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Background. ,ere have been thousands of clinical trials for COVID-19 to target effective treatments. However, quite a few of
them are traditional randomized controlled trials with low efficiency. Considering the three particularities of pandemic disease:
timeliness, repurposing, and case spike, new trial designs need to be developed to accelerate drug discovery.Methods. We propose
an adaptive information borrowing platform design that can sequentially test drug candidates under a unified framework with
early efficacy/futility stopping. Power prior is used to borrow information from previous stages and the time trend calibration
method deals with the baseline effectiveness drift. Two drug development strategies are applied: the comprehensive screening
strategy and the optimal screening strategy. At the same time, we adopt adaptive randomization to set a higher allocation ratio to
the experimental arms for ethical considerations, which can help more patients to receive the latest treatments and shorten the
trial duration. Results. Simulation shows that in general, our method has great operating characteristics with type I error
controlled and power increased, which can select effective/optimal drugs with a high probability. ,e early stopping rules can be
successfully triggered to stop the trial when drugs are either truly effective or not optimal, and the time trend calibration performs
consistently well with regard to different baseline drifts. Compared with the nonborrowing method, borrowing information in the
design substantially improves the probability of screening promising drugs and saves the sample size. Sensitivity analysis shows
that our design is robust to different design parameters. Conclusions. Our proposed design achieves the goal of gaining efficiency,
saving sample size, meeting ethical requirements, and speeding up the trial process and is suitable and well performed for COVID-
19 clinical trials to screen promising treatments or target optimal therapies.

1. Background

COVID-19 has affected our lives in an all-round way since
its first outbreak in 2019. Subsequent waves of case spikes
have swept nearly every country, causing considerable
morbidity and mortality as coronavirus, and its variants
continue to spread and mutate [1]. According to Johns
Hopkins’ data, 222.5 million confirmed cases and 4.5 million
deaths were reported till Sep 9, 2021 [2]. Approximately, 80%
of COVID-19 patients had mild or moderate disease, while
14% of patients experience a severe disease course, with case-
fatality rates ranging from 0.3 to 7.2% of all confirmed cases
[3–5]. Due to its high transmission with a basic reproduction
number (R0) of between 1.4 and 7.23 [6, 7] and substantial

effects on disease burden, effective treatments are a major
concern to fight against this pandemic.

,ousands of interventional studies have been registered
in ClinicalTrials.gov related to COVID-19, and this number
is increasing progressively. Up to now, 11 therapies for
COVID-19 have gained emergency use authorization by the
US Food and Drug Administration (FDA) [8], inspiring the
following rapid development for treatments of COVID-19.
However, the particularity of pandemic disease inevitably
complicates clinical trials, making it different from tradi-
tional randomized controlled clinical trials. It is mainly
reflected in the following aspects: first is the timeliness
[9, 10]. A large number of cases and deaths in a short time
poses unprecedented pressure on the conventional drug
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discovery paradigms. ,e screening of effective treatment
drugs has a strong timeliness, calling for more innovative
trial designs. Second is the exploration of new indications of
existing drugs rather than De Novo drug design, such as the
repurposed lopinavir-ritonavir [11]. In these circumstances,
the toxicity profile of drugs has been well studied and efficacy
evaluation is of top interest. A quick-start phase II trial can
get more attention from researchers. ,e platform trial
recommended by FDA [12] can well adapt to these char-
acteristics. WHO also pointed out that integrating clinical
trials of candidate therapeutics as part of the response during
infectious disease outbreaks is increasingly recognized as
important for screening potential drugs. ,ree is the tran-
sient case peak. Due to the strict control of the epidemic after
case spike, the sample size of a trial will soon be greatly
challenged after the epidemic remains stable, which brings
great difficulties to the process of clinical trials, such as two
already terminated trials for evaluating Remdesivir in China
[13]. Another lesson that should be learned is that quite a few
trials on the antiEbola virus began after the Ebola epidemic
has alleviated [14]. ,erefore, when designing clinical trials
for COVID-19, a timely response is necessary, which can be
settled by introducing early stopping criteria andmaking full
use of all available data, including information from other
drugs’ trials, to improve the efficiency of trials.

