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ABSTRACT: O-GlcNAcylation is a dynamic post-translational
modification which affects myriad proteins, cellular functions, and
disease states. Its presence or absence modulates protein function
via differential protein- and site-specific mechanisms, necessitating
innovative techniques to probe the modification in highly selective
manners. To this end, a variety of biological and chemical methods
have been developed to study specific O-GlcNAc modification
events both in vitro and in vivo, each with their own respective
strengths and shortcomings. Together, they comprise a potent
chemical biology toolbox for the analysis of O-GlcNAcylation
(and, in theory, other post-translational modifications) while
highlighting the need and space for more facile, generalizable, and biologically authentic techniques.
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■ INTRODUCTION
O-GlcNAc modification is an enzymatic post-translational
modification (PTM) essential in mammals and insects1−3

whereby intracellular proteins are functionalized by single
monomers of N-acetylglucosamine at serine and threonine side
chain hydroxyls (Figure 1). Unique from other forms of

glycosylation, this GlcNAc monomer is not extended further
into large polysaccharide chains. Instead, this PTM is highly
analogous to phosphorylation in that it is reversible and
dynamic via its “writer”, O-GlcNAc transferase (OGT),4 and
its “eraser”, O-GlcNAc hydrolase (OGA),5 the activities of
which are linked to the metabolic and disease state of the cell.
The dynamic interplay of these enzymes lends O-GlcNAcyla-
tion important roles in cell signaling pathways,6 cell fate
determination,7,8 transcription,9 immunity,10 and response to
cellular stressors.11 The modification has been shown to be

dysregulated in many forms of cancer,9,12 as well as in
neurodegenerative,13,14 metabolic,15,16 and cardiovascular
diseases,17,18 stressing the importance of its homeostasis and
of its study.
The mechanisms by which the modification impacts its

substrates are highly multifaceted. Because OGT and kinases
can compete for Ser and Thr residues, some effects of the
modification have been attributed simply to the inhibition of
phosphorylation,19 while the PTM also affects other proteins
by more direct means, primarily by dictating protein−protein
interactions. The O-GlcNAc moiety has been dubbed a “grease
and glue”, either dampening or enhancing binding of its
substrates to their interactors by its highly hydrophilic,
uncharged steric bulk.20 Its consequences are therefore
differential both from substrate-to-substrate, but also from
site-to-site within a given substrate, complicating their
interrogation.
Because O-GlcNAcylation’s effects are not generalizable

across its substrates or substrate sites, several biological and
chemical tools of varying specificity have been established for
the study of the modification in vitro and in vivo. This review
seeks to compile current methods used by our lab and others
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Figure 1. O-GlcNAc modification is the reversible addition of N-
acetylglucosamine to serine/threonine residues of intracellular
proteins. It is added by the enzyme O-GlcNAc transferase (OGT)
and removed by O-GlcNAcase (OGA).
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for the installation and examination of O-GlcNAc modifica-
tion. We highlight their respective successes, limitations, and
physiological relevance, as well as discuss the need for more
simple, effective, and general chemical biology tools to more
fully understand this PTM.

■ O-GLCNAC MODULATION: BIOLOGICAL
METHODS

OGT Coexpression and in Vitro Substrate Modification

Studies involving O-GlcNAc-modified proteins often require
copious amounts of O-GlcNAcylated material. To this end,
coincubation of recombinant OGT with a protein of interest in
vitro or in vivo coexpression of OGT and the desired substrate
protein in E. coli allows for the convenient and efficient
production of milligram-scale quantities of O-GlcNAc
modified protein. As the gene for OGT is only found in
eukaryotes, it must be introduced to the bacterial genome via a
plasmid. Conveniently, the substrate for OGT’s GlcNAc
transferase activity, UDP-GlcNAc, is endogenously produced
by bacteria for use as a cell wall building-block.21

