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The complete genome sequence of a methanesulfonate-degrading strain, Rhodococcus sp. strain RD6.2 DSM 46800, which was
isolated from a brackish marsh sediment sample, is described here. This is the first reported genome of a nonproteobacterial
strain using methanesulfonate (MSA) as a sole source of carbon and energy, which does not possess the conventional MSA-
monooxygenase (MSAMO).
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Methanesulfonate (MSA) is quantitatively a very relevant
compound in the biogeochemical sulfur cycle (1–6). Several

methylotrophic species isolated from different environments can
grow using MSA (7–16). All strains analyzed so far at the molec-
ular level contain an inducible MSA monooxygenase that oxidizes
MSA to formaldehyde (7–13, 16). Rhodococcus sp. RD6.2 DSM
46800 is the first described non-Proteobacterium using MSA as a
sole source of carbon and energy.

This strain was isolated on MSA from a brackish marsh sedi-
ment sample and showed resistance to several organic xenobiotics
(17). Its genome was sequenced by Molecular Research LP (Shal-
lowater, TX, USA) using the MiSeq Illumina sequencing platform.
The genome coverage was 521�. Sequence reads were assembled
using the NGen assembler (DNAStar, Inc.).

Thirteen contigs were generated by assembly, comprising a
total of 5,573,556 bp (including 1,169 undetermined bases). One
of the contigs, which was 81,713 bp long, was shown to be a cir-
cular DNA molecule with several plasmid signatures. The genome
sequence was analyzed and annotated using the MicroScope
platform (https://www.genoscope.cns.fr/agc/microscope/home
/index.php) (18). It comprises 6,024 genomic objects (5,505 cod-
ing sequences [CDSs], 6 fragments of CDSs, 11 genes for miscel-
laneous RNA, 4 genes for 5S rRNA, and 2 for 16S rRNA) and 5
fragments with identity to 23S rRNA genes; 3,979 CDSs (72.28%)
were categorized in at least one COG group. The G�C content is
68.4%.

The highest hits in BLASTn/BLASTp analyses (19) with genetic
markers 16S rRNA, 23S rRNA, GyrB, EF-Tu, and RecA were from
Rhodococcus triatomae, Rhodococcus equi, and Rhodococcus opacus.
Average nucleotide identity (ANI) genome comparisons (http:
//enve-omics.ce.gatech.edu/ani/) (20) supported these associa-
tions (maximum score, 84.54% with Rhodococcus triatomae).

This genome contains genes involved in the tricarboxylic acid
(TCA) cycle, glycolysis, gluconeogenesis, and the pentose phos-
phate pathway. Genes encoding components for an electron
transport chain associated with aerobic respiration and oxidative
phosphorylation were found, as well as those encoding dimethyl

sulfoxide reductase, fumarate reductase, trimethylamine-N-oxide
reductase, and nitrate reductase. Pathways for CO2 fixation are
not present, while genes related to aromatic compound degrada-
tion and arsenate detoxification were found.

Regarding MSA degradation, classic methanesulfonate mono-
oxygenase (MSAMO)-coding genes (7) were not found. However,
the genome comprises a homolog of ssuD, a gene involved in MSA
oxidation by bacteria that use it as sulfur source (21, 22); three
more genes encoding putative alkanesulfonate monooxygenases,
which may be involved in MSA degradation; and a ssuCBA operon
encoding a putative alkanesulfonate uptake system (22, 23). Genes
for methanol dehydrogenase were absent, while genes coding for
alcohol dehydrogenase were identified, as well as those encoding
S-(hydroxymethyl)mycothiol dehydrogenase for formaldehyde
oxidation.

Genes encoding the diagnostic enzymes for serine or RuMP
cycles were not found. However, we conjecture that strain RD6.2
may assimilate formaldehyde using a modified xylulose mono-
phosphate pathway, in a fashion similar to what happens in My-
cobacterium sp. strain JC1 (24, 25), employing a predicted tran-
sketolase (70.5% similar to dihydroxyacetone synthase from
strain JC1).

The genomic features of Rhodococcus sp. RD62 DSM 46800
bring new insights into the utilization of MSA as a sole source of
carbon and energy by a methylotrophic actinobacterium.

Nucleotide sequence accession numbers. This whole-genome
sequencing project has been deposited at DDBJ/EMBL/GenBank
under the accession numbers CVQP01000001 to CVQP01000013.
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