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Brain activation during disorder-
related script-driven imagery in 
panic disorder: a pilot study
Alexander Burkhardt, Christine Buff, Leonie Brinkmann, Katharina Feldker, 
Bettina Gathmann, David Hofmann & Thomas Straube

Despite considerable effort, the neural correlates of altered threat-related processing in panic disorder 
(PD) remain inconclusive. Mental imagery of disorder-specific situations proved to be a powerful tool 
to investigate dysfunctional threat processing in anxiety disorders. The current functional magnetic 
resonance imaging (fMRI) study aimed at investigating brain activation in PD patients during disorder-
related script-driven imagery. Seventeen PD patients and seventeen healthy controls (HC) were 
exposed to newly developed disorder-related and neutral narrative scripts while brain activation 
was measured with fMRI. Participants were encouraged to imagine the narrative scripts as vividly as 
possible and they rated their script-induced emotional states after the scanning session. PD patients 
rated disorder-related scripts as more arousing, unpleasant and anxiety-inducing as compared to HC. 
Patients relative to HC showed elevated activity in the right amygdala and the brainstem as well as 
decreased activity in the rostral anterior cingulate cortex, and the medial and lateral prefrontal cortex 
to disorder-related vs. neutral scripts. The results suggest altered amygdala/ brainstem and prefrontal 
cortex engagement and point towards the recruitment of brain networks with opposed activation 
patterns in PD patients during script-driven imagery.

Panic disorder (PD) is a frequent disorder with up to 3.1% 12-month-prevalence1 that causes substantial impair-
ment to the individual. Patients suffering from PD are consistently concerned about the occurrence of a panic 
attack2 which is characterised by a sudden outburst of overwhelming fear triggering severe physical reactions3. 
According to cognitive models and behavioural studies, the occurrence of panic attacks is mainly driven by 
altered threat processing in PD patients4–6. For example, they appear more vigilant to internal bodily sensations7, 
and tend to misinterpret them in a threatening manner8–12. This misinterpretation bias appears to facilitate, 
among other factors, the initiation of panic attacks and may consequently result in the preservation of high levels 
of anxiety as well as the maintenance of the disorder5,13.

Neurobiological models suggest that altered threat processing in PD is related to dysfunctions within a brain 
network comprising the amygdala, the insula, the prefrontal cortex (PFC), the hippocampus, and brainstem sites, 
such as the periaqueductal grey (PAG) region and locus coeruleus14–16. A key role in altered threat processing in 
PD has been attributed to the amygdala15,17, which is assumed to reflect increased vigilance towards threat14,15. 
However, the precise function in the pathophysiology of PD remains to be resolved, since findings remain equivo-
cal and altered threat-related amygdala activity has not been consistently reported16,18,19. A recent meta-analytical 
work in the functional neuroanatomy of panic disorder condensed findings, revealing abnormal activity predom-
inantly in an extended fear network comprising brainstem, anterior and midcingulate cortex (ACC and MCC), 
insula, and lateral as well as medial prefrontal cortex, while aberrant amygdala activation seems to more strongly 
hinge on particular stimuli and experimental paradigms, sample characteristics, as well as on limited neuroim-
aging methods16.

Aside the amygdala, altered threat processing in PD patients appears related to aberrant medial PFC and ACC 
recruitment, with studies showing both increased and decreased activation in response to threat20–24. Aberrant 
activity in the PFC and the ACC was considered to reflect a deficiency in top-down control of threat responses in 
PD patients14. Furthermore, emerging evidence points towards threat-related functional perturbations within the 
brainstem and the insula in PD patients15,25–28. For example, a recent study revealed an association between higher 
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subjective levels of anxiety and brainstem activity as well as increased activity of the insula, interpreted as a token 
of increased interoceptive processing in PD patients25.

Taken together, the neural correlates of altered threat processing in PD remain inconclusive, but ravel around 
functional perturbations within the amygdala, the PFC, the ACC, the brainstem and the insula. Results and inter-
pretation of functional imaging studies might depend on varying experimental and analytical methods. Further 
investigations using controlled symptom provocation designs are warranted to gain a comprehensive understand-
ing of the neurobiological underpinnings of altered threat processing in PD patients.

A promising tool to explore threat processing mechanisms in patients proved to be the method of script-driven 
imagery29–34. Participants typically listen to an emotionally laden narrative script and imagine the active role of 
the protagonist. It has been shown that the emotional and bodily reactions, resulting from threat imagination, 
are similar to the physiological arousal when facing in vivo threat34,35. The method has already been implemented 
in psychophysiological PD studies and revealed that the imagination of disorder related narrative scripts elicited 
increase startle, heart rate, and blood pressure responses in PD patients10,36,37.