Recombinant OGT expression was first explored in terms of
substrate protein recognition in 2008.22 After expressing three
isoforms of OGT in E. coli, bacterial lysates were
immunoblotted with RL2, an anti-O-GlcNAc antibody.
Although OGT was expressed and catalytically active, no
significant O-GlcNAcylation of bacterial proteins was detected.
This is unsurprising because the lack of OGT in bacterial
genomes suggests that O-GlcNAc modification is uncommon
and unimportant for bacterial protein regulation. However,
OGT successfully O-GlcNAc modified recombinantly coex-
pressed mammalian proteins known to be OGT substrates,
establishing that bacteria produce enough UDP-GlcNAc for
endogenous purposes as well as protein O-GlcNAcylation. The
technique can be further optimized by coexpressing GlmM and
GlmU, enzymes that promote UDP-GlcNAc synthesis to
increase coexpressed OGT activity.23

This technique and in vitro glycosylation have been used to
map modification sites of tau,24 SIRT1,25 emerin,26 and lamin
A,27 and others. Coexpression of OGT and PKA kinases
PKAcα and PKAcβ showed that the modification of these
proteins enhances their kinase activity toward tau.28 Further,
OGT coexpression in yeast was used to study the
modification’s crosstalk with phosphorylation of SKN-1.29

The major issue with this technique is that the resulting
protein species often modified at multiple sites, preventing the
straightforward examination of site-specific effects. Further-
more, this method does not yield 100% GlcNAc modified
protein, but the O-GlcNAcylated protein can sometimes be
isolated from the unmodified protein by high performance
liquid chromatography (HPLC). Additionally, the E. coli
protein NagZ, which endogenously hydrolyzes O-GlcNAc
linkages to aid in peptidoglycan recycling, has also shown
deglycosylation activity toward exogenous, O-GlcNAcylated
proteins, decreasing the yields of modified POIs.30 This issue
can be avoided by inhibiting NagZ with small molecule OGA
inhibitors such as PUGNAc or by genetic knockout of the
problematic enzyme.
Glycosite-to-Alanine/Valine Mutagenesis

While phosphomimetic (S-to-D) point mutations have been
used to study phosphorylation, there are no direct amino acid
substitutions that faithfully represent O-GlcNAcylated protein
residues. Instead, loss-of-function serine-to-alanine/or threo-

nine-to-valine mutations have been used to study the
modification’s absence site-specifically (Figure 2). Because

the PTM occurs on the hydroxyl groups of serine and
threonine residues, mutations that replace the side chain
hydroxyl group with a methyl group prevent endogenous O-
GlcNAc modification while preserving the size of the original
amino acids. This loss-of-function mutation enables one to
observe the effects of “knocking out” a site-specific O-GlcNAc
modification.
This mutation strategy has been used in conjunction with

mass spectrometry to map the specific sites at which proteins
are O-GlcNAc modified. In a study by Kim et al., this
technique was used to probe the PTM’s effect on the
proteasomal clearance of SMAD4.31 Through mass spectrom-
etry analysis, four residues of the protein were found to be O-
GlcNAc modification sites, and these sites were mutated to
alanines or valines using site-directed mutagenesis. Subsequent
Western blotting analysis validated that each of the mutants
were less O-GlcNAc-modified than the wild-type, and a
quadruple mutation abolished almost all O-GlcNAcylation,
validating that all four sites are O-GlcNAcylated. The
technique was also used for comparison between multiple O-
GlcNAc modification sites within the same protein. A study of
ubiquitination levels of the four single-point mutants of
SMAD4 elucidated that modification at Thr63 is the most
important of the four for SMAD4 stabilization. Such site-
specific differences highlight the value of molecular level
investigations of O-GlcNAc modification. In addition, the use
of mass spectrometry as a complementary technique can
highlight differences that be otherwise overlooked. A study by
Ma et al. showed that the loss of a highly conserved O-GlcNAc
site (T305) on NF-κB was compensated by increased O-
GlcNAcylation at a different site (T352).32

The design of such loss-of-function mutants have high-
lighted important roles for O-GlcNAc in the induction of
apoptosis,33 modulation of transcription,34 and inhibition of
cancer cell growth.31 Nevertheless, the structural and func-
tional effects of replacing a polar side chain with a small,
nonpolar side chain on protein structure must be considered.
In addition, the mutagenesis results in the loss of a