,ere have been several platform designs for COVID-19,
including RECOVERY [15], REMAP-CAP [16], ACCORD
[17], SOLIDARITY [18], and others. ,ese platform designs
are all parallel designs, in which interested drug candidates
start recruiting patients at the same time (Saville and Berry
[19], Yuan et al. [20], and Tang et al. [21]).,eir control arms
remain unchanged although effective drugs graduate,
resulting in ethical problems of not assigning the latest
effective drugs to patients. Moreover, concurrent compar-
ison leads to insufficient use of historical control arm in-
formation. In consideration of the rapid outbreak of
COVID-19, countless patients urgently need effective drugs,
so it may be more important to give patients effective drugs
as soon as possible. ,e sequential design may be more
suitable under such circumstances. It compares a candidate
drug with a standard of care (SOC) under a unified
framework sequentially. If declared efficacious, the candi-
date drug will be added to the control arm and continued to
compare with new drug candidates, making it possible for
COVID-19 patients to always receive the latest treatments.
,e treatment in the current control arm is either consistent
with that in the previous control arm or experimental arm,
thus information from previous stages can be borrowed.
Furthermore, due to the variability of the coronavirus, SOC
may rapidly evolve and the epidemic has a strong tendency
to shift populations (older to younger and back again)
during any study. ,us, the baseline effectiveness of SOC
may drift over time. Such time trend calibration must be
considered when modelling as well.

Borrowing information could improve the power of the
trial and adaptive randomization is combined with it to
allow more patients to be enrolled into the experimental
arm, making it more efficient. Methods have been recently
introduced to borrow information. Pocock et al. [22]

considered the difference in model parameters between
historical data and current data and regarded this difference
as a random variable. Ibrahim and Chen et al. [23–25]
proposed the power prior method, in which the prior is
constructed by raising the likelihood of historical data to the
prespecified power α. Chu et al. [26] used a calibrated
method to measure the heterogeneity and determine α for
binary endpoints. A number of improvements to the power
prior method have been described in the literature [27–29].
Early stopping is another feature of the proposed design to
cater to the timeliness characteristics of COVID-19. With
early stopping for efficacy and futility, once there is enough
evidence to declare effectiveness, drugs are graduated to the
next stage or stopped, saving sample size and accelerating
the development.

Due to the high infectivity and relatively low mortality of
COVID-19, most trials choose time-to-event endpoints.
Because the effect size of drugs is extremely limited in case of
low mortality, the use of traditional binary endpoints will
lead to an excessive sample size. In addition, using time-to-
event endpoints can better reflect changes in disease status
and cater to changing epidemic characteristics [30].

Based on the above considerations, in the framework of
sequential platform design, we integrate power prior and
time trend calibration into the platform design and extend it
to time-to-event endpoints, thus proposing a COVID-19
sequential platform design that adaptively borrows infor-
mation from previous stages based on the heterogeneity
between stages. ,e proposed design allows two strategies:
the comprehensive screening strategy that aims to screen all
drugs that may be effective and the optimal screening
strategy that aims to screen the most effective drug. ,e
outline of this article is as follows: Section 2 is a detailed
introduction of the proposed model. Section 3 has the
simulation results and Section 4 is a specific example of the
design. We conclude with a brief discussion in Section 5.

2. Method

In this study, we propose an adaptive information borrowing
platform design, which sequentially enrolls patients to either
the experimental arm or control arm and makes decisions
after data are available. If one drug shows enough efficiency,
it will graduate and be added to the control arm, after which
a new drug arm will be open for recruitment. Borrowing
information happens between the same treatments.

