformin enhancement of DCA cytotoxicity was attenuated by addition of NAC (Fig 3C).

The loss of VM-M3 viability in response to combinatorial treatment was also associated with

cytochrome c release and was sensitive to caspase inhibition (Fig 3D, S2 Fig). This suggests

that metformin exacerbation of DCA-induced oxidative stress increased apoptotic cell death

in VM-M3 cells.

Complex I inhibition, but not AMPK activation enhances DCA cytotoxicity

To elucidate the contribution of complex I inhibition to metformin’s enhancement of DCA

cytotoxicity, we examined the impact of rotenone, a bona fide complex I inhibitor, on DCA

activity. Rotenone treatment did not affect VM-M3 superoxide production alone, but sig-

nificantly enhanced the pro-oxidant effect of DCA (Fig 4A). Furthermore, the addition of

rotenone significantly increased lipid peroxidation in the presence of DCA (Fig 4B). Like

metformin, rotenone augmentation of DCA-induced oxidative stress was associated with

enhanced cytotoxic activity that was partially attenuated by the antioxidant NAC (Fig 4C).

This activity was also sensitive to caspase inhibition (S3 Fig). These results show that metfor-

min and rotenone have a strikingly similar effect on DCA activity.

Metformin’s cellular activity is traditionally associated with AMPK activation, therefore we

sought to determine if AMPK is required for metformin amplification of DCA cytotoxicity

towards VM-M3 glioblastoma cells. 100μM metformin treatment did not modulate phosphor-

ylation of AMPKα at Thr172 nor the phosphorylation state of its downstream target acetyl-

CoA carboxylase 1 (ACC1) at Ser79 in VM-M3 cells (Fig 4D, S3 Fig).

5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR) is an analog of 5’-AMP and is

a known activator of AMPK. AICAR promoted a trend towards increased stimulatory phos-

phorylation of AMPK and enhanced the inhibitory phosphorylation of ACC1, which were

blunted by DCA co-treatment (Fig 4D, S3 Fig). AICAR treatment did not promote VM-M3

cell death and was slightly cytoprotective in combination with DCA (Fig 4E). This was further

evidenced in immunofluorescent detection of cytochrome c localization, which showed a

reduction in mitochondrial stress with the combinatorial treatment (S3 Fig). Moreover, use of

the AMPK inhibitor, compound c, further enhanced the efficacy of dichloroacetate and met-

formin in combination (Fig 4F). Collectively, these results suggest that complex I inhibition,

Therapeutic enhancement of oxidative stress in VM-M3 glioblastoma cells
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but not AMPK stimulation is necessary for metformin enhancement of DCA cytotoxicity. In

fact, AMPK activation likely diminishes the synergy between the two agents.

Discussion

Warburg metabolism, characterized by the aerobic fermentation of glucose, is hallmark of

many cancers, including GBM [4, 40]. Among the confluence of factors that contribute to this

Fig 3. Metformin enhances DCA cytotoxicity. (a) Western blot analysis of p-PDH-E1α (Ser293) and PDH-E1α in VM-M3 cell lysates following 4-hour

treatment with 5mM DCA and 100μM metformin. Densitometric ratio of p-PDH to PDH was determined for each treatment relative to PBS control. (b)

Quantification of superoxide production with MitoSox Red following 1-hour treatment with DCA and metformin. (c) Quantification of BOPIDY® 581/591

oxidation as an indicator of lipid peroxidation in VM-M3 cells following 4-hour treatment with DCA and metformin ±NAC. Determination of VM-M3 cell

viability following 24-hour treatment with (d) DCA and metformin ±NAC or (e) combinatorial treatment with DCA and metformin in increasing

concentrations. (b, c) Error bars represent SEM of a single experiment replicated in triplicate (d, e) Error bars represent SEM of three experimental

replicates; *p<0.05, **p<0.01, and ***p<0.001.

https://doi.org/10.1371/journal.pone.0180061.g003
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Fig 4. Complex I inhibition, but not AMPK activation enhances DCA cytotoxicity. (a) Average VM-M3 superoxide production following 1-hour

treatment with DCA and rotenone. (b) Ratiometric detection of BOPIDY® 581/591 oxidation as an indicator of lipid peroxidation in VM-M3 cells following