Besides psychophysiological responses, recent neuroimaging studies suggest that script-driven imagery 
involves the recruitment of a fear-related brain circuitry including increased activation of the amygdala, insula, 
cingulate cortex, and the prefrontal cortex (PFC), as well as reduced activation of the ventromedial PFC (vmPFC) 
in anxiety patients19,24,38–42. Given the suggested role of these brain regions as described earlier, script-driven 
imagery might elicit increased vigilance, increased interoceptive processing, and deficient control of responses to 
threat in PD patients. We therefore hypothesise that aberrant activation particular for mental threat imagery is to 
be expected in these brain regions during the present experimental procedure.

Remarkably, only one fMRI study has used this method in a pilot study with a highly restricted PD sample 
(n = 6) until today and found threat-related increased activation in cingulate cortex and lateral PFC24. Thus, 
relevant brain imaging studies are lacking that use script-driven imagery as a powerful tool to better understand 
threat-related brain activation patterns in PD patients during a controlled but symptom provoking experimental 
situation.

To pursue this auspicious avenue in research, the aim of the present fMRI study was to explore neural corre-
lates of threat processing in a suited sample of PD patients by means of script-driven imagery based on a newly 
developed set of controlled disorder-related and neutral scenarios. To this end, we presented the disorder-related 
and neutral narrative scripts to PD patients and healthy controls (HC) and investigated brain activation in several 
brain regions, suggested to be relevant for threat processing in PD patients, comprising the PFC, cingulate cortex, 
amygdala, brainstem, and the insula43. We would like to mention that, given the methodological limits of a small 
sample size, medication and comorbidities of patients as well as the lack of high resolution imaging to characterise 
brain stem responses, the present study should be looked upon as a pilot study.

Results
Rating data.  Mean ratings are provided in Table 1. Analysis of valence, arousal and anxiety rating data 
revealed significant main effects of group (valence: F[1,32] = 7.84, p = 0.009; arousal: F[1,32] = 35.83, p < 0.001; anx-
iety: F[1,32] = 40.70, p < 0.001) and stimulus (valence: F[1,32] = 185.90, p < 0.001; arousal: F[1,32] = 185.90, p < 0.001; 
anxiety: F[1,32] = 87.25, p < 0.001). Furthermore, there were significant stimulus by group interaction effects for 
anxiety (F[1,32] = 22.41, p < 0.001), arousal (F[1,32] = 12.49, p = 0.001) and valence (F[1,32] = 6.34, p = 0.017) (see 
Fig. 1). Disorder-related scripts were generally rated as more arousing, more unpleasant, and more anxiety-in-
ducing than neutral scripts. Patients rated all stimuli as more arousing and anxiety-inducing compared to HC, 
but neutral stimuli not as more unpleasant (t[32] = −1.92, p = 0.064). Resolving the interaction effects for valence, 
arousal, and anxiety ratings revealed that disorder-related scripts were rated as more arousing (t[32] = 5.70, 
p < 0.001), more unpleasant (t[32] = −3.22 p = 0.003), and more anxiety-inducing (t[32] = 6.11 p < 0.001) by PD 
patients compared to HC. Analysis of the ability to imagine each script yielded no significant effects (all p > 0.069).

FMRI data.  In response to disorder-related vs. neutral scripts, PD patients showed greater activation in 
the right amygdala (peak voxel Talairach coordinates: x = 24, y = −3, z = 19; max. t-value: t[33] = 3.37, p < 0.05 
corrected; cluster size 144 mm3) compared to HC. Furthermore, patients showed decreased activation in sev-
eral prefrontal regions for the same contrast: left ventrolateral PFC (vlPFC) (peak voxel Talairach coordinates: 

Group Script valence
Anxiety M 
(SD)

Arousal M 
(SD)

Valence M 
(SD)

Ability to imagine 
the scripts M (SD)

PD patients
Disorder-related 5.34 (1.66) 5.61 (1.45) 3.06 (0.90) 82.15 (6.93)

Neutral 2.39 (0.96) 3.02 (1.14) 5.25 (0.84) 79.95 (6.88)

HC
Disorder-related 2.07 (1.45) 2.64 (1.59) 4.40 (1.46) 76.68 (9.80)

Neutral 1.11 (0.21) 1.46 (0.55) 5.91 (1.14) 80.04 (9.46)

Overall
Disorder-related 3.70 (2.26) 4.12 (2.13) 3.73 (1.38) 79.42 (8.81)

Neutral 1.75 (0.94) 2.24 (1.19) 5,58 (1.04) 79.99 (8.15)

PD patients Across valence 3.86 (2.00) 4.31 (1.84) 4.15 (1.40) 78.36 (9.64)

HC Across valence 1.59 (1.13) 2.05 (1.32) 5.15 (1.50) 81.05 (6.89)