,e overall process of the trial is shown in Figure 1.
Considering an exploratory trial with the endpoint being
time to clinical remission, for experimental arm A, let TA

denote the time from enrollment to clinical remission. ,e
smaller the remission time, the faster the clinical remission
reaches, thus the more effective the drug is. Assuming TA

follows an exponential distribution with hazard θA

TA ∼ Exp θA( 􏼁. (1)

Let nA denote the number of patients assigned to the
experimental arm A. For patient i, let TA

i denote the ob-
served time and Ti denote the true clinical remission time. δi
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indicates whether to censor, if censoring occurs,
TA

i <Ti, δi � 0, if clinical remission occurs, TA
i � Ti, δi � 1.

Let S(t) � Pr(TA > t) � exp(−tθA) represent the survival
function. Given data DA � (TA

i , δi), i � 1, . . . , nA􏼈 􏼉 during
the interim analysis of the experimental arm A, let mA �

􏽐
nA

i�1 δi represent the number of achieving clinical remission
and TA � 􏽐

nA

i�1 TA
i represent the total observation time, we

have the likelihood function:

L DnA
|θA􏼐 􏼑 � 􏽙

nA

i�1
f T

A
i |θA􏼐 􏼑

δi
S T

A
i |θA􏼐 􏼑

1− δi
� θmA

A exp −TAθA( 􏼁.

(2)

Let θA follow gamma distribution θA ∼ Gamma(a, b),
then θA has the posterior distribution:

θA|DA ∼ Gamma a + mA, b + TA( 􏼁. (3)

For control arm B, we assume the time from enrollment
to clinical remission TB also follows an exponential distri-
bution, thus the hazard θB has the same distribution as that
in the experimental arm A. So, we have the posterior
distribution:

θB|DB ∼ Gamma a + mB, b + TB( 􏼁, (4)

where DB, mB, and TB are defined in a similar way as
DA, mA, and TA. Suppose there are K interim looks, which
occur when the number of enrolled patients reaches
n1, . . . , nK. Because fewer enrolled patients in the early stage
may lead to unreliable estimates, we start the interim analysis
until n0 patients are enrolled and perform an interim
analysis for every nk patients enrolled, up to a maximum
sample size of nK. At each interim analysis, if
Pr(θA > θB|DA, DB)≥CI, the drug in experimental arm A is
declared effective and vice versa. After reaching the maxi-
mum sample size in each arm, if the risk in experimental arm
A is lower than that in control arm B, that is
Pr(θA > θB|DA, DB)≥CF, the experimental arm A is de-
clared more effective than control arm B. CI and CF are
obtained by calibration.

2.1. Borrow Information. ,e treatment in the current
control arm is either the same as the historical control arm or
experimental arm. Specifically, when the drug in the pre-
vious stage is effective, we add a “graduated” drug into the
control arm, thus the treatment in the current control arm is
the same as that in the historical experimental arm. When
the drug in the previous stage is ineffective, we remain the
treatment in the control arm unchanged, thus the treatment
in the current control arm is the same as that in the historical
control arm. ,erefore, we could use the power prior to
borrow information for the current control arm B from
previous stages. ,e power prior method uses the posterior
of historical data as the prior of the current parameter.
Assuming that the historical data is DH, the initial prior of
the parameter θ is π0(θ), we have the power prior π(θ):

π θ|DH, α( 􏼁∝ L θ|DH( 􏼁􏼂 􏼃
απ0(θ), (5)

where α is the parameter controlling how much to borrow
from historical data. ,e hazard in the current control arm
θB follows gamma distribution π0(θB) ∼ Gamma(a, b).
Given historical data DH � (TH

i , δi), i � 1, . . . , H􏼈 􏼉,
TH � 􏽐

nH

i�1 TH
i , θB has the power prior:

P θB|DH( 􏼁∝ θa−1
B exp −bθB( 􏼁θαmH

B exp −αθBTH( 􏼁

∝ θa+αmH−1
B exp − b + αTH( 􏼁θB( 􏼁

θB|DH ∼ Gamma a + αmH, b + αTH( 􏼁.

