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Abstract
For continuous variables of randomized controlled trials, recently, longitudinal anal-

ysis of pre- and posttreatment measurements as bivariate responses is one of analyti-

cal methods to compare two treatment groups. Under random allocation, means and

variances of pretreatment measurements are expected to be equal between groups,

but covariances and posttreatment variances are not. Under random allocation with

unequal covariances and posttreatment variances, we compared asymptotic variances

of the treatment effect estimators in three longitudinal models. The data-generating

model has equal baseline means and variances, and unequal covariances and post-

treatment variances. The model with equal baseline means and unequal variance–

covariance matrices has a redundant parameter. In large sample sizes, these two

models keep a nominal type I error rate and have high efficiency. The model with

equal baseline means and equal variance–covariance matrices wrongly assumes equal

covariances and posttreatment variances. Only under equal sample sizes, this model

keeps a nominal type I error rate. This model has the same high efficiency with the

data-generating model under equal sample sizes. In conclusion, longitudinal analysis

with equal baseline means performed well in large sample sizes. We also compared

asymptotic properties of longitudinal models with those of the analysis of covariance

(ANCOVA) and t-test.

K E Y W O R D S
analysis of covariance, longitudinal analysis, pretest, posttest, repeated measure, unequal variance

1 INTRODUCTION

When primary endpoints of randomized controlled trials are continuous variables, analysis of covariance (ANCOVA) on post-

treatment measurements with pretreatment measurements as a covariate is often used to compare two treatment groups. More

recently, longitudinal analysis of pre- and posttreatment measurements as bivariate responses is also one of analytical methods

to compare two treatment groups.

Under random allocation, means and variances of pretreatment measurements are expected to be equal between groups.

However, unequal covariances of pre- and posttreatment measurements and unequal variances of posttreatment measurements
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between groups are often observed in clinical trials, particularly in placebo-controlled trials. This variance–covariance structure

has been discussed (Yang & Tsiatis, 2001). Chen (2006) considered the variance–covariance structure with unequal variance–

covariance matrices including pretreatment variances in simulation studies. Winkens, van Breukelen, Schouten, and Berger

(2007) also examined the structure with equal pretreatment variances and unequal covariances and posttreatment variances

analytically, but they used the completely heterogeneous covariance matrices in their data analysis. Both Chen (2006) and

Winkens et al. (2007) commented on the efficiency loss caused by not assuming equal pretreatment variances. The variance–

covariance structure with equal variance–covariance matrices is also used (Chen, 2006; Winkens et al., 2007). The differences

in asymptotic properties between the models with and without the constraints of equal baseline assumptions remain unclear. We

can consider several longitudinal models based on the assumptions on pretreatment means and elements of variance–covariance

matrices. Liang and Zeger (2000) used the model with equal pretreatment means under random allocation, and we also use

this mean structure. Chen (2006), Winkens et al. (2007), and Yang and Tsiatis (2001) studied longitudinal analysis of pre- and

posttreatment measurements in randomized trials and compared them with ANCOVAs or t-tests. However, detailed comparisons

among various models have not been conducted.

We compare the properties of models. The ANCOVA has higher power to detect a treatment effect than the t-test under

standard assumptions. In previous studies, we examined the asymptotic properties of four ANCOVA models under the cases that

covariances and posttreatment variances differ between groups (Funatogawa & Funatogawa, 2011; Funatogawa, Funatogawa, &

Shyr, 2011). The actual type I error rate of the usual ANCOVA with equal slopes (coefficients of pretreatment measurements)

and equal residual variances is asymptotically at a nominal level only under equal sample sizes, but that of the ANCOVA with

equal slopes and unequal residual variances is asymptotically at a nominal level even under unequal sample sizes (Funatogawa

et al., 2011). In unequal sample sizes, an assumption of unequal residual variances is important. However, the efficiency of the

latter model is relatively low. The ANCOVA with unequal slopes has higher efficiency but cannot keep a nominal type I error

rate irrespective of variance assumptions (Funatogawa & Funatogawa, 2011). Yang and Tsiatis (2001) showed the longitudinal

model with equal baseline means and variances and unequal covariances and posttreatment variances has the same efficiency

with the ANCOVA with unequal slopes. It would be beneficial to determine whether there are methods which have a high

efficiency and keep a nominal type I error rate.