4-hour treatment with DCA and rotenone ±NAC. (c-e) Analysis of rotenone, AICAR, and metformin ± compound C modulation of DCA cytotoxicity

towards VM-M3 cells. (f) In-cell ELISA analysis of p-AMPKα (Thr172), and AMPKα in VM-M3 cells following 4-hour treatment with modulators of AMPK

activation. (a, b, f) Error bars represent SEM of a single experiment replicated in triplicate (c-e) Error bars represent SEM of three experimental replicates;

**p<0.01 and ***p<0.001.

https://doi.org/10.1371/journal.pone.0180061.g004
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distinct metabolic phenotype is the maintenance of PDH complex phosphorylation [36]. This

is mediated by enhanced PDK activity, the inhibitory kinase of the PDH complex. Pharmaco-

logical activation of this complex with the small molecule PDK inhibitor, DCA, has been

shown to reduce tumor growth and promote cancer cell death through induction of oxidative

stress [18, 19].

We too demonstrate that DCA activation of the PDH complex is associated with a concen-

tration dependent increase in superoxide in VM-M3 glioblastoma cells, which show basal

PDH complex phosphorylation (Fig 1A and 1C). VM-M3 cells are derived from an extremely

aggressive spontaneous mouse brain tumor and exhibit a dependency on glycolytic metabo-

lism [41, 42]. We have previously established that this tumor is susceptible to therapeutic meta-

bolic modulation [43–45].

Changes in ETC flux drive alterations in mitochondrial membrane potential, which is

derived from the movement of protons across the inner membrane upon oxidation of reduc-

ing equivalents [37]. At a low millimolar concentration, DCA promoted mitochondrial hyper-

polarization, indicative of enhanced efficient electron transport [37]. Whereas increasing the

concentration to a level that also stimulated ROS production resulted in dramatic membrane

depolarization (Fig 1D). Abundant oxidative stress can damage membrane lipids and thus dis-

rupt mitochondrial membrane integrity, ultimately leading to apoptotic initiation [6]. Indeed,

we show that DCA treatment increased lipid peroxidation in VM-M3 cells (Fig 2A). likely con-

tributing to the observed loss of mitochondrial homeostasis. Addition of the antioxidant NAC

maintained ΔCm and attenuated lipid peroxidation in the presence of DCA (Fig 2A and 2B),

suggesting that the loss of membrane potential with high DCA (> 5mM) is associated with the

robust induction of oxidative stress.

Consistent with previous reports, we show that oxidative stress in necessary for DCA cyto-

toxicity (Fig 2) [11–21]. Manipulating antioxidant capacity through modulation of glutathione

synthesis significantly affected DCA efficacy. The γ-glutamylcysteine synthetase inhibitor,

BSO, restricts production of the vital antioxidant glutathione and further augmented DCA

cytotoxicity towards VM-M3 cells (Fig 2D) [46]. Conversely, providing an exogenous cysteine

source for synthesis of the glutathione tripeptide in the form of NAC restored VM-M3 viability

in the presence of DCA treatment (Fig 2D, S1 Fig). In line with the literature, we demonstrate

a need for supraphysiological concentrations of DCA to elicit an anti-cancer effect [11–21].

As dichloroacetate exists physiologically as an anion, it is relatively membrane impermeable

despite its small size and requires the mitochondrial pyruvate carrier for mitochondrial

uptake [47, 48]. Pathak et al reported that conjugating DCA to a lipophilic carrier enhanced

mitochondrial transport and reduced the IC50 value of DCA from millimolar to the low micro-

molar range [49]. This is well within achievable serum trough levels associated with DCA

administration and reflective of the Ki of PDK2 (~200μM), the most ubiquitous isoform [22,

23, 47]. Suggesting that a conjugated form of DCA may elicit a more robust anti-cancer effect

at physiological concentrations.

Though DCA has been shown to be an effective preclinical antineoplastic against an array

of cancers, it has yielded minimal clinical benefit as a standalone therapy [11–23]. As such,

much of the investigative focus on DCA has shifted towards its efficacy as an adjuvant to es-

tablished therapies. DCA has been shown to be especially useful in reversing resistance to a

number of agents, particularly in instances where resistance is mediated through enhanced

glycolytic metabolism [13, 14, 16, 20]. Given that dichloroacetate treatment synergizes with

pro-oxidant anti-cancer therapies, we hypothesized that compromising mitochondrial effi-

ciency in the presence of DCA-induced glucose oxidation would also be synergistic.