Figure 2. Standard mutagenesis methods to block or increase O-
GlcNAcylation. The normal dynamics of O-GlcNAc modification can
be blocked by mutation to an alanine resulting in a loss of function
mutant. Alternatively, increased modification can be obtained by a
cysteine mutant that inhibits OGA activity giving a gain of function
mutant.
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phosphorylation site, which is especially pertinent at certain
sites considering the interplay between phosphorylation and
O-GlcNAc modification. Others maintain that mutagenesis
studies do not unambiguously probe site-specific deglycosyla-
tion, arguing that the consequences of the mutation may
instead be artifacts of a reduction in OGT activity toward the
substrate protein as a whole.35

Glycosite-to-Cysteine Mutagenesis

In addition to the above loss-of-function mutation, O-
GlcNAcylation has also been studied by using S-to-C gain-
of-function mutations (Figure 2). It has been shown that OGT
is capable of modifying cysteine residues, yielding S-
GlcNAcylation that cannot be removed by OGA.36 Although
the biological relevance of this PTM is unknown, its hydrolytic
stability and compatibility with OGT’s promiscuity make it a
promising analogue for studying the effects of site-specific,
permanent O-GlcNAcylation.37

Our lab has synthetically incorporated S-GlcNAcylation
onto α-synuclein in vitro to show that the modification is
resistant to OGA hydrolysis and that its effects are similar to
O-GlcNAcylation at the same site.37 Further, Withers and co-
workers engineered a thioglycoligase that could directly attach
GlcNAc moieties to cysteines through mutation of a
catalytically active residue of OGT.38 This enzymatic approach
utilizes a commercially available glycosyl donor called pNP-
GlcNAc, which makes the technique practical and convenient.
In this work, the researchers generated S-GlcNAcylated tau
protein as a proof-of-concept.
Recently, the van Aalten group developed a CRISPR-Cas9-

based genetic method for the incorporation of S-GlcNAc in the
place of O-GlcNAc on proteins in living cells.39 This approach
involves the mutation of known O-GlcNAc sites to cysteines
that can be S-GlcNAcylated. S-GlcNAcylation can be detected
by some site-specific and pan-selective O-GlcNAc antibodies.
After confirming the S-GlcNAc transferase activity of OGT on
various substrate sequences in vitro, they extended this
approach to living cells. CRISPR-Cas9 was used to introduce
a S405C mutation at the site of O-GlcNAc modification on
OGA in mouse embryonic stem cells. O(S)-GlcNAcylated
proteins in the lysate were chemoenzymatically labeled with
UDP-GalNAz and mass shifted with DBCO-PEG-5K prior to
SDS-PAGE, allowing for the discrimination of unmodified and
S-GlcNAcylated OGA. Impressively, there was successful
incorporation of S-GlcNAc with a stoichiometry of at least
70%. This method has the potential to allow for the study of
O-GlcNAc at specific sites on proteins in living systems by
artificially increasing their stoichiometry. However, in a
fluorescence polarimetry competition assay, S-GlcNAcylated
peptides were found to bind to OGA with affinities decreased
by 2 orders of magnitude when compared to their O-
GlcNAcylated counterparts. This loss of recognition by OGA
suggests that the S-to-O mutation could impact the
modification’s recognition by other interactors, complicating
conclusions drawn by using this technique.

Substrate-Targeted OGT/OGA

While global O-GlcNAc modification levels can be altered
using chemical inhibitors or modulation of OGT/OGA
expression, it is more challenging to selectively install O-
GlcNAc onto target proteins in cells. Such a method would be
useful for investigating the biological effects of increased or
decreased O-GlcNAcylation on specific glycoproteins of
interest.