(6)

Given the current control arm data
DB � (TB

i , δi), i � 1, ..., nB􏼈 􏼉, θB has the posterior
distribution:

θB|DH, DB ∼ Gamma a + αmH + mB, b + αTH + TB( 􏼁. (7)

Once all the candidate therapies are tested, two drug
development strategies are applied:

(1) Comprehensive Screening Strategy. ,is strategy aims
to screen all drugs that may be effective, that is, all
drugs that satisfy the following rules will be declared
effective and enter the next stage:

Control Arm
SOC

Experiment Arm
Drug 1+ SOC

Experiment Arm
Drug 2+1+ SOC

Experiment Arm
Drug 3+2+1 SOC

Control Arm
Drug 1+ SOC

Control Arm
Drug 2+1+ SOC

Patients
AR Two Sample

Test
Two Sample

Test
Two Sample

Test

Borrow information

…

…

Figure 1: Diagram of platform design for COVID-19.
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Pr θA > θB|DH, DA, DB( 􏼁 � 􏽚
1

0
GB p|DB, DH( 􏼁gA p|DA( 􏼁dp

� 􏽚
1

0

c a + αmH + mB, b + αTH + TB( 􏼁p( 􏼁

Γ a + αmH + mB( 􏼁

b + TA( 􏼁
a+mA

Γ a + mA( 􏼁
p

a+mA− 1 exp − b + TA( 􏼁p􏼈 􏼉dp,

(8)

where c(·, ·) is the lower incomplete gamma
function.

(2) Optimal Screening Strategy. ,is strategy aims to
screen the most effective drug, that is, the one with
the highest efficacy will be declared optimal and
enter the next stage. For example, if drug 1 satisfies
rule (8), drug 1 + SOC will replace the old control
arm and compare with the follow-up new drugs. At
the end of the trial, the last drug that declares ef-
fective will be selected as the optimal drug.

2.2. Time Trend Calibration. Platform designs that run
over a relatively long period may face a baseline effectiveness
drift [31], which is reflected in the different hazard ratios
between stages. Modelling for such drift in the SOC over
time is needed; otherwise, it would result in type I error
inflation and power reduction. Here, we add a time trend
calibration to measure the drift in different stages, thus α
becomes data driven rather than prespecified. Specifically,
two types of data are available at interim analysis: count data
(the number of patients who achieve clinical remission) and
survival data (time to clinical remission for each individual).
We use chi-square statistic χ2 to measure the heterogeneity
for count data and t-statistic τ for survival data. Monitoring
one indicator is not enough to reflect all the information, so
we calculate α by synthesizing information from remission
numbers and survival time:

α �
1

c χ2 + τ( 􏼁
􏼠 􏼡

ρ

, (9)

where c and ρ are the tuning parameters, which are cali-
brated by simulation to keep type I error in control. Larger χ2
and τ indicate that the information between two stages is
heterogeneous, thus α will be smaller and we nearly borrow
no information and vice versa.

2.3. Adaptive Randomization. After posterior inference
based on borrowing information, patients are randomized to
different arms. Traditionally, we use equal randomization in
most cases. However, if a fixed allocation ratio of 0.5 is still
used, it is easy to cause an imbalance in the amount of ef-
fective information between arms. ,erefore, the adaptive
randomization is considered to balance information and
maximize power, which is achieved by taking the allocation
ratio as a function of the effective sample size. According to
Hobbs et al. [32], we assume the relationship between sample
size and precision is linear, then the effective sample size is
approximately the effective sample size of the “borrowed”
posterior distribution nB(Prec(θ|DB, DH)/Prec(θ|DB))

minus the sample size of the current control arm nB, which is
calculated as follows:

ESS � nB

Prec θ|DB, DH( 􏼁

Prec θ|DB( 􏼁
− 1􏼠 􏼡, (10)

where Prec(θ) � [Eθ|D θ − Eθ|D(θ)􏽮 􏽯
2
]− 1, denoting the pre-

cision of the posterior distribution of θ.
At the beginning of the experiment, 1:1 allocation is

used. Until a certain amount of information is accumulated,
adaptive randomization is performed. n∗A(t) and n∗B(t) are
the effective sample sizes of the experimental arm and the
control arm during the midterm analysis t, and ESS(t)

represents the estimated effective sample size of the control
arm. R represents the number of remaining patients to be
randomized. ,e aim is to balance the effective information
between two arms. τ is the randomized allocation ratio. After
adaptive randomized allocation, there is
n∗A(t) + τR � ESS(t) + n∗B(t) + (1 − τ)R, so τ can be solved:

τ(t) �
1
2

ESS(t) + n
∗
B(t) − n

∗
A(t)

R
+ 1􏼠 􏼡. (11)

Because the effective sample size has no upper and lower
limits, the range of τ defined by the above formula is not
limited to [0, 1], which does not meet the actual require-
ments. ,erefore, the above formula is changed to posing a
limitation to the range [pmin, pmax]:

τ(t) � max min
1
2

ESS(t) + n
∗
B(t) − n

∗
A(t)

R
+ 1􏼠 􏼡, pmax􏼨 􏼩, pmin􏼢 􏼣. (12)

2.4. Trial Process. Steps for implementing our proposed
design are as follows:

(i) Step 1: for the first drug, enroll n0 patients and
equally randomized to two arms.

(ii) Step 2: collect data for the first drug and fit model
(2), conduct interim analyses, and calculate
Pr(θA > θB|DA, DB). If the posterior probability
across the cutoff, stop enrollment and declare the
first drug effective; otherwise, continue to enroll
another nk patients.

(iii) Step 3: repeat step 2 until reaching the maximum
sample size nK. Conduct the final analysis and
calculate Pr(θA > θB|DA, DB) to see if the first drug
is effective.

(iv) Step 4: for the next drug, enroll n0 patients.,ey are
still equally randomized to the two arms since fewer
enrolled patients in the early stage may lead to
unreliable estimates.
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(v) Step 5: collect data for the next drug and fit model
(2). At interim look 1, calculate Pr(θA > θB|DA, DB)

and start adaptive randomization. At interim look
k, fit model (2) and calculate Pr(θA > θB|DA, DB). If
the previous drug is effective, DH comes from
experimental arm of the previous drug; otherwise,
comes from the control arm. If across the cutoff,
stop enrollment and declare the next drug effective;
otherwise, continue to enroll another nk patients.

(vi) Step 6: repeat step 5 until reaching maximum
sample size nK. Conduct the final analysis and
calculate Pr(θA > θB|DA, DB) to see if the next drug
is effective.

(vii) Step 7: repeat steps 1–6 until all candidate drugs are
tested. Make the final decision on which drugs are
effective with the comprehensive screening strategy
and which drugs are effective with the optimal
screening strategy.

3. Simulation

In this section, we run simulations to evaluate the perfor-
mance of the proposed design. Suppose a platform trial with
5 candidate drugs and 1 SOC. ,e risk of the control arm is
set to θB � 0.2. According to exponential distribution, the
average time to clinical remission in the control arm is T �

1/θ � 5 weeks. Risk ratio HR> 1 means that the experi-
mental arm has a greater risk than the control arm, that is,
the mean remission time is shorter and the effect is better.
Among the 5 drugs in each scenario, bold text indicates
effective drugs, and the others are ineffective drugs. When
the drug is effective, the probability of rejecting the null
hypothesis represents power; while ineffective, the proba-
bility of rejecting the null hypothesis is the type I error. We
control the type I error to 0.1 through simulation. For the
platform design that does not borrow information, the al-
location ratio is always 1:1.