Table 1.  Mean rating data for disorder-related and neutral scripts on the dimensions of anxiety, arousal, 
valence, and ability to imagine the scripts. Note. PD, panic disorder; HC, healthy controls; M, mean; SD, 
standard deviation.
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x = −27, y = 40, z = 3; max. t-value: t[33] = −4.45, p < 0.05 corrected; cluster size 1184 mm2), right vlPFC (peak 
voxel Talairach coordinates: x = 22,y = 25, z = 5; max. t-value: t[33] = −3.69, p < 0.05 corrected; cluster size 
448 mm3), right ventromedial PFC (vmPFC) (peak voxel Talairach coordinates: x = 14, y = 61, z = −4; max. 
t-value: t[33] = −4.13, p < 0.05 corrected; cluster size 408 mm3) as well as left dorsomedial PFC (dmPFC) (peak 
voxel Talairach coordinates: x = −4, y = 62, z = 11; max. t-value: t[33] = −3.55, p < 0.05 corrected; cluster size 
208 mm3) and right dorsolateral PFC (dlPFC) (peak voxel Talairach coordinates: x = 31, y = 10, z = 33; max. 
t-value: t[33] = −3.28, p < 0.05 corrected; cluster size 168 mm3). Additionally, decreased activation was found in 
several regions of the cingulate cortex: in left rostral ACC (rACC) (peak voxel Talairach coordinates: x = −11, 
y = 32, z = −7; max. t-value: t[33] = −3.03, p < 0.05 corrected; cluster size 168 mm3), in right rACC (peak voxel: 
x = 7, y = 31, z = −6; max. t-value: t[33] = −3.47, p < 0.05 corrected; cluster size 592 mm3) as well as in dorsal 
posterior cingulate cortex (dPCC) (peak voxel Talairach coordinates: x = 14, y = −44, z = 38; max. t-value: 
t[33] = −3.33, p < 0.05 corrected; cluster size 72 mm3). Further inspection of brainstem ROI showed marginally 
significant hyperactivation in right brainstem to disorder-related vs. neutral scripts for PD patients compared to 
HC (peak voxel Talairach coordinates x = 3, y = −20, z = −18, max. t-value: t[33] = 3.00, p < 0.005 uncorrected; 
cluster size 16 mm3) (Fig. 2). All significant activations in ROIs during imagination of disorder-related vs. neutral 
scripts are depicted in Table 2.

Discussion
The present study aimed at unveiling neural correlates of altered threat processing in PD patients by means 
of script-driven imagery. The disorder-related narrative scripts were rated as more arousing, unpleasant, and 
anxiety-inducing by PD patients as compared to HC. Moreover, PD patients relative to HC showed enhanced 
amygdala and brainstem activity and decreased activity in dmPFC, dlPFC, vlPFC, vmPFC/rACC and dPCC dur-
ing imagination of disorder-related vs. neutral narrative scripts.

To the best of our knowledge, the present study is the first to reveal enhanced amygdala activity in PD patients 
during the imagination of disorder-related scripts. Absent differential amygdala activity in PD patients in a for-
mer script-driven imagery study might have been due to signal dropouts and very small sample size (n = 6)24. 
In line with our findings, increased amygdala activity was found in PD patients during the processing of fearful 
facial expressions44,45, symptom provocation46,47, an emotional Stroop task48, and processing of disorder-related 
pictures25. Nevertheless, other studies did not reveal threat-related differential amygdala activity in PD patients 
(for review see18). The amygdala has been suggested to play a role in attentional-vigilance aspects of detecting and 
processing emotional stimuli in normal and pathological forms of anxiety49–52, and aberrant activity has been 
associated with hyperarousal towards threat in anxiety disorders53–55. The amygdala also proved to be hyperres-
ponsive to subtle environmental cues, triggering intense physiological threat-related responses in anxiety disor-
ders as well as in healthy subjects41,56. We suggest that designs, in which subjects are strongly trying to control or 
label their emotions, lead to other brain activation patterns with even reduced amygdala activation (see also57–60). 
We infer from these findings that PD patients experienced ongoing, exaggerated vigilance and arousal during 
the imagination of disorder-related scripts. Furthermore, we would like to note that we do not suggest that the 
amygdala is necessary for the experience of panic attacks, since such attacks are also possible without amygdala 
involvement61,62. However, the amygdala might reduce the threshold for elicitation of such attacks due to their 
functions described above.

