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Machine learning approaches 
reveal genomic regions associated 
with sugarcane brown rust 
resistance
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Sugarcane is an economically important crop, but its genomic complexity has hindered advances in 
molecular approaches for genetic breeding. New cultivars are released based on the identification 
of interesting traits, and for sugarcane, brown rust resistance is a desirable characteristic due to the 
large economic impact of the disease. Although marker-assisted selection for rust resistance has been 
successful, the genes involved are still unknown, and the associated regions vary among cultivars, 
thus restricting methodological generalization. We used genotyping by sequencing of full-sib progeny 
to relate genomic regions with brown rust phenotypes. We established a pipeline to identify reliable 
SNPs in complex polyploid data, which were used for phenotypic prediction via machine learning. We 
identified 14,540 SNPs, which led to a mean prediction accuracy of 50% when using different models. 
We also tested feature selection algorithms to increase predictive accuracy, resulting in a reduced 
dataset with more explanatory power for rust phenotypes. As a result of this approach, we achieved 
an accuracy of up to 95% with a dataset of 131 SNPs related to brown rust QTL regions and auxiliary 
genes. Therefore, our novel strategy has the potential to assist studies of the genomic organization of 
brown rust resistance in sugarcane.

Sugarcane is an important source of income worldwide, especially due to its efficiency in the manufacturing 
of biofuel and sugar-related products in most tropical and subtropical areas of the world1,2. Although this crop 
has great energetic potential, its breeding process has generated high genomic complexity across bred varieties, 
exceeding that of most if not all other crops3. Modern sugarcane cultivars are derived from a process of hybridi-
zation that has occurred over a century between Saccharum spontaneum ( 2n = 5x = 40 to 16x = 128; x = 8

)3,4 and Saccharum officinarum ( 2n = 8x = 80 , x = 10)3,4. S. officinarum has a more efficient process of sugar 
production but is susceptible to several biotic and abiotic stresses, in contrast to S. spontaneum, which has a low 
sucrose content but is resistant to different types of stress1,3,5. Sugarcane cultivars have unique chromosome sets 
(with numbers ranging from 80 to 130)6 with highly complex genomic organization1, a polyploid genome (with 
overall ploidy estimated to be between 6 and 14)7, a frequent occurrence of aneuploidy at the locus level depend-
ing on the number of homologous chromosomes in hybrid cultivars8, an estimated whole-genome size of 10 Gb9, 
and a high content of repetitive regions (50% of genome size)10. This complexity has challenged the efforts of 
the scientific community to unravel the genetic architecture of sugarcane in terms of the molecular mechanisms 
underlying different phenotypes, particularly efforts to detect regions of phenotype–genotype associations.

Sugarcane breeding programs are implemented with the intention of releasing new cultivars with interesting 
agronomic traits, including disease resistance11. One disease with a large impact on sugarcane yield is brown rust, 
which is caused by Puccinia melanocephala, a fungus that affects foliage and decreases the photosynthetic capacity 
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of sugarcane12,13. Brown rust infections have already caused large economic losses14–16. However, disease control 
has been shown to be successful in sugarcane breeding17, and the planting of cultivars resistant to brown rust 
is considered the most effective method of controlling this pathogen11,12. Based on comparisons of the genetic 
characteristics of the resistant cultivar R570 and other sugarcane varieties17, brown rust resistance was found to 
be a dominant trait controlled by one or a few genes11,18, with the presence of two related major genes: Bru119 and 
Bru220. Bru1 has already been employed in different breeding programs to identify resistant sugarcane genotypes5, 
using, for instance, the presence of flanking molecular markers for resistance diagnosis across cultivars12.

Although there have been several advances in understanding brown rust susceptibility in sugarcane, it is 
important to consider that pathogens may overcome the resistance of sugarcane varieties, and the use of a single 
region for resistance examination further increases the probability of vulnerability5. Therefore, the explora-
tion of novel genes could contribute to the understanding of this process and in turn overcome the problems 
associated with reliance on a single gene21. An appropriate strategy for unraveling the genetic architecture and 
genomic organization of brown rust resistance would be the use of linkage maps followed by quantitative trait 
locus (QTL) identification. However, existing methodologies for the construction of saturated linkage maps with 
high resolution are limited for aneuploid species, such as sugarcane5,22,23. Using simplification strategies based 
on the population expected segregation ratio, such as the selection of a subset of single-dose markers, leads to 
impaired linkage groups and thus compromises the identification of reliable QTLs22. A linkage map depicting 
QTLs associated with brown rust resistance has been published5, but as observed in previous studies11,24, adjust-
ments of existing methods resulted in gaps, a poorly saturated map and a large number of unlinked markers, 
mainly due to the high probability of meiotic behaviors in the cultivars and the aneuploidy of sugarcane7,22. 
Different software programs have been developed to build linkage maps for polyploids22,25–27; however, none 
address sugarcane genomic organization.

The use of Bru1 for marker-assisted selection (MAS) represents a successful application of this methodology 
in some sugarcane varieties28. However, resistance differs among cultivars, which can restrict the application 
of validated linked markers as a general tool for MAS21,28. Therefore, the identification and characterization of 
brown rust resistance genes in sugarcane have been slow14, mainly because selection approaches based on QTL 
mapping overestimate the effect of strong QTLs, while weak QTLs might not be identified29,30. In general, these 
methodologies have low power to detect rare variants with phenotypic associations31. Methodologies for address-
ing sugarcane genomic characteristics are still lacking, and because of the difficulty of accurately selecting QTL 
regions for MAS, an alternative methodology known as genomic selection (GS) has been developed to identify 
promising varieties with resistance traits and improve sugarcane breeding programs in terms of time and cost32, 33.

In general, GS is based on the creation of a predictive model for breeding values built with the entire set of 
markers using a training and a testing population. This model might be posteriorly applied in a breeding program 
to select a set of promising individuals33. In sugarcane breeding programs, the selection of superior genotypes 
might take more than 12 years34, and GS represents an alternative for improving this process, accelerating the 
breeding cycle and reducing the time needed to generate diversity31,33,35. Due to sugarcane’s genomic complexity, 
simplified predictive models involving linear regression cannot capture the unknown nonlinear characteristics 
present in these datasets31, as described for other polyploid species36–38. To address this issue, machine learning 
(ML) methodologies represent a promising approach with high accuracy31,39–41. Although GS was developed to 
address the problem of categorizing individuals using different populations, its application in biparental popula-
tions is suitable and might be highly efficient due to the significant amount of linkage disequilibrium between 
loci42, which would facilitate the initial cycles of breeding programs.