Research efforts in this domain have been spearheaded by
the Woo group, who first reported an engineered OGT that
was targeted to specific proteins through the use of
nanobodies, small antigen-binding fragments of heavy chain
only antibodies which are naturally produced by camelids and
sharks (Figure 3a).40,41 Truncated OGT was fused to a

nanobody (nanobody-OGT) with high affinity for a protein tag
on target proteins JunB and Nup62 to induce O-
GlcNAcylation. Levels of O-GlcNAcylated protein of interest
were quantified by mass spectrometry in both wild-type OGT
and nanobody-OGT overexpressing cells, and the nanobody-
OGT fusions were found to have high selectivity. Nanobody-
OGT also produced a similar glycosylation profile to that of
wild-type OGT. In addition, this technique was demonstrated
on endogenous α-synuclein. Using a nanobody that was
developed to target α-synuclein, nanobody-OGT was ex-
pressed in HEK293T cells. O-GlcNAcylated proteins in the
cell lysate then underwent mass-shifting to determine O-
GlcNAc-modified protein stoichiometry.
Following the development of the proximity-directed OGT,

the Woo group also generated nanobody-fused split O-
GlcNAcase (Figure 3b).42 Initial tests with the catalytic and
stalk domains of OGA fused to a nanobody resulted in
deglycosylation activity with poor target-protein selectivity. To
optimize selectivity, pairs of truncated N- and C-terminal OGA
fragments were screened for reduced enzymatic activity that
could be restored by the addition of a nanobody. This
approach can be customized to various target proteins and tags
by various nanobodies without the perturbation of global O-
GlcNAc levels.43

Figure 3. Substrate targeted OGT/OGA. (a) OGT catalytic domain
can be targeted to proteins through a nanobody/tag pair, resulting in
increased O-GlcNAc of the tagged, target protein. (b) Similarly, OGA
can be nanobody targeted to remove O-GlcNAc. Splitting of the OGA
stalk and catalytic domains prevents off-target activity.
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Both substrate-targeted OGT and OGA enable character-
ization of the function of O-GlcNAc on specific proteins. Still,
nanobody generation is a lengthy process, and it remains to be
seen if this technique suffers from off-target effects. In the
future, the discovery of more nanobodies that target
endogenous proteins may facilitate the function of nano-
body-fused split OGA without the use of tags that must be
genetically encoded. Additionally, while this technique is
protein-specific, it is incapable of controlling the sites
(un)modified by the nanobody-fused enzymes.

Genetic Code Expansion

Genetic code expansion (GCE) can be used to introduce site-
specific PTMs both directly through the incorporation of
premodified amino acids and indirectly by adding biorthogonal
handles as scaffolds for the PTM.44 These methods provide
complete proteins that are stoichiometrically site-specifically
functionalized and can be performed in living cells given the
use of appropriate reagents. One approach to GCE involves
the incorporation of unnatural amino acids through the natural
promiscuity of endogenous tRNA/synthetase pairs. For
example, the native methionine tRNA/synthetase in E. coli
will accept azidohomoalanine (AHA) and homopropargyl

glycine (HPG).45 In methionine auxotrophic cells, the
corresponding tRNAs will build up to sufficient concentrations
that the ribosome will insert these unnatural amino acids into
proteins at AUG codons (Figure 4a). Subsequent reaction of
these azide- or alkyne-containing proteins under copper-
catalyzed azide−alkyne cycloaddition (CuAAC) conditions
has been used to install O-GlcNAc analogs.46 Another
common form of GCE takes advantage of orthogonal
unnatural amino acid and tRNA synthetase pairs, as well as
an amber stop codon at the site of interest within the POI’s
mRNA. This “amber suppression” mutagenesis enables the
site-selective introduction of unnatural amino acids. In the case
of O-GlcNAc, the pyrrolyl-tRNA/synthetase pair was used to
incorporate bicyclo[6.1.0]non-4-yn-9-ylmethanol lysine
(BCNK) or trans-cyclooctene-derivatized lysine (TCOK)
into GFP.47 These handles were then reacted with tetrazines
through the inverse electron demand Diels−Alder (iEDDA)
reaction to attach O-GlcNAc analogs (Figure 4b). The major
disadvantage to these methods is the presence of the linker
between the GlcNAc and the amino acid, which, under certain
circumstances, can be larger than the O-GlcNAc itself.