Apart from increased amygdala activation, we found brainstem hyperactivation in PD patients compared to 
HC during the imagination of disorder-related scripts. However, these findings have to be interpreted tentatively 
as brainstem hyperactivation only reached marginal significance (see Table 3). Increased activity in brainstem 
sites is in accordance with a recent study25, showing a link between increased activity in the brainstem and the 
subjective degree of anxiety evoked by threatening pictures in PD patients. Generally, the brainstem appears to 
be relevant for autonomic body functions, such as cardio-respiratory control, and seems to be associated with 
different levels of anxiety and anticipation of threat63,64. In PD, brainstem sites, such as the PAG, proved to be 

Figure 1.  Mean ratings for disorder-related and neutral scripts on the dimensions of valence, arousal, and 
anxiety. There were significant interaction effects concerning all ratings: valence, arousal, and anxiety. Patients 
suffering from panic disorder (PD) compared to healthy controls (HC) rated disorder-related relative to neutral 
scripts as more anxiety-inducing, more arousing, and more unpleasant. ***p < 0.001, **p < 0.01.
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hyperactive during a face‐word interference task21 and in the safe condition of a fear conditioning paradigm65. 
In a “carbon dioxide hypersensitivity theory of panic”, it was posited that PD patients hold an altered suffoca-
tion alarm monitor, leading to a pathological carbon dioxide hypersensitivity that provides the basis for panic 

Figure 2.  Differential brain activation during imagery exposure, disorder-related > neutral scripts. Panic 
disorder patients (PD) relative to healthy controls (HC) responded to disorder-related vs. neutral scripts with 
increased activity in right amygdala and brainstem, and decreased activation in right ventromedial prefrontal 
cortex (vmPFC), right and left ventrolateral prefrontal cortex (vlPFC), right dorsolateral prefrontal cortex 
(dlPFC), right and left rostral anterior cingulate cortex (rACC) and right dorsal posterior cingulate cortex 
(dPCC). Graphs indicate contrasts of parameter estimates (mean ± standard error) per group.

Region Lateralization

Talairach coordinates of peak 
voxel

mm3
Maximum 
t-valuex y z

PD > HC

Amygdala R 24 −3 19 144 3.37

Brainstem* R 3 −20 −18 16 3.00

HC > PD

vmPFC R 14 61 −4 408 −4.13

vlPFC L −27 40 3 1184 −4.45

vlPFC R 22 55 5 448 −3.69

dmPFC L −4 62 11 208 −3.55

dlPFC R 31 10 33 168 −3.28

dPCC R 14 −44 38 72 −3.33

rACC L −11 32 −7 168 −3.03

rACC R 7 31 −6 592 −3.47

Table 2.  Region of interest analysis: Significant activations during imagination of disorder-related vs. neutral 
scripts. Note. PD, panic disorder; HC, healthy controls; vmPFC, ventromedial prefrontal cortex; vlPFC, 
ventrolateral prefrontal cortex; dmPFC, dorsomedial prefrontal cortex; dlPFC, dorsolateral prefrontal cortex; 
dPCC, posterior cingulate cortex; rACC, rostral anterior cingulate cortex; L, left; R, right; (x, y, z), Talairach 
coordinates of maximally activated voxel. If not stated otherwise activations listed were calculated at p < 0.05 
(corrected), *p < 0.005 (uncorrected).
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attacks66. This hypothesis is supported by recent findings, showing that increased brainstem activation and its 
correlation with the subjective fear of respiratory symptoms might present a neurobiological basis of such a mon-
itoring system67. Supporting this, increased activity in the rostral raphe nuclei was demonstrated in response 
to hypercapnia68. In this context, increased brainstem activity in PD patients in the present study may hint at 
heightened experience of subjective fear of bodily symptoms during threat imagination in PD patients. However, 
as mentioned before, these conclusions have to be drawn cautiously due to marginal significance of brainstem 
activation. Questionnaires on the feelings of suffocation, CO2-monitoring as well as a more nuanced analysis of 
brainstem subnuclei in future investigations may aid in understanding on the role of altered brainstem activity 
patterns during threat imagination in PD patients.

PD patients were also marked by reduced vmPFC/rACC activity during disorder-related imagery. Impairment 
of vmPFC/rACC recruitment appears to relate to dysfunctional modulation of fear responses across anxiety dis-
orders25,41,43,69–71 and has been observed in studies investigating implicit emotion regulation in HC63,71,72. In fact, 
the present finding of reduced threat-related vmPFC/rACC activity in PD patients constitutes a common finding 
across anxiety disorders, since ample evidence revealed reduced vmPFC activity during threat exposure in patient 
samples43. Yet, the former fMRI pilot study on threat-related script-driven imagery in PD patients revealed ele-
vated, instead of reduced ACC activity in PD patients24, rendering further investigations necessary. All in all, we 
assume that reduced activity in the vmPFC/rACC during disorder-related imagination may indicate deficient 
regulation and modulation of emotional reactivity in PD patients. Out of interest, we conducted a within-group 
comparison of fMRI data exploring differences between PD patients with and without agoraphobia. This anal-
ysis interestingly revealed more pronounced decreased activity of medial prefrontal cortex and rostral anterior 
cingulate cortex in PD patients with agoraphobia compared to patients without agoraphobia. Given the depicted 
functions of these brain regions, agoraphobic patients seem even to a higher extend exhibit impaired implicit and 
explicit emotion suppression and increased focusing when imagining potential threat. This is in line with findings 
showing that the comorbidity of agoraphobia in patients with panic disorder causes a more severe disturbance 
compared to PD patients without agoraphobia73,74.