In sugarcane, the allele dosages (ADs) of a locus are frequently unknown7, which might lead to misclassi-
fied genotypes. These difficulties in genotyping a population directly impact the estimation of locus effects on 
model creation43, and this influence is more complex when using nonlinear models with more parameters to be 
estimated44. An alternative for dealing with erroneous features and additional restrictions for high-dimensional 
data is feature selection (FS). These techniques aim to reduce the number of single nucleotide polymorphisms 
(SNPs) in a data set and identify a subset of markers with higher predictive capability by removing markers 
that are irrelevant/redundant for the phenotype45. These methods are among the most powerful alternatives for 
building better generalization models46 while avoiding overfitting and the attribution of nongenetic effects to 
different markers43. With FS, it is possible to reduce marker density and build simpler and more comprehensive 
models46, thereby increasing predictive power due to the identification of phenotype-associated polymorphisms. 
A few previous studies applied ML methods to decrease the number of SNP datasets needed for phenotypic 
predictions47–49, achieving high accuracy. The identification of such a subset of putative causal polymorphisms is 
crucial for improving production in plants42 and represents a novel strategy for genomic prediction in sugarcane.

Therefore, the objectives of this research were as follows: (1) genotyping a sugarcane full-sib population using 
a genotyping by sequencing (GBS) protocol50 followed by an established bioinformatics pipeline to identify reli-
able SNPs considering the sugarcane aneuploid condition; (2) creating a ML-based strategy to establish a subset 
of SNPs with good ability to predict brown rust phenotypes; and (3) examining these polymorphic regions to 
identify genes and QTL regions. Our study provides a novel methodology that can assist in sugarcane genetic 
studies and breeding programs to establish a pipeline to infer phenotype-causative regions, which can help 
unravel sugarcane brown rust resistance molecular mechanisms and identify targets for breeding.

Material and methods
Mapping population and phenotypic characterization.  A set of full-sib progeny composed of 219 
individuals derived from a biparental cross between the elite clone IACSP95-3018 (female parent) and the com-
mercial variety IACSP93-3046 (male parent) was developed by the Sugarcane Breeding Program at the Agro-
nomic Institute of Campinas (IAC). IACSP95-3018 is a promising clone that is used in breeding programs but 
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is susceptible to brown rust. IACSP93-3046 is a variety with good tillering, an erect stool habit and resistance to 
brown rust. These parents have already been used in transcriptome51 and mapping studies24,52.

The progeny phenotyped for brown rust symptoms were planted in 2005 at the Sugarcane Breeding Center of 
the Instituto Agronômico (IAC) located in Ribeirão Preto-SP, Brazil, and again in 2011 in Piracicaba-SP, Brazil, 
in an augmented block design with five blocks, each containing 44 individuals, plots with 1-m rows and plants 
spaced 1.5 m apart. Both parents and two varieties (SP81-3250 and RB835486) were included in each replicate 
as controls. The level of brown rust infection was evaluated using a diagrammatic scale between 1 and 9, with 
larger values indicating larger percentages of leaf area infection53. In Ribeirão Preto, four evaluations were per-
formed: (1) November 2005 (plant cane), (2) January 2006 (plant cane), (3) January 2007 (ratoon cane), and (4) 
March 2007 (ratoon cane). In Piracicaba, the evaluations were conducted in December 2011 (plant cane) and 
in February 2012 (plant cane).

Phenotypic data analyses.  The phenotypic analyses of brown rust were performed using R statistical 
software54 following a statistical mixed model:

where Yijrkm is the phenotype of the ith genotype, considering the jth block, the rth replicate, the kth location 
and the mth year of harvest. The trait mean is represented by µ ; the fixed effects were modeled to estimate the 
contributions of (1) the kth location ( Lk ), (2) the mth harvest ( Hm ), (3) the jth block at the kth location and in 
the mth harvest ( Bj(km) ), and (4) the interaction between the kth location and mth harvest ( LHkm ). The random 
effects included genotype G and the residual error e, representing nongenetic effects.

The residual distribution was evaluated using quantile–quantile (Q-Q) plots together with a Shapiro–Wilk 
normality test (p-value < 0.05). We also tested normalized values of the brown rust trait created with the R 
package bestNormalize55. To analyze the contribution of genotype to phenotype, we used best linear unbiased 
predictions (BLUPs) calculated based on the mixed model described above using the R package breedR v.0.1256. 
Heritability ( H2 ) was estimated as H2 = σ 2

g /σ
2
p  , where σ 2

g  is the genetic variance and σ 2
p  is the phenotypic vari-

ance (genetic, environmental and residual variances).
With these predictions, cluster analysis was performed with the BLUP values. We used complete hierarchical 

clustering based on pairwise Euclidean distances for visual inspection. The number of appropriate clusters was 
identified using the K-means algorithm together with (1) the within-cluster sums of squares and (2) the average 
silhouette width of clusters, implemented in the R package factoextra v.1.0.657. To evaluate the differences among 
the phenotypic rust groups, we used T-tests of the BLUPs and original values.

Library preparation and sequencing methodology.  Total genomic DNA samples from parents and 
180 progeny were extracted from leaf roll using the CTAB protocol58. Genome complexity was reduced via the 
PstI restriction enzyme for library preparation50. We constructed two 9648-plex libraries from the population 
consisting of a single sample of each individual, two replicate samples of each parent and one blank sample. Five 
sequencing runs were performed with the Illumina GAIIx (one in 2015) and Illumina NextSeq (four in 2017 
divided into two groups, which were sequenced twice) systems.

Quality filtering and demultiplexing.  PhiX sequences were removed from GBS reads through align-
ments of raw reads against the PhiX genome using BLASTn59. Reads resulting in a minimum percent identity of 
90% and e-value of 0.01 against PhiX regions were filtered out60. FASTQC61 was used for the initial visualization 
of nucleotide distributions and their respective qualities, and FastX-Toolkit scripts62 were employed to obtain 
90-bp reads with a minimum of 80% of bases with a Q greater than 20. Sample demultiplexing was also per-
formed using the FastX-Toolkit62.