Figure 4. Incorporation of O-GlcNAc analogs using unnatural amino acids. (a) The promiscuity of natural methionine tRNA/synthetases can be
exploited to incorporate azidohomoalanine (AHA) at methionine codons. Subsequent CuAAC chemistry can be used to bioorthogonally install an
O-GlcNAc analog. (b) The pyrrolysine system can be used to site-specifically incorporate bioorthogonal amino acids at amber stop codons. Again,
bioorthogonal chemistries can be used to install O-GlcNAc analogs.
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To date, there have been no successful incorporations of
synthetic, O-GlcNAc-modified amino acids on proteins using
genetic code expansion. An initial report demonstrating the
incorporation of O-GlcNAc-Thr into myoglobin using amber
suppression was later retracted.48 O-GlcNAc-Ser is metabo-
lized by E. coli for carbon, so it is not available in the cytoplasm
in the time frame required for the amber stop codon
suppression system. Acetylation of the sugar’s free hydroxyls,
a common mechanism to increase cellular uptake of polar
molecules, is ineffective because E. coli do not endogenously
express the deacetylases required to remove the protecting
group.

■ O-GLCNAC MODULATION: CHEMICAL METHODS

SPPS and Protein Ligation

Site-specifically O(S)-GlcNAcylated peptides can be readily
prepared using through solid-phase peptide synthesis (SPPS)
with Fmoc-Ser(β -Ac3GlcNAc)-OH, Fmoc-Thr(β -
Ac3GlcNAc)-OH, and Fmoc-Cys(β-Ac3GlcNAc)-OH building
blocks. These modified amino acids are commercially available,
yet costly, but there are several methods for producing them
in-house, with the most common being the König-Knorr
reaction. The König-Knorr reaction takes advantage of either
halophilic activation using the heavy metal salt HgBr2

49 or
Lewis acid-activation using AgOTf,50 TMSOTf,51 or InBr3.

52

An alternative strategy to glycosylation of amino acids is
through thioglycoside activation.51,53 These GlcNAcylated
residues can be preactivated as pentafluorophenyl (PFP) esters
for direct use in glycopeptide syntheses.49 Both methods allow
for the β-specific linkage of the O-GlcNAc sugar to the amino
acid, and thus a peptide containing a native, site-specific O-
GlcNAc moiety.
Beyond producing glycosylated peptides, it is possible to

incorporate these peptides into full-length, native proteins with
specifically modified glycosylated residues through native
chemical ligation (NCL) and variants of the NCL method
(Figure 5a). NCL is a chemoselective technique which involves
the coupling of a C-terminal thioester to an N-terminal
cysteine residue under mild aqueous conditions (pH 7−7.5)
with high yields. This reaction generates a thioester-linked
intermediate that rearranges spontaneously to form a peptide
containing a native peptide bond to a cysteine residue through
an S−N acyl shift. This method was first introduced in 1994 by
Kent and colleagues.54−56 NCL has numerous applications in
the field of chemical biology, as it is used to synthesize native
polypeptides with site-specifically modified residues. Compli-
cating the applicability of NCL are limitations in the size of
peptides produced by SPPS. Expressed Protein Ligation
(EPL), an extension of NCL, can be used to overcome these
issues by taking advantage of bacterial intein splicing
mechanisms to express protein fragments that can be used in
protein semisyntheses (Figure 5a).57 To express protein
thioesters, the fragment of interest can be genetically fused
to a bacterial intein mutated such that the splicing mechanism
is impeded at an intermediate stage. This results in a branched,
thioester linkage between the fragment of interest and the
intein which can be readily exchanged with exogenous thiols to
yield stable, recombinant protein thioesters.58,59 EPL enables
the use of recombinant protein fragments in NCL, broadening
the limits of total polypeptide size and the modifications
introduced.60,61

While it is relatively straightforward to design a synthetic
scheme to access some protein targets, the sequences of many
proteins and the positions of their modification sites must be
amenable to the conditions of SPPS and NCL/EPL. The
technique introduces relatively rare cysteine residues into
completed sequences; however, for proteins that do not
contain native cysteine residues, one can take advantage of
metal- or nonmetal-based desulfurization methods to convert
resulting cysteines to alanine residues.62−64 To protect native
cysteines that would be lost during broad deprotections,
selenocysteine can be used as the NCL nucleophile and can be
selectively deselenized in the presence of cysteine.65,66