The anti-diabetic drug metformin has displayed robust activity towards cancer, both cell-

autonomous and indirect metabolic effects [50–53]. Of particular note is the observation that
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metformin inhibits complex I (NADH:ubiquinone oxidoreductase) of the electron transport

chain [26, 27]. Inhibition of NADH oxidation and electron transfer at complex I leads to a dis-

ruption of ATP synthesis and ultimately an energetic crisis, often marked by the activation of

the critical energy sensor, AMPK [54]. The activation of pyruvate dehydrogenase promotes

flux of glucose carbon through the TCA cycle, subsequently increasing the rate of NADH gen-

eration [36, 47]. Thus, co-administration of DCA and metformin could potentially lead to an

increase in the NADH:NAD+ ratio in the presence of diminished capacity to regenerate

NAD+, precipitating a redox imbalance and oxidative stress. In fact, it has been recently

reported that metformin does enhance oxidative stress in the presence of DCA treatment in

breast cancer cells [24, 25]. This coincided with synergistic cytotoxicity that required the

increase in oxidative stress. We sought to characterize the necessity of complex I inhibition in

the efficacy of the combination.

We were able to replicate metformin potentiation of superoxide production with DCA

treatment in our glioblastoma cells (Fig 3B). This corresponded with enhanced lipid peroxida-

tion and cytotoxicity that was attenuated with NAC, further supporting the notion that metfor-

min enhances the efficacy of dichloroacetate through exacerbation of oxidative stress (Fig 3C

and 3D). The traditional mitochondrial poison rotenone elicited remarkably similar effects on

VM-M3 cells in combination with DCA. Rotenone inhibits the transfer of electrons from iron

sulfur clusters resident in complex I of the ETC to ubiquinone, leading to inefficient NADH

oxidation [55]. Unlike metformin, which decreased VM-M3 ROS production, rotenone treat-

ment did not affect superoxide generation (Fig 4A). This suggests differing mechanisms of

complex I inhibition; the mechanism of metformin action at complex I is not fully understood.

Nonetheless, rotenone also potentiated oxidative stress upon co-incubation with DCA (Fig 4A

and 4B). Rotenone had a greater effect on VM-M3 viability in combination with a modestly

cytotoxic concentration of DCA than metformin (Fig 4C). This is likely an effect of the degree

of complex I inhibition as metformin is thought to be only a mild inhibitor of complex I [54].

The structurally related biguanide, phenformin, is considered more potent than metformin in

part because of enhanced lipophilicity that facilitates increased mitochondrial uptake. How-

ever, where metformin is well tolerated clinically, phenformin has been removed from the

clinic over concerns of lactic acidosis [56].

Metformin treatment is often associated with the stimulation of AMPK, which contributes

to the anti-diabetic activity of the agent [57]. The concentration of metformin required to

enhance DCA anti-cancer activity towards VM-M3 cells did not promote AMPK activation or

modulation of the downstream target ACC1, suggesting AMPK activity is not necessary for

the observed cytotoxicity (Fig 4D, S3 Fig). Indeed, AICAR did not further augment DCA-

induced cell death (Fig 4E). Rather, AICAR co-treatment was protective, preventing the mito-

chondrial stress seen with DCA treatment (S3 Fig). This is consistent with AMPK’s role as an

energy sensor and survival mediator. Moreover, compound c antagonization of AMPK further

enhanced the cytotoxicity of DCA and metformin (Fig 4F). This suggests that the combination

may be most effective in the absence of AMPK, such as in LKB1-deficent tumors [58]. LKB1 is

responsible for the stimulatory phosphorylation of AMPK in response to energetic stress [59].

These data suggest that complex I inhibition cooperates with DCA activation of oxidative

glucose metabolism to promote catastrophic oxidative stress in VM-M3 glioblastoma cells.

There is extraordinary interest in targeting cancer mitochondria as a therapeutic strategy

as recent evidence suggests mitochondrial metabolism is required for tumorigenesis and

to meet the bioenergetics demands or rapidly proliferating tumor cells [26, 60, 61]. As mito-

chondrial metabolism is intrinsically linked to redox balance, a known sensitivity of cancer,

targeting the organelle is likely to prove successful [7]. Schöckel et al recently reported that

inhibition of complex I with an experimental small molecule induced cytotoxic oxidative stress
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and inhibited tumor growth in a model of melanoma, a highly aggressive tumor species [62].