Read alignment and reference evaluation.  We used the BWA-MEM version 0.7.1263 and Bowtie2 ver-
sion 2.3.3.164 algorithms to align the filtered reads against the following references: (1) the methyl-filtered (MF) 
genome of sugarcane cultivar SP70-114365, (2) the sorghum genome from Phytozome v.1366, (3) a sugarcane leaf 
transcriptome51, (4) the draft genome of the hybrid SP80-328067, (5) the monoploid genome of the R570 variety3, 
(6) the S. spontaneum genome split into four subsets on the basis of the allele-defined genome, and (7) sequences 
from the sugarcane expressed sequence tag project (SUCEST)68.

The performance of each mapping software tool was evaluated according to the percentage of uniquely 
mapped reads. The individual number of uniquely mapped reads across the population was also analysed and 
assessed using an alluvial plot for visualization. Individuals with small numbers of reads and high discrepancies 
with most others (at least a decrease of 70% in the number of reads) were not considered for further analysis. 
In order to identify the most appropriate reference for SNP calling in sugarcane, we examined the following 
aspects together: (1) the quantity of uniquely mapped reads; (2) the profiles of sequencing depth across loci; (3) 
the contiguity of consensus sequences obtained through the read alignments; (4) the capability to comprise the 
largest amount of consensus sequences formed by the other references; and (5) the number of SNPs identified.

For (1), we used the results from the most promising mapping tool. SAMtools version 1.669 was used to obtain 
the profiles of sequencing depth across loci69 in order to examine (2). The consensus sequences (contigs) formed 
by mapping reads to the different references were retrieved using Stacks version 2.370, and, for aspect (3), we cal-
culated traditional assembly metrics (number of contigs, largest contig, total length, quantity of ambiguous bases 
(Ns) per 100 kbp, N50/75 and L50/L75) for all the contigs separated by reference using QUAST version 5.0.271. 
An evaluation of the raw reference sequences was also performed using QUAST version 5.0.2. Additionally, for 

Yijrkm = µ+ Lk +Hm + LHkm + Bj(km) + Gi(km) + eijrkm
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(4) all contigs were evaluated on the basis of their similarity to the consensus sequences of the other possible 
references. All correspondences were counted, taking into account the quantity of related contigs. These align-
ments were obtained through BLASTn59 with stringent parameters to examine real redundancies (a minimum 
e-value of 1e−30, a minimum percent identity of 95% and coverage of at least 75% in the query sequence). We 
also used the R package circlize72 to visually inspect these redundancies.

SNP calling and ploidy evaluation.  For the last step of reference comparison, we executed the Tassel4-
POLY73,74 and Stacks version 2.370 pipelines. We evaluated raw SNPs by comparing them to a dataset with a filter 
criterion of a maximum of 25% of missing data per locus, considering individual genotypes without a minimum 
count of 50 reads as missing data.

Together with the Tassel and Stacks results, the best selected reference was used to identify variants through 
the Haplotype Caller algorithm implemented in Genome Analysis Toolkit (GATK) version 3.775, SAMtools 
version 1.669 and FreeBayes version 1.1.0-376. We created a common dataset to be processed by these tools, 
establishing a pre-processing pipeline according to GATK best practices75. From the mapping results, uniquely 
mapped reads were selected using SAMtools version 1.669, and with Picard Toolkit77, the following steps were 
performed: (1) the mapped files from different sequencing experiments were joined into one file per individual; 
(2) read duplicates were marked; and (3) read group information was added to different files. To produce more 
accurate results, we used GATK version 3.775 to realign indels and SAMtools version 1.669 to convert mapping 
formats. Putative SNPs were called using the three different tools and different ploidy configurations with GATK 
and FreeBayes (even ploidies ranging from 2 to 20). We selected the identified SNPs and evaluated these variants 
with respect to the quantity of missing data.

Final SNP‑set selection and ploidy evaluation.  Using the R package VennDiagram v.1.6.2078, a Venn 
diagram was created to evaluate the intersection between SNPs identified by the callers and those identified 
by the selected reference. Indels were not used for further analyses. Due to sugarcane aneuploidy at the locus 
level, we genotyped the individuals on the basis of SNP allele proportions, i.e., the ratio between the number of 
reads for the reference allele and the total number of reads. To increase the reliability of our results, we selected 
markers called by Tassel and at least one other caller with a minimum count of 50 reads per individual and a 
maximum of 25% missing data.

SuperMASSA79 and the VCF2SM pipeline73 were used to estimate the ploidy levels at different loci. Quan-
titative allele intensities at each locus were estimated for individuals based on read depth73. These values were 
used to estimate locus ploidies (ranging from 2 to 20). We used the F1 model for population structure due to the 
usage of a biparental population and did not restrict the posterior probability threshold to capture and analyze 
all possible configurations produced by the statistical estimate. We also defined the most probable set of loci 
with a posterior probability greater than 0.8 given the selected ploidy (6 through 14). We compared through 
treemaps the ploidies estimated for the final dataset of SNPs and for the possible false positives eliminated using 
the proposed approach.

Machine learning strategies.  Using the identified SNPs as ADs and allele proportions (APs), eight ML 
algorithms were tested to check their ability to predict the phenotypic rust groups. Missing data were imputed as 
the means. We tested K-nearest neighbor (KNN)80, support vector machine (SVM)81, Gaussian process (GP)82, 
decision tree (DT)83, random forest (RF)84, multilayer perceptron (MLP) neural network85, adaptive boosting 
(AB)86, and Gaussian naive Bayes (GNB)87 implemented in the scikit-learn v.0.19.0 Python v.3 module88. As a 
cross-validation strategy, we used a stratified K-fold (k = 4) repeated 100 times for different data configurations. 
We evaluated the following metrics: (1) accuracy (proportion of correctly classified items), (2) recall/sensitivity 
(items correctly classified as positive among the total quantity of positives), (3) precision (items correctly clas-
sified as positive among the total items identified as positive), and (4) specificity (items classified as negative 
among the total negative items). The area under the receiver operating characteristic (ROC) curve (AUC) was 
also calculated for each model and plotted using the Matplotlib v.2.0.2 library89 with Python v.3.