Additionally, the use of synthetic, thiolated/selenized amino
acid analogs allows noncysteine or alanine ligation sites.67

Further, hydrazines68,69 and protected cysteine derivatives70

can be used to mask ligation sites at N- and C-termini,
respectively, before being activated to form reactive thioesters
and free cysteines.
Using SPPS and EPL/NCL, one can produce native proteins

with site-specifically O-GlcNAc-modified residues for study.
SPPS was used to study the crosstalk between O-
GlcNAcylation and Jak2 phosphorylation in using a synthetic
peptide microarray.71 The Pieters group found that a
synthetically phosphorylated peptide substrate of OGT and
Jak2 was highly resistant to O-GlcNAcylation; however, the
same peptide could be phosphorylated by Jak2 when pre-O-
GlcNAcylated synthetically. The same group later studied a
peptide derived from ZO-3 which is phosphorylated at Tyr364
by Jak2 and O-GlcNAcylated on Ser369 by OGT.72 It was
found that phosphorylation at Tyr364 slightly reduced the
removal of O-GlcNAc by OGA, while Ser369 glycosylation
slightly enhanced the dephosphorylation of the nearby Tyr by
phosphatases. One study used EPL and SPPS to investigate

Figure 5. Site-specific incorporation of O-GlcNAc using protein
ligation or post-translational mutagenesis. (a) Native/expressed
protein ligation involves the selective reaction between protein
thioesters and N-terminal cysteines to generate native amide bonds.
(b) Cysteine residues can be forced to undergo β-elimination
followed by addition of S-GlcNAc nucelophiles.
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PTM crosstalk in kinase CK2, which is O-GlcNAc modified at
Ser347 and phosphorylated at Thr334. By installing a
metabolically stable S-linked GlcNAc at Ser347, the Cole
group was able to determine that O-GlcNAcylation at this site
blocks phosphorylation at the adjacent phosphorylation site.73

The S-to-O mutation could alter the activity of the protein;
however, as the atoms are similarly sized, the effect is subtle
while the stabilization of the O-GlcNAc moiety is extremely
useful. Native chemical ligation was also used in the first
instance of semisynthetic tau protein by the Hackenberger
group.74 O-GlcNAc was site-specifically added onto Ser400 in
the C-terminus of tau and the native protein was made using
EPL and desulfurization. These methods allow for the study of
O-GlcNAc’s effect on tau protein for in vitro structural and
functional studies.
Through NCL and EPL, O-GlcNAc’s effect was also

elucidated in studies of semisynthetic α-synuclein by our
laboratory.75−77 It was found that O-GlcNAcylation results in
site-specific differences in α-synuclein aggregation in in vitro
experiments and is generally inhibitory. We further showed
that the PTM is protective against the protein’s cleavage by
calpain,78 and that the anti-aggregation phenotypes imparted
by the GlcNAc moiety are unique and not reproduced by other
sugars.79 We also used these techniques to study the effect of
O-GlcNAcylation on semisynthetic HMGB1 modified at
positions Ser100 and demonstrated the influence O-GlcNAc
has on HMGB1-DNA interactions.80 We showed that the
PTM generally enhanced the interactions between the protein
and DNA and resulted in error-prone repair of ICL-damaged
plasmids in U2OS cell extracts. Finally, we have also studied
the effect of O-GlcNAc modifications of small heat shock
proteins (sHSPs) using NCL and EPL methods.81 The results
of this study found that O-GlcNAc modification near the IXI
motif of semisynthetic sHSPs increases their anti-amyloid
chaperone activity, and the O-GlcNAc modification of sHSPs
is maintained even in globally reduced O-GlcNAc levels found
in those with Alzheimer’s disease.
Post-Translational Mutagenesis

The production of unnatural amino acids through site-directed
mutagenesis has been limited by the 20 natural amino acids
and their sp3-sp3 C−C bonds. A study has shown that it is
possible to form a range of alkyl halides on the side chains of
amino acids through dehydroalanine (Dha) (readily formed
using mild, carbon-centered free-radical chemistry at Cys
residues) and Dha derivatives, allowing for the post-transla-
tional production of unnatural amino acids with high
chemoselectivity and compatibility in biological systems
(Figure 5b).82,83 With this, the ability to insert side-chain
alterations directly and selectively provides an easy route to
natural and unnatural PTM incorporation, such as mimics of