Another finding of the present study relates to reduced dmPFC activity in PD patients when imagining 
disorder-related scripts. The dmPFC seems to be involved in the explicit evaluation and appraisal of threat70,75–77. 
In PD patients, hypoactive dmPFC activity was found during deliberate reappraisal of negative emotions78 and 
during emotional conflict paradigms21. The findings hint at reduced resources of dmPFC recruitment during 
demanding emotional processing and reappraisal of negative emotions in PD patients. This may eventually lead 
to high anxiety levels in PD patients. Taken together, we assume that decreased vmPFC/rACC, together with 
decreased dmPFC activity during disorder-related script-driven imagery, may reflect deficient regulation of emo-
tional reactivity as well as a dysfunctional appraisal and evaluation of threat in PD patients.

Moreover, disorder-related imagery induced decreased activity in the vlPFC as well as in the dlPFC in PD 
patients relative to HC. Both dlPFC and vlPFC constitute part of a frontoparietal executive network that was 
shown to mediate intentional, explicit evaluation and regulation of stimuli57,71. Correspondingly, the vlPFC was 
related to the suppression of emotional processing of negative pictures and the resulting anxiety responses, often 
with concurrent aberrant amygdala activity in anxiety disorders as well as in healthy subjects20,79–82. With regard 
to PD, findings of a study using panic-related words in a go/no-go task showed decreased activity in the vlPFC20 
that was interpreted to indicate deficient emotion suppression functioning. Reduced vlPFC activation during 
script-driven imagery may therefore reflect dysfunctional, deliberate modulation of emotional reactivity in PD 
patients. In a similar vein, the dlPFC is assumed to regulate emotional responding to threat and to prevent exces-
sive emotional expressions57,71. In PD patients, an emotion regulation study showed that patients responded with 
decreased activation of the dlPFC during the reappraisal of threat, which may hint at emotion regulation defi-
cits83. In that respect, the present finding of reduced dlPFC activity during imagination of disorder-related scripts 
in patients is in accordance with previous findings and hints towards altered modulation of emotional responding 
in patients. It remains to note that the former fMRI pilot study on script-driven imagery in PD revealed the oppo-
site pattern with elevated instead of reduced dlPFC activity in patients24, warranting forthcoming investigations. 
Altogether, decreased lateral PFC activation in PD might indicate that PD patients may have failed to intention-
ally dampen their excessive emotional response to the imagination of disorder-related stimuli.

Range PD M (SD) HC M (SD) t-value p-value

Age in years 19–35 24.12 (4.55) 24.35 (3.37) 0.17 0.865

Years of education 10–13 12.47 (0.72) 12.59 (0.80) 0.45 0.654

HAM-A 0–56 13.29 (7.76) 0.24 (0.56) 6.92 <0.001

STAI-Trait 20–80 46.53 (8.02) 30.24 (6.97) 6.33 <0.001

BDI-II 0–63 14.29 (6.86) 1.59 (2.48) 7.18 <0.001

ASI 0–64 49.00 (12.76) 13.35 (11.01) 8.72 <0.001

PAS 0–52 21.82 (6.31) 0.18 (0.53) 14.10 <0.001

Table 3.  Demographics and questionnaire measures. Note. PD, panic disorder patients; HC, healthy controls; 
M, mean; SD, standard deviation; HAM-A, Hamilton Anxiety Rating-Scale116: <17: mild anxiety symptoms; 
STAI-T, State-Trait Anxiety Inventory117: >40: pathologically increased level of anxiety; BDI-II, Beck 
Depression Inventory118: >13–19: mild depressive. symptoms; ASI, Anxiety Sensitivity Index119: 0–64, (no 
standard value); PAS, Panic and Agoraphobia Scale103: 19–28: moderately severe PD.
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Decreased activity in response to disorder-related scripts was furthermore found in the dPCC in PD patients 
relative to HC. The PCC has been suggested to play an important role in arousal and directed attention pro-
cesses84. While increased activity of the PCC was observed in resting or passive task states85, directed attention 
on external stimuli seems to be associated with decreased PCC activity in HC86,87. Particularly the dorsal part 
of the PCC appears to be involved in detecting external stimuli that might demand a behavioural response to 
change situational conditions86. Correspondingly, decreased activity of the dPCC was observed in HC in tasks 
when a narrow focus on external stimuli was needed87. Since PD patients show a decrease in dPCC activity dur-
ing disorder-related imagery, we thus speculate that patients fostered more focused attention to disorder-related 
scripts as compared to HC.