First, we study scenarios without baseline effectiveness
drift by applying the comprehensive screening strategy.
Table 1 lists the simulation results of the COVID-19 plat-
form design using the power prior method with α fixed at
0.5. In all 6 scenarios, from the results of the Pr (reject H0)
for the two designs, we can see that the type I error is below
10%. When the drug is truly effective, the proposed design
has the power of more than 85% and is higher than that
without borrowing information. Pr (early stopping for ef-
ficacy) and Pr (early stopping for futility) show the prob-
ability of early efficacy/futility stopping. It can be seen that
when the drug is truly effective, the probability of effective
stopping in most scenarios is more than 65%.When the drug
is highly effective, the probability of early stopping can reach
more than 95%. While the drug is less effective than the
control arm, the probability of futility stopping is about 58%,
which allows effective or ineffective drugs to end the trial as
soon as possible to speed up the new drug development and
save sample size. However, when the efficacy difference of
the candidate drug and the control arm is not significant,
that is, HR� 1, because we cannot conclude that the drug is

effective or ineffective, the trial continues. In terms of sample
size, the actual sample size in the scenario with a high early
stopping probability is much smaller than the prespecified
sample size, in which we can save almost 80–120 patients. As
can be seen from NA and NB, compared with nonborrowing
method, the proposed design allocates more patients to the
experimental arm. With the trial progressing, the control
arm can borrow more information (shown by effective
sample size), so the proportion of patients allocated to the
experimental arm is also increasing. To further study the
impact of the accumulated information on the allocation
ratio, we compared the relationship between the proportion
of patients assigned to the experimental arm and the effective
sample size in each scenario, as shown in Figure 2.

Figure 2 shows how the allocation ratio and accumulated
information change with the progress of the trial. Taking
scenario 1 as an example, candidate drug 1 has no accu-
mulated information, so the allocation ratio is 0.5. When
drug 2 is tested, because the control arm is still SOC, the
information of drug 1 could be borrowed, thusmore patients
are assigned to the experimental arm in drug 2. Drug 2 is
declared effective. At this time, when the control arm is drug
2 + SOC, the information of the drug 2 experimental arm in
drug 3 can be borrowed, so the amount of information does
not change much. From Figure 2, the effective sample size of
drug 2 and drug 3 is approximately equal. In drugs 4 and 5,
because the information in the control arm accumulated, the
effective sample size continued to increase, and the pro-
portion allocated to the experimental arm also increased.
However, due to the limitation of the maximum allocation
ratio of formula (5), the proportion allocated to the ex-
perimental arm was finally constant at around 0.85. From
the relationship between the proportion of patients assigned
to the experimental arm and the effective sample size above,
we can see that the more information accumulated, the
greater the effective sample size, thus the higher the pro-
portion of patients assigned to the experimental arm, which
meets the ethical requirements and maximizes power.

,e parameter α in power prior method for controlling
the degree of borrowing information is recommended to be
0.5. Considering that different α may have different effects
on statistical performance, we conduct a sensitivity analysis
on α. Results are summarized in Supplementary materials.
We can see that the proposed design is robust to different α
in terms of type I error, power, and sample size.

Furthermore, scenarios with baseline effectiveness drift
are discussed. We run simulations for platform design using
time trend calibration compared to noncalibration, in which
α does not need to be prespecified. Results are shown in
Table 2 and Figure 3. ,e time trend in the third column
represents the baseline hazard of SOC. ,e underlined text
represents the baseline hazard drifts. From the results of the
Pr (reject H0) for two methods, we can see that the type I
error is controlled at approximately 0.1 for time trend
calibration when drift happens. While for the power prior,
type I error is inflated due to the inconsistencies between
stages. For example, in scenario 1, the parameter of time
trend for drug 4 is 0.45, so SOC in drug 4 is more effective
than that in others. Time trend calibration can identify such
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heterogeneity and choose to barely borrow information
from previous stages, which can be confirmed in Figure 3.