O-linked glycosides. A followup study used Dha and a
thiolated GlcNAc to produce homogeneous histone protein
H2A containing an O-GlcNAc mimic at Thr101.84 The
GlcNAcylated H2A was then used to form nucleosomes, and
stability studies were carried out to show that O-GlcNAc at
this position destabilizes the histone complex. Another study
was performed using the same methods to probe the effects of
O-GlcNAcylation at Ser112 on H2B in the nucleosome
complex.85 The Davis lab found that glycosylation at the 112
position recruits the FACT complex and aids in transcription
elongation. Interestingly, a recent study by the Wang lab
developed a novel method compatible in cellulo. Genetically
Encoded Chemical Conversion (GECCO) takes advantage of
a sulfur-fluoride exchange (SuFEx) reaction between a
genetically encoded, unnatural fluorosulfate-L-tyrosine and a
threonine or serine side chain to generate reactive
dehydrobutyrine or dehydroalanine moieties in situ inter- or
intramolecularly.86 Thus, the Wang group was successful in
attaching an S-GlcNAc monomer onto a Dha site at residue
184 of sfGFP. These reactions could prove to be the next step
in post-translational mutagenesis methods, allowing the
production of glycoprotein mimetics in living cells.
The downside to post-translational mutagenesis methods is

the resulting unnatural linkage to the O-GlcNAc modification.
The cysteine thioether linkage is, again, a mimic of the native
glycosidic bond, and the homoserine linkage is one carbon
longer than would be found in nature. To compound issues,
the α-carbon is often racemized in these methods, which
generally creates an inseparable mixture of diastereomers that
can contain differing biochemical properties. To preserve the
stereochemistry at the modification site, disulfide GlcNAc-S-
Cys linkages can be desulfurized and converted into thioether-
linked glycoconjugates through a method using polarized,
electron-rich phosphines.87

Conclusion, Limitations, and Future Directions

The catalogued list of O-GlcNAcylated proteins and sites of
modification continues to grow with thousands of potential
substrates in humans alone (https://www.oglcnac.mcw.edu).88

However, any effects of most of these modifications are
completely unknown. In this perspective, we have described
varied approaches to install O-GlcNAc on certain proteins,
sometimes in a site-specific manner. Techniques ranging from
enzymatic modification of proteins by OGT to chemical
synthesis of O-GlcNAc modified substrates have enabled
important biochemical roles for O-GlcNAc to be elucidated.
These studies have demonstrated that O-GlcNAc can alter
protein structure and function in critical and multifaceted ways,
and they will certainly be applied to make additional
discoveries in the future. Each of these techniques has its
own strengths and limitations (Table 1).

Table 1. Comparison of Different Techniques

technique protein selectivity site selectivity generalizability ease of use physiological relevance

OGT coexpression - - ++ +++ ++
Glycosite-to-A mutagenesis +++ +++ +++ +++ +
Glycosite-to-C mutagenesisa +++ +++ + +++ ++
Targeted OGT/OGA +++ + + ++ ++
GCE (O-GlcNAc analogs) +++ ++ ++ + -
Chemical ligation +++ +++ ++ + +++
post-translational mutagenesisb +++ ++ ++ + +