Interestingly, several regions found to be hypoactivated in the present study (i.e., mPFC, rACC, and dPCC) 
closely correspond to the so-called default mode network (DMN)88. The DMN is a neural network system that 
mediates levels of cognitive activity, showing lower activity during specific goal-directed behaviours89. It has 
been suggested that, as a result of direct competition with other systems, focused attention on external stimuli 
is inclined to attenuate activity in the DMN85. These findings lend preliminary support for the interpretation 
that the observed brain response pattern of the present investigation may reflect a stronger attentional focus on 
disorder-related scripts in patients relative to HC.

Script-driven imagery has predominantly been used in anxiety patients in order to research fear-related threat 
responses10,24,90–95. Therefore, it proves to be difficult to ascribe certain neural activation patterns to the paradigm 
itself. Activation patterns elicited by the paradigm may overlap disorder-specific activation patterns and similar-
ities cannot be completely ruled out. Thus, results have to be carefully interpreted when it comes to draft a model 
of neural correlates specifically being involved during script-driven imagery. As mentioned before, script-driven 
imagery hitherto involved aberrant brain activation in the amygdala, insula, cingulate cortex, and the prefrontal 
cortex (PFC), as well as reduced activation of the ventromedial PFC (vmPFC). Our findings corroborate that 
script-driven imagery of threat triggers neural emotional reactivity in these structures, although not all of the sug-
gested structures showed aberrant activation. We propose therefore, particularly given the characteristics of the 
paradigm with regard to its potential impact on the DMN, that during script-driven imagery PD patients seem 
more vigilant towards possible threat, which might be mediated by the amygdala since it has been involved in the 
modulation of attention96. Attenuated activity in structures of the DMN possibly does not only mean a higher 
attentional focus on threat, but also a more intense struggle to contain control of threat responses, potentially 
mediated by the known function of the vmPFC to inhibit amygdala activation25,43,71,89.

Contrary to our hypotheses, the present study did not detect increased insula activation to disorder-related 
imagery in PD patients. This finding is surprising, since the insula is linked to interoceptive processing97,98 and 
PD patients are marked by overly sensitive attention towards interoceptive sensations7. In PD, hyperactivated 
insula was recently observed in several studies investigating emotional processing25–27. Therefore, we expected 
processing of disorder-related stimuli to evoke elevated insula activity in PD patients. Interestingly, the previous 
pilot fMRI study on disorder-related imagination in PD patients also did not reveal differential insula activity in 
PD patients relative to HC24. One reason for these findings might be that differential insula effects in PD patients 
as compared to HC are stronger in response to single highly salient threat-related stimuli25 and during specific 
emotional tasks99 as compared to a continuous script based symptom provocation as used in the present study. 
Forthcoming investigations are hence required to clarify the role of the insula during altered threat processing in 
PD depending on specific designs and task conditions.

Altogether, the findings of the current investigation may reflect that two opposed brain activation patterns 
were engaged in PD patients when exposed to disorder-related scripts: a hyperactivated pattern including the 
amygdala and the brainstem as well as a hypoactivated pattern including prefrontal and cingulate cortex regions. 
The hyperactivated amygdala-brainstem pattern may point towards hyperarousal, a hypersensitive response to 
potential threat, and a subsequent higher subjective level of anxiety in PD patients. The hypoactivated prefrontal/
cingulate cortex pattern may reflect deficient implicit and explicit emotion suppression and increased focusing 
when imagining potential threat in PD patients.

We would like to mention some limitations of the present study. Although the sample size is an improvement 
compared to the previously published imagery fMRI study in PD24, a total sample size of 34 subjects (17 HC vs. 17 
PD does still not admit a generalisation of the study results. Larger sample sizes would undoubtedly be beneficial 
not only to relate findings to interindividual differences, but also to investigate small or absent effects, such as the 
current brainstem effect, in more detail. Moreover, larger samples allow conducting whole-brain rather than ROI 
analysis, which provides stronger evidence of neural correlates of PD pathophysiology. However, several recent 
fMRI studies using imagery as a paradigm had comparable sample sizes30,39,40,92.

We also agree that medication intake poses a threat to the interpretation of study results. Thus, we explora-
tively excluded medicated patients from fMRI analysis, indicating that there was no confounding effect of med-
ication intake on the present results. This finding is in line with a recent review, stating that the influence of 
psychotropic medication on neuroimaging findings either showed no influence, or a normalising influence100.