Our results also demonstrate efficacy in targeting the efficiency of electron transport in an

aggressive cancer, as GBM is a highly malignant brain tumor associated with an extremely

poor prognosis [63].

Experimental GBMs have previously shown sensitivity to DCA modulation of glucose

metabolism [14, 64]. Moreover, Shen et al showed efficacy in the dual-targeting of GBM

metabolism with DCA and a mitochondrial poison [65]. Metformin may be particularly useful

in combination with DCA in GBMs because of an observed sensitivity of GSCs to metformin

[33–35]. Cancer stem cells are a fractional cell subpopulation within tumors that are believed

to contribute to chemoresistance and eventually recurrent disease. Evidence suggests that this

inherent resistance is a result of immense antioxidant capacity [8–10]. Thus, metformin may

sensitize this critical cell population to the pro-oxidant effect of a DCA and metformin combi-

nation, perhaps through disruption of glutathione synthesis [66]. Indeed, recently Jiang et al

reported that DCA enhanced the efficacy of phenformin in prolonging survival in an orthoto-

pic GSC model [67].

Conclusions

Our results provide further evidence for potential synergy between DCA and metformin in

targeting GBM. Specifically, that modulation of redox balance through insult of mitochondrial

metabolic efficiency is a potential anti-cancer strategy that merits further evaluation. This

combination may be particularly useful as an adjuvant to current pro-oxidant therapies, for

which efficacy is often fleeting due to chemoresistant mechanisms that restrict mitochondrial

oxidation [13, 14, 16, 20].

Supporting information

S1 Fig. DCA treatment promotes apoptotic cell death. (a) Representative merged immuno-

fluorescent images of VM-M3 cells following 12-hour treatment with DCA ± NAC. Fixed cells

were stained for cytochrome c (green) and mitochondrial complex Vα (red) and counter-

stained with DAPI (blue). Scale bars represent 50μm. Pearson’s correlation coefficient deter-

mined for each cell within 5 fields of view. (b) Analysis of VM-M3 viability following 24-hour

DCA treatment ± the pan-caspase inhibitor Z-VAD-FMK. Error bars represent SEM of three

experimental replicates; ��p<0.01 and ���p<0.001.

(TIFF)

S2 Fig. Metformin treatment does not diminish VM-M3 viability. (a) Determination of the

lactate concentration in culture medium following 24-hour incubation with vehicle or metfor-

min. (b) Analysis of VM-M3 viability following 24-hour treatment with a range of metformin

concentrations. (c) Representative merged immunofluorescent images of cytochrome c locali-

zation in VM-M3 cells following 12-hour treatment with DCA and metformin. Scale bars rep-

resent 50μm. Pearson’s correlation coefficient determined for each cell within 5 fields of view.

(d) Analysis of VM-M3 viability following 24-hour DCA and metformin treatment ± Z-VAD-

FMK. (a, b, d) Error bars represent SEM of three experimental replicates; �p<0.05 and
��p<0.01.

(TIFF)

S3 Fig. AICAR protects VM-M3 cells from DCA-induced stress. (a) Quantification of

VM-M3 cell death following DCA and rotenone treatment ± Z-VAD-FMK. (b) Western blot

analysis of p-ACC (Ser79) and ACC1 in VM-M3 cell lysates following 4-hour treatment with

5mM DCA and 100μM metformin or 100μM AICAR. Densitometric ratio of p-ACC to ACC
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was determined for each treatment relative to PBS control. (c) Representative merged immu-

nofluorescent images of cytochrome c localization in VM-M3 cells following 12-hour treat-

ment with DCA and AICAR. Scale bars represent 50μm. Pearson’s correlation coefficient

determined for each cell within 5 fields of view. (a, b) Error bars represent SEM of three exper-

imental replicates; �p<0.05 and ��p<0.01.

(TIFF)
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62. Schöckel L., Glauser A., Basit F., Bitschar K., Truong H., Erdmann G. et al. Targeting mitochondrial

complex I using BAY 87–2243 reduces melanoma tumor growth. Cancer Metabolism. 2015; 3: 1–16.