We also tested FS techniques implemented in the scikit-learn Python v.3 module88. We tested the following 
approaches to obtain feature importance and create subsets of the marker data: (1) gradient tree boosting (FS1)90, 
(2) L1-based FS through a linear support vector classification system (FS2)81, (3) extremely randomized trees 
(FS3)91, (4) univariate FS using ANOVA (FS4), and (5) RF (FS5)84. The best genotyping approach for predicting 
brown rust phenotypic groups was selected by analyzing each prediction measure and counting the percentage 
of models with the best performance when using ADs or APs in the different established dataset configurations 
(all the SNPs and the datasets estimated through FS1, FS2, FS3, FS4, and FS5). For evaluating the prediction 
capability of each FS technique, we combined the calculated metrics with statistical approaches.

On the evaluation metrics (accuracy, recall, precision and specificity) for each subset of identified mark-
ers (FS1, FS2, FS3, FS4 and FS5), we performed a Shapiro-Wilk normality test (p-value < 0.01) and identified 
confidence intervals for means (95%, 99% and 99.9% confidence) using the gmodels v.2.18.1 R package92 for 
parametric data and a Wilcoxon test for nonparametric data. We assessed the capability of each FS technique to 
exceed the confidence intervals for each metric in order to select the most promising strategies. Additionally, 
for comparing the predictive profiles, we tested the differences in these metrics between the selected FS meth-
ods using ANOVA and multiple comparisons by Tukey’s test implemented in the agricolae v.1.3-1 R package93. 
With the most promising strategies identified, we also evaluated the intersection of these datasets using the R 
package VennDiagram78.
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Functional annotation.  From the SNPs identified by the most promising FS technique, we selected the ref-
erence positions to which they belonged and extracted the respective region. To check the distribution of these 
SNPs in the Bru1 region, we selected nine bacterial artificial chromosomes (BACs) from the sugarcane cultivar 
R570 that were previously described as belonging to regions containing Bru194. These BACs were retrieved from 
the GenBank database95. We performed comparative alignments of the nine BACs and the selected reference 
sequences against S. spontaneum1 coding DNA sequences (CDSs) using BLASTn59 with the following param-
eters: a minimum e-value of 1e−30, a minimum percent identity of 95% and coverage of at least 75% in the query 
sequence. The distribution of these regions among S. spontaneum chromosomal regions was inferred using the 
karyoploteR package96.

We created a dataset with CDSs extracted from Phytozome v.1366 for fourteen different species from the 
Poaceae family (Brachypodium distachyon, Brachypodium hybridum, Brachypodium silvatium, Hordeum vulgare, 
Oryza sativa, Oropetium thomaeum, Panicum hallii, Panicum virgatum, Sorghum bicolor, Setaria italica, Setaria 
viridis, Triticum aestivum, Thinopyrum intermedium and Zea mays) and Arabidopsis thaliana. Selected S. sponta-
neum CDSs were aligned against this dataset, enabling the identification of correspondence with Gene Ontology97 
(GO) categories and Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthologies98 (KOs). All identified 
GO categories were used to create a treemap to visualize possible correlated categories in the dataset caused by 
identified regions using FS and BAC correspondence. This step was performed using the REVIGO tool99.

Results
Phenotypic analyses.  The brown rust phenotypic dataset was analyzed as described in Section 2 (Sup-
plementary Figs. S1–S6) of the Supplementary Information (SI). Using the phenotypic mixed model created, we 
obtained a heritability of approximately 60%. Through the established statistical analysis procedures, we identi-
fied two different phenotypic groups, which were used for association analyses. These groups presented high 
divergence in scores, and the individuals were classified as belonging to the “resistant” group or the “susceptible” 
group.

Genotyping process.  Raw GBS data quality control (Supplementary Tables S1 and S2), read alignment 
(Supplementary Table S3 and Supplementary Fig. S7), reference evaluation (Supplementary Tables S4–S9 and 
Supplementary Fig. S8) and SNP calling (Supplementary Tables S8–S11) were performed as described in the 
SI. The selected mapping tool was BWA, as it allowed the identification of a larger quantity of uniquely mapped 
reads. We considered the MF genome the most appropriate reference for SNP calling with our GBS dataset; 
this choice was made because this reference provided the largest percentage of uniquely mapped reads (Sup-
plementary Table S3), the most consensus sequences and respective profiles (Supplementary Tables S4 and S5), 
the greatest sequencing depth at different mapping positions (Supplementary Table S6), the greatest ability for 
its consensus contigs to represent the majority of the other reference consensus sequences (Supplementary 
Table S7), and the largest quantity of SNPs identified using Tassel and Stacks (Supplementary Tables S8 and S9). 
The SNP calling process performed with the different tools and MF reference resulted in different quantities of 
markers, as described in the SI. The quantity of SNPs can be observed in Table 1.

The intersections between SNPs found with different tools can be visualized in Fig. 1. A total of 13,458 SNP 
markers were found by all used callers. However, when applying a reasonable filter for locus depths (minimum 
count of 50 per individual) and missing data (maximum of 25%)23, this quantity decreased to 2284. Although 
this approach of selecting intersecting SNPs enables the definition of a highly stringent set, the quantity of false 
negatives will also be high. To establish a reasonable approach for SNP identification in sugarcane, we selected 
the most probable SNPs as the variants found with Tassel and at least one other caller. With this approach, we 
found 88,395 SNPs (eliminating 49,362 possibly false-positive SNPs uniquely identified by Tassel). After applying 
filters based on missing data and read depth, we obtained a final set of 14,540 SNPs (eliminating 4341 question-
able SNPs among 18,881 markers that would have been obtained using Tassel as a unique tool together with 
the described filters). These datasets were used to evaluate possible ploidy configurations using SuperMASSA 
software. This evaluation was performed on (I) 14,540 SNPs representing our final set of markers and (II) 4341 
SNPs representing the most likely false-positive SNPs.

Separating SuperMASSA posterior probabilities into three categories (A, B and C) based on their reliability 
(Fig. 1) classified a considerable number of SNPs as having a specific ploidy with high confidence. However, 
the first set with 14,540 SNPs included variants with ploidies more similar to those expected for sugarcane (6 to 
14)7 compared with the second one with 4341 SNPs. The majority of SNPs in the second set were classified as 

Table 1.   Final SNP sets obtained using the methyl-filtered (MF) genome of sugarcane cultivar SP70-1143 
reference together with the GATK, SAMtools, FreeBayes, Tassel and Stacks SNP callers.