aGeneralizability of glycosite-to-C mutagenesis is currently unclear as limited sites have been tested. bSite selectivity of post-translational
mutagenesis is limited by the availability of a unique cysteine on the protein surface.
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In many aspects, the enzymatic modification of proteins by
OGT is the technically most simple method for installing O-
GlcNAc on proteins of interest. Specifically, many biochemists
routinely perform recombinant protein expression in E. coli.
Therefore, coexpression of a protein of interest with OGT in E.
coli (or similar heterologous system) is an approach that many
laboratories are well-placed to exploit. Unfortunately, as
mentioned above, O-GlcNAc is often added to multiple
residues on a protein of interest using this system, and these
modification sites will typically have different levels of
modification stoichiometry. This can result in complex
mixtures of different glyco-proteoforms that can be very
challenging to isolate from one another. Likewise, transient or
even stable expression of proteins in mammalian cells is fairly
routine; however, this same heterogeneity issue persists. The
issue of site selectivity in both of these systems might be
overcome through the mutation of serine/threonine residues
to cysteine. As described above, mutation of serine to cysteine
on OGA enabled a dramatic increase in O-GlcNAc
stoichiometry at this site in mammalian cells.39 One could
envision using this strategy during recombinant expression by
mutating a site of interest to cysteine, resulting in high levels of
S-GlcNAc at this site, and then removing the remaining O-
GlcNAcylation with OGA. However, the generality of this
cysteine-mutation strategy for multiple proteins and sites needs
to be explored further, and this is an important future area of
investigation.
Targeted OGT/OGA approaches for increasing or decreas-

ing O-GlcNAc on a protein of interest in living systems are a
potentially powerful tool to complement genetic (e.g., RNAi)
and small molecule inhibitor approaches.89,90 A minor
limitation of these systems are their relative complexity,
which may limit, but not necessarily prevent, their application
beyond easily transfectible cell systems. A more significant
potential roadblock is the time and effort that might be needed
for the development of nanobodies to target endogenous
proteins of interest. Therefore, other targeting modalities
should be explored. For example, a recent exciting publication
demonstrated that RNA aptamers can be used to target OGT
to β-catenin.91

In the case of chemical strategies, we have had significant
success applying protein ligation methods (NCL/EPL) for the
preparation of completely homogeneous O-GlcNAcylated
proteins in biochemical studies.37,75−81 While protein ligation
is the only current method that is theoretically guaranteed to
produce pure protein products, it is not without its limitations.
Like all synthetic strategies using NCL/EPL, a fundamental
issue is the relatively slow rate of the ligation reaction,
requiring fairly high (millimolar) peptide/protein concen-
trations. Additionally, certain protein fragments can suffer from
poor expression yields and unpredictable physical properties
that make them difficult to purify in sufficient quantities.
Therefore, methods that increase the rate of protein ligation,
such as a lipid-facilitated protocol published by the Devaraj
lab,92 are still incredibly important for the field and should be
explored. Additionally, robust and gentle ligation reactions that
occur at noncysteine or -alanine junctions would greatly
expand the potential viable synthetic strategies to any given
protein target.
Post-translational mutagenesis overcomes some limitations

of protein ligation because the full-length protein target can be
expressed in full.82,84,85 However, the selectivity of the
chemistry for the installation of S-GlcNAc on one cysteine

can be challenging, particularly in protein targets that have
other crucial structural or catalytic cysteines. Additionally,
while some proteins may not be affected by the racemization of
the α-carbon at the S-GlcNAcylated site, this will certainly not
be true in every case, making the consequences of GlcNAc
versus racemization difficult to distinguish. Therefore, any
chemistry that could bias the stereochemical outcome of post-
translational mutagenesis could be a key advance.
Current successes in genetic codon expansion suffer from

even larger perturbations to the O-GlcNAc structure, which
may make biochemical results difficult to interpret. For
example, we recently demonstrated that even as subtle of a
change as O-GlcNAc to O-GalNAc or O-glucose alters the
aggregation behavior of the protein α-synuclein.79 While
incorporation of bona fide O-GlcNAc or even S-GlcNAc
through amber suppression in E. coli has been unsuccessful,
this should still be a goal of the community. It is possible that
different expression systems (e.g., Vmax X293) or other tRNA/
synthetase pairs may overcome the hurdles, and the direct
incorporation of either serine or threonine O-GlcNAc by
genetic codon expansion would be transformative.
In summary, the creation of various methods for the

protein/site-selective installation of O-GlcNAc have allowed
for a dramatic expansion in our understanding of this PTM.
Researchers should continue to take advantage of the methods
described above to complement other genetic, pharmaco-
logical, chemical biologic, and biochemical techniques. Addi-
tionally, we encourage “tool makers” to continue to expand the
available approaches for studying O-GlcNAc and to take on
major challenges in the field.
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