63. Adamson C., Kanu OO., Mehta AI., Di C., Lin N., Mattox AK. et al. Glioblastoma multiforme: a review of

where we have been and where we are going. Expert Opin Inv Drug. 2009; 18 (8): 1061–1083.

64. Michelakis ED, Sutendra G., Dromparis P., Webster L., Harmony A., Niven E. et al. Metabolic Modula-

tion of Glioblastoma with Dichloroacetate. Sci Transl Medicine. 2010; 2 (31): 31ra34.

65. Shen H., Decollogne S., Dilda PJ, Hau E., Chung SA., Luk PP. et al. Dual-targeting of aberrant glucose

metabolism in glioblastoma. J Exp Clin Canc Res. 2015; 34: 1–11.

66. Corominas-Faja B., Quirantes-Pine R., Oliveras-Ferraros C., Vazquez-Martin A., Cufi S., Martin-Cas-

tillo B. et al. Metabolomic fingerprint reveals that metformin impairs one-carbon metabolism in a manner

similar to the antifolate class of chemotherapy drugs. Aging. 2012; 4 (7): 480–498. https://doi.org/10.

18632/aging.100472 PMID: 22837425

Therapeutic enhancement of oxidative stress in VM-M3 glioblastoma cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0180061 June 23, 2017 17 / 18

https://doi.org/10.1371/journal.pone.0127407
https://doi.org/10.1371/journal.pone.0127407
http://www.ncbi.nlm.nih.gov/pubmed/26061868
http://www.ncbi.nlm.nih.gov/pubmed/2554095
http://www.ncbi.nlm.nih.gov/pubmed/1156402
https://doi.org/10.1021/cb400944y
http://www.ncbi.nlm.nih.gov/pubmed/24617941
https://doi.org/10.1074/jbc.M114.592576
https://doi.org/10.1074/jbc.M114.592576
http://www.ncbi.nlm.nih.gov/pubmed/25143389
https://doi.org/10.18632/oncotarget.2012
https://doi.org/10.18632/oncotarget.2012
http://www.ncbi.nlm.nih.gov/pubmed/24970804
https://doi.org/10.1016/j.ygyno.2014.06.014
http://www.ncbi.nlm.nih.gov/pubmed/24972190
https://doi.org/10.1371/journal.pone.0095884
http://www.ncbi.nlm.nih.gov/pubmed/24789104
https://doi.org/10.1042/CS20110386
https://doi.org/10.1042/CS20110386
http://www.ncbi.nlm.nih.gov/pubmed/22117616
https://doi.org/10.1074/jbc.M210432200
http://www.ncbi.nlm.nih.gov/pubmed/12496265
https://doi.org/10.1038/nrendo.2013.256
http://www.ncbi.nlm.nih.gov/pubmed/24393785
https://doi.org/10.1016/j.ccr.2012.12.008
http://www.ncbi.nlm.nih.gov/pubmed/23352126
https://doi.org/10.1038/nrc2676
http://www.ncbi.nlm.nih.gov/pubmed/19629071
https://doi.org/10.1016/j.cell.2015.07.017
http://www.ncbi.nlm.nih.gov/pubmed/26232225
https://doi.org/10.1016/j.molcel.2015.12.002
http://www.ncbi.nlm.nih.gov/pubmed/26725009
https://doi.org/10.18632/aging.100472
https://doi.org/10.18632/aging.100472
http://www.ncbi.nlm.nih.gov/pubmed/22837425
https://doi.org/10.1371/journal.pone.0180061


67. Jiang W, Finniss S., Cazacu S., Xiang C., Brodie Z., Mikkelsen T. et al. Repurposing phenformin for the

targeting of glioma stem cells and the treatment of glioblastoma. Oncotarget. 2016; https://doi.org/10.

18632/oncotarget.10919 PMID: 27486821

Therapeutic enhancement of oxidative stress in VM-M3 glioblastoma cells

PLOS ONE | https://doi.org/10.1371/journal.pone.0180061 June 23, 2017 18 / 18

https://doi.org/10.18632/oncotarget.10919
https://doi.org/10.18632/oncotarget.10919
http://www.ncbi.nlm.nih.gov/pubmed/27486821
https://doi.org/10.1371/journal.pone.0180061