SNP caller Raw SNPs Biallelic SNPs

Tassel 135,979 135,594

Stacks 106,881 106,881

GATK 61,023 60,338

SAMtools 353,715 349,574

FreeBayes 72,391 71,999
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having a ploidy of 20, representing doubtful regions with chances of duplication events and low-quality data7. 
Therefore, this group of putative molecular markers with higher reliability provided better results in terms of 
estimated ploidies.

Phenotype–genotype associations.  To understand the genotypic associations with different brown rust 
phenotypes more generally, we chose to perform genotype-phenotype analyses with the phenotypic rust groups 
identified in the clustering analysis. We performed these tests using two different approaches for genomic pre-
diction: ADs obtained with SuperMASSA (ploidy range between 6 and 14 and posterior probability greater than 
or equal to 0.8) and APs calculated based on Tassel output for read counts. With these two different datasets, the 
FS techniques were applied and generated different sets of SNPs (Table 2).

These SNPs were used to predict the phenotypic rust groups using the eight selected ML algorithms in the 
proposed cross-validation scenario (described in SI in Supplementary Tables S12–S17). The performance of APs 
was superior to that of ADs for all evaluated metrics (Supplementary Table S18). In almost 73% of the tests with 
different algorithms, the usage of APs was equal or superior to that of ADs. Although there were some discrepan-
cies across models and between FS subsets, we observed better use of sugarcane GBS data with APs. In addition, 
the quantity of SNPs discarded to obtain favorable ADs in sugarcane was almost 64%. Therefore, we considered 
the analysis of APs better than ADs for the task of GP.

The capability of predicting brown rust phenotypic groups was quite different among the created scenarios. 
Using the entire dataset, the overall accuracy was near 50%, showing the models’ inefficiency in capturing the 
real SNP effects. The KNN model presented an accuracy of almost 70% but with a very small value of specificity 
(0.23%), thus proving its inefficiency in predicting these phenotypes when using the entire set of SNPs. With FS 
techniques, these values increased but still presented differences between the selected methods. To evaluate the 
best FS techniques with which to increase predictive capabilities, we determined confidence intervals for all met-
ric means (accuracy, recall, precision and specificity), as shown in Supplementary Table S19. Then, we counted 
the quantity of measures that exceeded the superior boundaries. FS1, FS2 and FS4 had the best performance, as 

Figure 1.   Figures (I) and (II) present ploidy estimates calculated through SuperMASSA highest posterior 
probabilities considering all the even-numbered ploidy levels within a range from 2 to 20. These mosaic plots 
are based on the intersection of identified SNPs between Tassel and at least one other tool (I) and Tassel-
filtered SNPs not present in the intersection (II). Rectangle size represents the proportion of SNPs for a specific 
ploidy, separated into categories A, B and C, which were determined based on posterior probability ranges 
(A represents probabilities larger than or equal to 0.8, B represents probabilities between 0.5 and 0.8, and C 
represents probabilities smaller than 0.5). In (III), a Venn diagram of SNPs called using the methyl-filtered (MF) 
genome of sugarcane cultivar SP70-1143 reference together with the GATK, SAMtools, FreeBayes, Tassel and 
Stacks tools is shown.

Table 2.   Quantity of SNPs selected by the feature selection (FS) techniques when using allele proportions 
(APs) and allele dosages (ADs).

Method SNPs (AD) SNPs (AP)

Total SNP dataset (All) 5224 14,540

Gradient Tree Boosting (FS1) 283 345

L1-based Support Vector Classification (SVC) System (FS2) 135 140

Extra Trees (FS3) 1991 2595

F statistic from ANOVA (FS4) 327 922

Random Forests (FS5) 1345 1253
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described in the SI (Supplementary Tables S20–S23). Furthermore, we analyzed the distributions and similari-
ties of these metrics. The accuracy distribution is shown in Fig. 2, and the other distributions are shown in the 
SI (Supplementary Figs. S9–S12). FS3 and FS5 clearly did not allow a substantial increase in these performance 
measures. The maximum values in the boxplots for FS3 and FS5 are close to the medians of FS1, FS2 and FS4. In 
addition, considering that multiple comparisons by Tukey’s test grouped F3, F5 and the initial dataset together, 
we can conclude that these techniques did not enable substantial improvement in accuracy. Analyses of the other 
metrics also showed better performance of FS1, FS2 and FS4 than of the other datasets, including FS3, FS5 and 
the entire set of SNPs. Due to these findings, we considered FS1, FS2 and FS4 the most promising methodologies 
for detecting variants with high predictive capabilities.

The FS1, FS2 and FS4 methods identified different variants in different scaffolds. However, there were inter-
sections between these sets (Fig. 2), which we decided to evaluate. We tested all selected ML algorithms using 
the intersection between at least two strategies (Inter 2), which corresponded to 131 SNPs, and the intersection 
between the three strategies (Inter 3), which corresponded to 6 SNPs. The results obtained using Inter 3 did not 
increase the metric values of the FS techniques; however, they were far superior to the initial results obtained 
with the entire dataset (approximately 41% larger), as described in the SI (Supplementary Table S24). Inter 2, 
however, showed the highest predictive capabilities (Table 3), suggesting that these variants have a greater prob-
ability of being associated with brown rust phenotypes.