Furthermore, the present PD patient sample had comorbidities. Comorbidities represent a possible inter-
ference factor for the interpretation of the results. Patients were therefore diagnosed by an experienced clinical 
psychologist to ensure that PD was the principle diagnosis for all patients. Moreover, PD patients frequently show 
a high prevalence of comorbidities2,101 so that including comorbid patients might even enhance external validity. 
However, it would be beneficial to investigate samples of patients free of comorbidities. Finally, future studies 
would profit from direct comparisons between different kinds of symptom provocation designs in order to better 
understand the reasons between discrepancies between different studies/designs.

Concerning brainstem findings, we have to mention that we did not use high resolution imaging and special-
ised imaging protocols to better characterize the brain stem response, so that results have to be interpreted with 
some reservations.
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To conclude, disorder-related relative to neutral scripts elicited increased amygdala and brainstem activity 
as well as decreased activity in bilateral PFC, the ACC, and the dPCC in PD patients relative to HC. Apparently, 
two opposed activation patterns were engaged in PD patients when exposed to threat: Firstly, imagin-
ing disorder-related scripts led to increased amygdala activity in PD patients, which might correspond to an 
enhanced arousal and abnormal vigilance towards threat. Elevated brainstem activation might further signify 
an increased awareness of bodily symptoms and a corresponding heightened subjective anxiety level during 
imagery of disorder-related scripts. Secondly, decreased activity in the PFC and cingulate cortex might reflect an 
increased attentional direction to threat and coincident deficient emotional regulation of threat. Altogether, both 
activation patterns might represent the neural correlates of altered threat processing during the imagination of 
disorder-related stimuli in PD patients.

Methods
Subjects.  The sample consisted of 17 PD patients (male n = 2) and 17 HC (male n = 4), matched for age, gen-
der and years of education (Table 3). All participants were right-handed and native German speakers. Participants 
were recruited through public advertisements and at an outpatient clinic. Patients met criteria for PD as the main 
diagnosis by means of the Structured Clinical Interview for DSM-IV Axis I Disorders (German version of the 
SCID)102. Furthermore, the Panic and Agoraphobia Scale (PAS) was used to confirm the diagnosis of PD103. This 
scale was used because we included PD patients with (n = 10) and without (n = 7) agoraphobia and this scale is 
characterised by high external validity (Pearson correlation coefficient r = 0.79, p < 0.0001 with psychiatrists’ 
clinical global impression of severity) and reliability (Cronbach’s a coefficient of 0.88; for further psychometric 
data see103). Exclusion criteria comprised neurological disorders, traumatic brain injury, psychotic or bipolar 
disorder, and drug abuse or dependence within the past ten years (for further sample characteristics, see Table 3). 
Comorbidities among PD patients comprised major depressive disorder (n = 2), somatization disorder (n = 2), 
dysthymia (n = 1), specific phobia (n = 1), generalised anxiety disorder (n = 2), bulimia nervosa (n = 1), obses-
sive-compulsive disorder (n = 1), and social anxiety disorder (n = 1). The final sample included three patients 
taking antidepressant medication. Informed consent has been obtained of all participants prior the experiment 
and the study was approved by the local ethics committee of the Medical Chamber Westphalia-Lippe and the 
faculty of medicine of the Westphalian Wilhelms-University of Muenster (Ethikkommission der Ärztekammer 
Westfalen-Lippe und der Medizinischen Fakultät der Westfälischen Wilhelms-Universität Münster). All experi-
mental methods were performed in accordance with relevant guidelines and regulations.

Stimuli.  Stimulus material was composed of standardised disorder-related (n = 5) and neutral (n = 5) 
scripts. All scripts lasted exactly 30 seconds. They were recorded in third person present tense. Based on the 
bio-informational theory104, our scripts included sensory representations (i.e. stimuli conceived in the context), 
information about the context of the situation (who, where, what) and representations of behavioural and physio-
logical response to the context35. The disorder-related scripts depicted panic-related situations (e.g. standing on a 
crowded platform, entering a narrow elevator) and involved suggestive descriptions of autonomic reactions (e.g. 
sweaty palms, palpitations). Neutral scripts described various everyday life situations (e.g. watching TV at home, 
reading a newspaper) and sensory information (e.g. warm water, chilly air). Scripts were tape-recorded and read 
out by a female voice in a neutral tone blind to the hypotheses of the study.