We can see that drug 4’s effective sample size and al-
location ratio are both much lower than drugs 2 and 3.
However, the power prior still borrows information, leading
to the inflation of type I error. As for power, when the drug is
truly effective, time trend calibration rejects the null hy-
pothesis with a probability higher than 85%.,e power prior
may wrongly borrow information and lessen the effect size,
resulting in lower power. Based on the results above, we can
conclude that the time trend calibration is more robust to the
baseline effectiveness drift. When drift exists between stages,
time trend calibration is strongly recommended.

,e advantage of the proposed platform design is also
reflected in the switch from effectiveness evaluation to
optimal drug screening. ,e simulation results for the
proposed platform design with optimal screening strategy
are shown in Table 3 and Figure 4.We can see that in general,
the optimal screening strategy has the highest probability to
choose the most effective drug in different scenarios. Spe-
cifically, in scenario 1, when there is a relatively large effect
size, the probability of selecting the most effective drug 2 can
be as high as 93.9%. Different from the effectiveness

evaluation procedure shown above, once selected as the
optimal drug, it will be added into the control arm only with
SOC.,erefore, the subsequent candidate drugs (drugs 3–5)
in scenario 1 will be compared with drug 2 plus SOC, leading
to a relatively high probability of early futility stopping. ,is
shows an advantage of optimal screening design that drugs
no better than the optimal drug will be excluded as soon as
possible. Since the amount of borrowing information is a
function of sample size in formula (10), arms with a high
probability of early futility stopping have a smaller effective
sample size.

Similarly, the upward trend of ESS in Figure 4 is not as
obvious as that in Figures 2 and 3 because of the trade-off
result between the smaller sample size and the accumulated
amount of borrowed information. In other scenarios, with
regard to different locations and sequences of optimal drug
and different effect sizes, the proposed optimal drug
screening procedure can always select the optimal drugs
with the highest probability and early stop the trial for ef-
ficacy as long as there is enough evidence. ,e adaptive
randomization rule can allocate more patients to the ex-
perimental arms, which is consistent with the previous
simulation results.

Table 1: Operating characteristics of proposed platform design with comprehensive screening strategy.

Proposed information-borrowing platform design Nonborrowing

Scenario Drug Hazard
ratio

Mean
TTCR

Pr
(rejectH0)

Pr (early stopping for
efficacy)

Pr (early stopping for
futility) N NA NB Pr (rejectH0)

1

1 1 5 0.076 0.035 0.107 186 93 93 0.086
2 1.5 3.33 0.939 0.780 0.002 128 94 34 0.888
3 1 5 0.048 0.017 0.113 186 134 52 0.084
4 1 5 0.032 0.016 0.101 186 149 37 0.078
5 1 5 0.043 0.017 0.086 188 152 36 0.068

2

1 1 5 0.087 0.029 0.098 186 93 93 0.092
2 1 5 0.037 0.011 0.093 188 145 43 0.093
3 1.75 2.86 0.999 0.987 0.000 81 57 24 0.984
4 1 5 0.069 0.020 0.061 191 126 65 0.070
5 1 5 0.031 0.008 0.061 191 153 38 0.078

3

1 1 5 0.081 0.032 0.114 186 93 93 0.077
2 1 5 0.068 0.021 0.104 186 142 44 0.088
3 1 5 0.050 0.020 0.107 185 148 37 0.087
4 1.4 3.57 0.868 0.651 0.006 144 112 32 0.782
5 1 5 0.054 0.020 0.116 185 137 48 0.064

4

1 1 5 0.079 0.031 0.111 186 93 93 0.067
2 1.5 3.33 0.937 0.786 0.002 126 93 33 0.882
3 1.5 3.33 0.929 0.754 0.000 132 93 39 0.901
4 1 5 0.037 0.013 0.072 191 140 51 0.063
5 1 5 0.026 0.009 0.076 191 154 37 0.047