The tested ML models had different capabilities of separating the phenotypic groups, and these capabilities 
changed depending on the dataset used. In addition to using the previous metrics, we chose to evaluate model 
performance using ROC curves and the respective AUCs. All of these plots are shown in the SI together with 
the AUC values (Supplementary Figs. S13–S20). We evaluated two different configurations to consider a model 
with reasonable predictive performance: (A) AUC ≥ 0.8 and (B) AUC ≥ 0.9% . For (A), we identified AB, GNB, 
GP and MLP as the most promising models when using the FS1, FS2 and FS4 techniques. When using the entire 
dataset and FS3, there were no significant changes in performance under (A). GNB was the best model for FS5; 
GNB and RF were the best models for Inter 3; and KNN, GP, RF, MLP, AB and GNB were the best models for 
Inter 2. This first configuration enabled identification of the Inter 2 FS technique as the most appropriate for the 
creation of stable models using ML strategies. The performance of the built models based on Inter 2 is shown 
by ROC curves in Fig. 3 and contrasted with the results for the entire dataset. For (B), the entire dataset, FS3, 
FS5 and Inter 3 did not have AUC values exceeding 0.9, supporting the exclusion of FS3 and FS5 as interesting 

Figure 2.   (a) Accuracy distribution obtained using the different datasets of SNPs as allele proportions for the 
machine learning approaches separated by feature selection (FS) strategy and colored based on the groups 
identified with multiple comparisons by Tukey’s test (ANOVA p-value of 0.000000000000455). The entire 
set of SNPs is represented by All and FS techniques by FS1 (gradient tree boosting), FS2 (L1-based support 
vector classification system), FS3 (extra trees), FS4 (F statistic from ANOVA), and FS5 (random forests). (b) 
Intersection of SNPs selected from FS1, FS2 and FS4. (c) Intersection of scaffolds from the methyl-filtered (MF) 
genome of sugarcane cultivar SP70-1143 selected from FS1, FS2 and FS4.
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for detecting phenotype-associated variants. GNB was the best model for FS1, and GP, MLP and GNB were the 
best models for FS2, FS4 and Inter 2. Thus, we considered GP, MLP and GNB the best models for predicting the 
brown rust phenotypic groups. The ROC curves for these three algorithms and the different subsets are provided 
in the SI (Supplementary Figs. S21–S23). The best AUC values were (I) MLP: 0.99 for Inter 2 and 1.00 for FS2, (II) 
GNB: 0.98 for Inter 2 and 0.96 for FS2, and (III) GP: 0.98 for Inter 2 and 0.98 for FS2. This finding supports the 
hypothesis of an association between Inter 2 regions and brown rust phenotypes. On the basis of these results, we 
suggest that the identification of intersections between FS1, FS2 and FS3 might be an appropriate methodology 
for both GP and the identification of regions associated with brown rust phenotypes.

The last analysis that we performed to test whether this methodology was a promising strategy was an evalu-
ation of the genomic regions where the selected variants were located. For this step, we used S. spontaneum 
CDSs corresponding to (A) 9 selected BACs related to Bru1 QTL regions and (B) 146 MF scaffolds identified 
as important by at least two methods. We identified 373 CDSs using (A) and 240 CDSs using (B). All BACs of 
(A) had correspondences, and nine scaffolds of (B) did not have relevant alignments. As there was only one 
CDS in common between (A) and (B), we evaluated the chromosomal location of these CDSs considering the 
S. spontaneum genomic reference, which is presented in the SI (Supplementary Fig. 24). Notably, regions where 
these CDSs were located were spread throughout the genome. However, nearly all CDSs identified in (B) were 
close to CDSs identified in (A), suggesting linkage disequilibrium between these regions due to chromosomal 
proximity. Additionally, to understand whether these genomic regions have similar impacts on biological pro-
cesses, we performed enrichment analysis using the GO categories of these two groups (Fig. 4). We found 148 
different GO categories in (A) and 100 in (B), with 50 GOs in common. The other 50 categories identified for 
only the selected variants can be found in the SI (Supplementary Fig. S25); there were four main categories: (I) 
sphingolipid metabolism, (II) DNA topological change, (III) nitrogen compound transport, and (IV) phosphati-
dylinositol-mediated signaling.

In relation to metabolic pathways, we selected the S. bicolor KEGG correspondences for each CDS and also 
separated these findings into groups (A) and (B). The complete discrimination of the identified pathways is shown 
in the SI. We found 41 associated pathways in (A) and 29 in (B), with 16 in common between these groups. As 
expected, there was an elevated number of common biological cascades that might be influenced by these regions. 
The specific pathways found exclusively in group (B) were monoterpenoid biosynthesis, phenylpropanoid bio-
synthesis, the pentose phosphate pathway, sulfur metabolism, other glycan degradation, fatty acid elongation, 
basal transcription factors, ubiquitin-mediated proteolysis, various types of N-glycan biosynthesis, tryptophan 
metabolism, sphingolipid metabolism, carbon metabolism and N-glycan biosynthesis.

Table 3.   Predictive performance of machine learning (ML) strategies when inputting SNPs as allele 
proportions selected by the intersection of at least two of the three (Inter 2) best feature selecion (FS) 
techniques, which were gradient tree boosting (FS1), L1-based support vector classification system (FS2) and 
F statistic from ANOVA (FS4). The mean values of Inter 2 were compared with the mean performances of the 
entire set of SNPs (All), the individual FS approaches, and the intersection of all the three methods (Inter 3). 
The tested machine learning (ML) models were adaptive boosting (AB), decision tree (DT), Gaussian process 
(GP), K-nearest neighbor (KNN), multilayer perceptron (MLP), Gaussian naive Bayes (GNB), random forest 
(RF), and support vector machine (SVM).

Performance

Accuracy Recall Precision Specificity

Machine learning model

AB 79.70 80.71 88.84 77.43

DT 64.71 64.84 80.23 64.43

GP 91.54 93.18 94.49 87.91

KNN 77.61 98.43 76.12 31.26

MLP 94.93 94.53 98.05 95.81

GNB 92.04 91.17 97.12 93.98

RF 72.29 67.15 90.19 83.74

SVM 87.29 84.44 96.73 93.64

Means

Mean all 51.14 47.77 71.37 57.24

Mean FS1 77.80 80.54 86.89 72.94

Mean FS2 82.01 89.60 86.70 76.69

Mean FS4 77.61 86.67 85.80 74.75

Mean Inter 2 83.50 87.81 92.34 85.83

Mean Inter 3 72.28 72.77 84.90 71.18
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Discussion
The organization of the sugarcane genome greatly challenges genetic studies of this species, and alternative 
approaches must be employed to overcome these difficulties. Here, we developed a novel strategy to address 
sugarcane genomic specificities and enable the identification of genomic regions related to brown rust resist-
ance through the evaluation of ML predictive performance. The sequencing method, SNP detection process 
and phenotypic associations were designed to fit these singularities. Sugarcane brown rust susceptibility was 

Figure 3.   Receiving operating characteristic (ROC) curves showing the performance of the 8 machine learning 
(ML) strategies when using (a) the entire dataset of SNPs (14,540 SNPs) or (b) the SNPs shared by the feature 
selection (FS) techniques gradient tree boosting (FS1), L1-based support vector classification system (FS2) and 
F statistic from ANOVA (FS4) (131 SNPs). The tested ML models were adaptive boosting (AB), decision tree 
(DT), Gaussian process (GP), K-nearest neighbor (KNN), multilayer perceptron (MLP), Gaussian naive Bayes 
(GNB), random forest (RF), and support vector machine (SVM).
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previously studied and applied in sugarcane breeding programs28; however, there is still a gap in the characteriza-
tion of the wide range of genes involved in the process of infection and how different genomic polymorphisms 
can influence this phenotype. The adjustments performed on these analyses showed reasonable results, and the 
identification of these possibly phenotype-causative regions can help unravel sugarcane brown rust resistance 
molecular mechanisms and the selection of targets for breeding.