Experimental procedure.  Outside the scanner, participants received standardised instructions and listened 
to two neutral scripts via headphones during practice trials. The practice scripts were not presented during the 
actual experiment. Participants were encouraged to imagine the sceneries as detailed and multi-sensory as pos-
sible. If they were able to vividly imagine the scripts on the practice trials, the scanning procedure was started. In 
the scanner, participants were informed about the procedure by written instructions on a black screen and after 
practice trials via headphones. They were instructed to close their eyes during the imagination. A beep signal 
indicated the beginning and the end of each auditory script (400 Hz, 500 ms). The trials were pseudo-randomised 
with an inter-trial interval of 20 s. The participants were instructed to keep their eyes closed and to concentrate 
on the surrounding sounds of the scanner during the inter-trial interval. The task lasted for approximately 9 min-
utes. Upon finishing, participants had to evaluate the scripts on a 9-point Likert scale105 with regard to anxiety 
(1 = not anxiety-inducing, 9 = most anxiety-inducing), arousal (1 = not arousing, 9 = most arousing) and valence 
(1 = most unpleasant, 5 = neutral, 9 = very pleasant). Additionally, they rated their ability to imagine each script 
(ability to imagine the scripts, measured in %) (Table 1).

Analysis of sociodemographic, clinical questionnaire and rating data.  Sociodemographic, clinical 
questionnaire, and rating data were analysed using IBM SPSS software (v22, Armonk, New York, USA). Rating 
data were analysed using a mixed model analysis of variance (ANOVA) separately for anxiety, valence, arousal, 
and ability to imagine the scripts to explore within- and between-subject contrasts. A probability level of p ≤ 0.05 
was considered as statistically significant. To resolve interaction effects, Bonferroni-corrected t-tests were imple-
mented (corrected significance level p ≤ 0.008).

FMRI acquisition and analysis.  Data were collected using a 3 Tesla magnetic resonance scanner 
(“Magnetom Prisma”, Siemens, Erlangen, Germany). Before the start of the experiment, anatomical recordings of 
each participant were made, applying a sagittal high-resolution T1-weighted sequence with 192 slices. Functional 
data were collected using a T2*-weighted echo-planar sequence and comprised 260 volumes (TE = 30 ms, 
TR = 2080 ms, matrix = 92 × 92 voxels, field of view 208 mm2, flip angle 90°). Each volume consisted of 36 
axial slices (thickness 3.0 mm, 0.3 mm gap, in plane resolution = 2.26 mm × 2.26 mm). The functional data were 
analysed using Brain Voyager QX (Version 2.8; Brain Innovation, Maastricht, The Netherlands). The first four 
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volumes were discarded to warrant adequate steady-state tissue magnetization. The recordings were then cor-
rected for slice time errors and motion deviation using trilinear interpolation.

Afterwards, anatomical and functional images were co-registered to fit Talairach space106 and smoothed spa-
tially (6 mm full-width half-maximum [FWHM] Gaussian kernel) and temporally (high-pass filter: 10 cycles 
per run, low-pass filter 2.8 s; linear trend removal). The voxel-size was resampled to 2 × 2 × 2 mm for further 
statistical examination. Statistical analysis of blood oxygenation level dependent (BOLD) data consisted of mul-
tistage linear regression of the signal time course of each voxel. The signal change of each voxel in respect of the 
different predictors (disorder-related and neutral scripts) was modelled by a canonical hemodynamic response 
function (HRF) using a general linear model (GLM). Predictors of interest were the disorder-related and neutral 
scripts. Introducing and concluding sounds as well as the six motion parameters were considered as predictors 
of no interest. Z-standardised predictor estimates for the voxel-time-course were determined for each partici-
pant employing a random-effects model with adjustment for autocorrelation. Further analyses of the originated 
voxel-wise statistical maps were small-volume corrected for anatomically defined regions of interest (ROIs), 
including amygdala, insula, cingulate cortex and PFC. Based on the Automated Anatomical Labeling Atlas 
(AAL)107–109, ROIs were defined and transformed into Talairach space applying ICBM2tal110. For the brainstem, 
the ROI was downloaded from the digitised version of the Talairach atlas (http://www.talairach.org/nii/gzip/).

The ROI based voxel-level threshold was set to p < 0.005 to balance between Type I and II error rates (see 
also111), considering the realistic effect sizes in studies with patients92,112. The thresholded maps were submitted 
to an ROI-based correction criterion for multiple comparisons based on the estimate of the maps spatial smooth-
ness and on an iterative procedure (Monte Carlo simulation as implemented in BrainVoyager), which do not use 
the Gaussian random-field approach for cluster-size thresholding. It estimated the minimum cluster-size using 
10000 iterations, ensuring a false cluster-level-significance to be p < 0.05. Due to small brainstem subnuclei, no 
cluster threshold was used for brainstem activation25. Based on preceding neuroimaging studies in PD using both 
whole-brain25,55 and ROI analyses20,24,25,113,114, we restricted our analyses to homogeneous search spaces guided 
by a hypothesis-driven ROI approach. This contributes to avoid possible inflation of false-positive clusters in 
parametric analyses due to inhomogeneity of spatial smoothness and spatial autocorrelations across the whole 
brain with resulting hot spots of false positive clusters115. The datasets generated during and/or analysed during 
the current study are available from the corresponding author on reasonable request.
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