5

1 1 5 0.081 0.035 0.098 186 93 93 0.082
2 1.5 3.33 0.942 0.778 0.004 123 90 33 0.883
3 0.8 6.25 0.005 0.005 0.585 144 100 44 0.006
4 1 5 0.063 0.026 0.085 188 148 40 0.073
5 1 5 0.046 0.024 0.095 186 150 36 0.082

6

1 1 5 0.081 0.035 0.098 186 93 93 0.077
2 1.5 3.33 0.942 0.778 0.004 123 90 33 0.893
3 0.8 6.25 0.005 0.005 0.585 144 100 44 0.003
4 1 5 0.063 0.026 0.085 188 148 40 0.063
5 1.5 3.33 0.962 0.832 0.002 122 93 29 0.889

Note. TTCR, time to clinical remission.
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Figure 2: Proportion of patients assigned to the experimental arm and effective sample size.
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4. Trial Illustration

,e famous COVID-19 drug candidates registered on
clinicaltrial.gov are taken as an example to illustrate the
proposed design with the comprehensive screening strategy.
Suppose, the five drugs to be tested are Lopinavir,

Favipiravir, CD24Fc, Remdesivir, and hydroxychloroquine.
,eir true clinical remission times are (5, 5, 5, 3.33, 5). Drug
4 Remdesivir can actually shorten the remission time and
other drugs are ineffective. ,en, the COVID-19 platform
design is used to test 5 drugs sequentially. Results are shown
in Figure 5.
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Figure 3: Proportion of patients assigned to the experimental arm and effective sample size using time trend calibration.
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,e specific parameters in the test are listed in Table 4.
In the example, at the first stage, the probability that

experimental arm A is more effective than the control arm B
is 8.6%, so drug 1 is declared ineffective. Next stage, the
control arm is still SOC, and the experimental arm is drug
2 + SOC. According to the posterior probability, that drug 2
is declared ineffective.,e third stage is entered and drug 3 is

found ineffective. In stage 4, the early stopping rule is
triggered, so we end the fourth stage early and declare that
drug 4 is effective. Drug 4 is added into the control arm and
stage 5 is entered. At present, the control arm is drug
4 + SOC, while the experimental arm is drug 5 + drug
4 + SOC. ,e posterior probability of the experimental arm
better than the control arm is 4.4%, so drug 5 is ineffective.
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Figure 4: Proportion of patients assigned to the experimental arm and effective sample size in the optimal platform design.
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,e trial ends and we finally declare that of all 5 drugs, only
drug 4 is effective. ,e total sample size of this trial is 874,
which saves 126 patients compared with the traditional fixed
design. From the example, we can see that the proposed
design can stop early when the drug is sufficiently effective,
speed up the trial process, save sample size, and meet ethical
requirements.

5. Conclusions

Wave upon wave of COVID-19 outbreaks put heavy
pressure on global disease burden and economics.
Presently, there is nothing more important than con-
trolling and ending the outbreak. Since no significantly
efficacious treatment has been found yet, the develop-
ment of new antivirus drugs is paramount to this end. In
this situation, the traditional manner seems both time
consuming and inefficient, so novel trial designs should
be adopted to accelerate drug development. ,erefore, we
propose a platform design that evaluates multiple drug
candidates in a unified design framework. Two drug
development strategies are discussed here: the compre-
hensive screening strategy and the optimal screening
strategy. ,e proposed design is able to tremendously
shorten the overall trial duration and save the sample size
for the control arm. Furthermore, the platform design
incorporates an early stopping rule for significantly ef-
ficacious drugs, allowing patients to gain access to
promising treatments as soon as possible, which helps
control the spreading of disease. Simulation studies show
that the design has good performance and robustness to
different parameter settings. We adopt the power prior
and time trend calibration to borrow information be-
tween different drugs, and more robust methods can also
work well, such as commensurate prior [33] and robust
meta-analytic-predictive prior [34], to further improve
the performance of the design.
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