First, due to the diversity of rust scores (1–9), the variation in rust phenotypes within populations and the 
qualitative nature of rust phenotypes, we decided to use the two groups identified by the BLUP clustering analy-
sis instead of the raw scores. We were interested in finding markers and genomic regions related to brown rust 
resistance, and the establishment of these two major groups enabled the identification of resistance categories in 

Figure 4.   Treemaps plotted based on Gene Ontology (GO) categories identified in (a) S. spontaneum coding 
DNA sequences (CDSs) corresponding to bacterial artificial chromosome (BACs) sequences related to brown 
rust QTLs and (b) S. spontaneum CDSs corresponding to the scaffolds with the SNPs selected by the proposed 
methodology of combining feature selection techniques.
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the population. As previously described, these phenotypic rust groups presented a high level of differentiation 
in rust scores, and this contrast in susceptibility may aid in the identification of the most promising plants for 
sugarcane breeding programs. In addition, the establishment of these groups allowed the use of a wide range 
of ML strategies.

In relation to the sugarcane genotyping process, different approaches have been adopted by the scientific 
community to reduce the genomic complexity of sugarcane and utilize a limited amount of information. Song 
et al.100, for example, designed different probes using in silico approaches. The resulting regions were posteriorly 
adopted in other studies101–104 due to the large quantity of markers with sufficient sequencing depth located in 
genic regions. Another approach is GBS5,23,28,105–107, which is the preferred genotyping method for plants with 
some degree of genomic complexity23,108 mainly due to its simplicity, reproducibility and considerable genome 
coverage109. In addition, regulatory regions controlling different phenotypes are often located in noncoding 
DNA, and GBS allows the amplification of such regions50. Herein, we decided to use GBS to obtain a broader set 
of genomic regions with their respective probabilities of correspondence with rust resistance.

Sequencing reads are generally organized by using the S. bicolor genome for comparative alignments and 
the subsequent identification of putative variants with bioinformatic methods. This reference choice is due to 
sorghum’s phylogenetic proximity to sugarcane5,28,105–107 and, in some cases, probe experimental design100–104. 
Despite sorghum’s genome usage, the availability of sugarcane pseudoreferences has provided new genomic tools 
for scientific research as initially explored by Balsalobre et al.23, who used the sorghum genome, a sugarcane MF 
genome65, a sugarcane leaf transcriptome51 and SUCEST tags68. However, new sugarcane genomic resources are 
now available, such as the draft genome of the cultivar SP80-328067, the monoploid genome of the R570 variety3 
and the genome of the AP85-441 S. spontaneum cultivar1, which are phylogenetically closer to current sugarcane 
cultivar resources than are sorghum resources. Therefore, there is a need to explore these new references and 
check their appropriateness. As there are no previous reports of the usage of these novel references together with 
sugarcane GBS data, we decided to test them in order to identify the most appropriate reference.

Although GBS allows a reduction in genomic complexity, we must consider sugarcane singularities to establish 
an analysis pipeline. In GBS experiments, the consensus of read clusters at cutting sites could be adopted as a 
reference in cases where there is no appropriate sequence to use50. However, genome assembly is a difficult task 
when dealing with repetitive regions and polyploids110. With the aim of reducing possible biases, we decided 
not to use de novo approaches, which were previously described as inappropriate for sugarcane GBS data105.

In our study, the combination of BWA and MF scaffolds had the best performance for GBS data. BWA was 
previously reported as a sensitive tool for aligning sugarcane reads and retaining a large number of uniquely 
mapped sequences100. In terms of MF performance, this may be explained by the experimental procedures of 
MF sequencing and GBS library preparation. GBS library construction is based on the selection of a subset of 
genomic regions using methylation-sensitive restriction enzymes, which avoid repetitive regions50. To select our 
GBS regions, we used the enzyme PstI, which is a methyl-sensitive restriction enzyme, to select hypomethylated 
DNA111. Similarly, the MF genome was obtained through a process of sequencing where genomic regions were 
also selected based on hypomethylation65. This approach generated high compatibility between our data and 
the genomic reference, as observed in the comparative alignments and previous reports23. Although there have 
been great advances in understanding the sugarcane genome since the S. spontaneum genome became available, 
we decided to perform our analyses using the sugarcane MF genome to capture the most probable markers and 
establish a criterion based on data appropriateness. This genomic reference is still at the scaffold level, but as 
shown in this study, there is a high rate of redundancy among consensus sequences obtained through GBS data 
alignments with the different references. Due to this observed redundancy, we chose not to use all of the refer-
ences. In addition to adding redundant markers, it is important to note that these different consensus contigs built 
based on different references can lead to different alignments of GBS data. These alignments may in turn produce 
different organizational profiles of read alignments and divergent SNPs. Therefore, we selected the most refer-
ence with the best usage of the amount of GBS data as the most appropriate and analyzed the respective SNPs.

A wide range of SNP callers are available. Tassel was developed to handle GBS data and has been widely 
applied to species with different genomic organizations. Although this tool enables the identification of many 
SNPs, it was previously described as insufficiently accurate to be used alone112. Thus, to increase the reliability 
of our data, we decided to use other SNP callers (GATK, FreeBayes, SAMtools and Stacks) in combination with 
Tassel, as the usage of SNPs identified by more than one caller is more reliable than the usage of SNPs identified 
by only one caller113. The intersection between the SNPs identified by at least two tools was established to increase 
the accuracy of these variants without substantially increasing the number of false negatives. In addition, Tas-
sel was used due to its targeted development for GBS data and preprocessing steps. The Tassel workflow keeps 
read depths unchanged between the initial mapping and the final data generated for the identified genotypes. 
In sugarcane, this information is necessary to estimate ADs or calculate APs. Using this intersection approach, 
we identified the final set of SNPs to be used for our association analyses. Indels, however, were not selected. 
These variants identified by in silico strategies do not provide reliable information, showing elevated divergence 
between the existent callers and a probability of producing spurious variants114.

Using this approach, we found 14,540 putative SNPs. With these regions, we tested two different strategies 
for genotyping the population at these loci: (1) the usage of ADs estimated with SuperMASSA and (2) the usage 
of APs calculated based on Tassel output. For SuperMASSA estimations, we kept only SNPs with an estimated 
ploidy between 6 and 14 (minimum posterior probability of 0.8) due to sugarcane genomic configurations7,23. 
However, sugarcane aneuploidy together with the common occurrence of duplication events might have influ-
enced the process of estimating locus ploidies and, in turn, the process of categorizing the related dosages through 
the established filters. In addition, 64% of the identified SNPs were discarded when using this approach for 
obtaining dosages. Because we would not need to calculate chromosomal distances between loci for linkage map 
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construction, the elevated loss of markers and the reduced performance of ADs in the task of genomic prediction, 
we decided to continue our analyses with APs. Previous tests of this approach yielded reasonable results101,102,104.

After establishing the bioinformatics pipeline for identifying and evaluating these regions, we studied the 
influence of SNP subsets identified by FS techniques on the task of predicting phenotypic rust groups. The 
amount of data generated by high-throughput sequencing technologies115 represents a challenge in genomic 
prediction, particularly due to the difficulty of working with high-dimensional datasets, i.e., the ’large p, small 
n’ problem116. This increase in the amount of available information makes the task of directly applying these 
marker data in genomic analyses more difficult and necessitates appropriate preprocessing steps117. In this study, 
we proposed the use of FS techniques to select a smaller set of SNPs with more predictive power than the entire 
dataset and closer associations with the brown rust phenotype to assist the identification of regions associated 
with disease status. This can be considered quite advantageous in the context of genomic selection because the 
identification of a subset of markers allows a reduction in sequencing costs49. In addition, it has already been 
demonstrated that for genomic selection, a selected reduced number of SNPs has reasonable reliability49,118,119.

The identification of markers related to this phenotype using FS is based on these techniques to provide an 
interpretable model due to the close relation between trait and genotype; i.e., using the subset of high-density 
markers might help elucidate the regions most likely to be involved in phenotypic differentiation120. This strategy 
of selecting a subgroup of SNPs with higher predictive power and closeness to the predictive class has already 
been employed in different contexts48,121,122. In this study, we tested five different strategies and found three 
promising alternatives for executing this methodology. FS1, FS2 and FS4 substantially increased the models’ 
capabilities of predicting the phenotypic groups as demonstrated in this paper. We believe that this increase in 
predictive power is due to the identification of regions influencing the phenotype, possibly in QTLs or regulatory 
genomic elements. As a final strategy for the prediction and selection of these associated regions, we suggest 
the use of the intersection of these three techniques. This approach enabled the creation of more stable models 
using different ML algorithms and better accuracies for predicting these phenotypes.

Corroborating this hypothesis, we also found that most of the identified regions containing these SNPs were 
associated with QTLs with known biological functions, and there were also additional categories known to be cor-
related with rust resistance. Through comparative alignments between MF scaffolds and S. spontaneum CDSs, we 
identified these regions and compared them with CDSs correlated with BACs developed based on Bru1 regions. 
A total of 146 different scaffolds were selected as important for this predictive task by at least two methods (FS1, 
FS2 and FS4). Among these sequences, only 9 did not have correspondence with S. spontaneum CDSs, possibly 
due to the presence of additional noncoding regulatory elements. These regions can be targets of genetic studies 
due to their relationships with predicted phenotypes. Although there was no considerable intersection between 
CDSs associated with BACs and the selected scaffolds, we did find consensus in correlated biological functions. 
This divergence between regions is mainly explained by the differences between the populations used to gener-
ate the GBS data and the brown rust QTLs (which were used to select BACs). QTL regions are identified for a 
specific population, and there might be differences between datasets from different populations, especially for the 
sugarcane genome. In addition, the creation of sugarcane linkage maps relies on many adaptations of methods, 
such as the selection of only single-dosage markers23, which might lead to the identification of a restricted set of 
QTLs and the nonuse of many auxiliary genomic elements.

The exclusive GO categories related to the selected variants have already been reported to be associated with 
resistance. Sphingolipid metabolism is intimately connected to programmed cell death123–125; DNA topologi-
cal change is a wider category with different implications in many biological processes, including responses to 
pathogens126; differences in nitrogen compound transport might be related to the accumulation of this nutri-
ent and its influence on resistance against pathogens127; and phosphatidylinositol-mediated signaling includes 
important categories that also act on plants’ responses to pathogens125. A considerable number of metabolic 
pathways related to both BACs and the selected scaffolds were also detected. However, specific pathways were 
found to be associated with these scaffolds, mainly due to the different roles of the proteins encoded by these 
identified CDSs and because these pathways were already reported as being associated with plant responses to 
different pathogens123,128–135, further corroborating our findings. The indication of possible mutation events in 
these regions provides evidence of differences in protein expression and phenotypic characteristics.

The identified regions with putative variants and high predictive performance for brown rust phenotypic 
groups can be employed as novel regions to investigate susceptibility-related traits. This proposed strategy can 
complement traditional methodologies for deciphering sugarcane genomic regions associated with pathogen 
infection responses and susceptibility. Although these SNPs were identified for only one biparental population, 
the strategy can be used for different populations, and the genes can be further investigated to validate the influ-
ence of the genomic regions on different phenotypes. This study represents an initial step in employing ML and 
FS strategies in sugarcane genomic studies. We illustrated the great potential of applying these methodologies 
to predict phenotypes by using a highly complex polyploid species.

Code availability
Accession codes Sequencing data are available through the Sequence Read Archive (SRA) database with the 
accession code SRP151376.
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