In this paper, we consider three longitudinal models and compare these with four ANCOVAs and the t-test on change and the

t-test on posttreatment measurements. We investigate whether these models asymptotically keep a nominal type I error rate and

the order of efficiency analytically based on the asymptotic variances of the treatment effect estimators and the model-based

asymptotic variances. We also conduct simulation studies using the Kenward–Roger approximation (Kenward & Roger, 1997)

for longitudinal models. The structure of this paper is as follows. In Section 2, we show a motivating example. In Section 3,

we show the asymptotic properties of longitudinal models as well as the ANCOVAs and t-tests. In Section 4, we compare

longitudinal models with the ANCOVAs and t-tests through simulation studies and actual data analysis. In Section 5, we offer

a conclusion and discussion.

2 A MOTIVATING EXAMPLE

As an actual example of unequal covariances and posttreatment variances between groups, we show the results of a placebo-

controlled, randomized trial of succimer in children (Rogan et al., 2001). The blood lead levels of a subsample of 100 children

are analyzed in Fitzmaurice, Laird, and Ware (2004). The sample sizes are equal between two groups. Funatogawa et al. (2011)

and Funatogawa and Funatogawa (2011) used these data at baseline and one week after administration as an example of unequal

covariances and posttreatment variances in order to show the properties of ANCOVAs under random allocation. In this paper,

we added small random values to provide the data. Because unequal sample sizes affect the results, we produced the data with

unequal sample sizes randomly reducing half of data from one group, as shown in Figure 1. The left panel shows all succimer

data and half of the placebo data, and the right panel shows half of the succimer data and all placebo data. We analyze these

data in Section 4.

The means and variances of the pretreatment measurements were almost the same between groups because of random

allocation, whereas the covariances and the means and variances of the posttreatment measurements obviously differed. The

data show that changes after the intervention were small in the placebo group, and the correlation between the pre- and

posttreatment measurements was relatively strong. The changes after the intervention were large in the succimer group, and

the amounts of change differed among individuals. Then, the correlation of pre- and posttreatment measurements was weak.

The variance of posttreatment measurements was larger than that of the placebo group, and also than that of pretreatment

measurements.
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F I G U R E 1 Blood lead levels at baseline and

one week after administration of succimer and

placebo. The open and closed circles show the

succimer and placebo groups, respectively. Left

panel shows all succimer data and half of the

placebo data from a subsample of 100 children.

Right panel shows half of the succimer data and all

placebo data

T A B L E 1 Summary of longitudinal models and ANCOVAs

Methods
Mean
structuresa 𝐂𝐨𝐯(𝜺𝒊𝒋)a

Longitudinal EMVUV: Equal baseline means and variances and unequal

covariances and posttreatment variances

Correct

Data-generating model

𝜇pre, 𝜇𝑖 post

(
𝜎2
pre 𝜎𝑖 cov

𝜎
𝑖 cov 𝜎2

𝑖 post

)

EMUV: Equal baseline means and unequal variance matrices Redundant 𝜎2
𝑖 pre 𝜇pre, 𝜇𝑖 post

(
𝝈2
𝒊 𝐩𝐫𝐞 𝜎𝑖 cov

𝜎
𝑖 cov 𝜎2

𝑖 post

)

EMEV: Equal baseline means and equal variance matrices Constraint 𝜎cov and 𝜎2
post 𝜇pre, 𝜇𝑖 post

(
𝜎2
pre 𝝈𝐜𝐨𝐯

𝝈𝐜𝐨𝐯 𝝈2
𝐩𝐨𝐬𝐭

)

ANCOVA USUV: Unequal slopes and unequal residual variances – 𝛽𝑖 int , 𝛽𝑖 slope 𝜎2
𝑖 res

USEV: Unequal slopes and equal residual variances Constraint 𝜎2
res 𝛽𝑖 int , 𝛽𝑖 slope 𝝈2

𝐫𝐞𝐬

ESUV: Equal slopes and unequal residual variances Constraint 𝛽slope 𝛽𝑖 int , 𝜷𝐬𝐥𝐨𝐩𝐞 𝜎2
𝑖 res

ESEV: Equal slopes and equal residual variances Constraint 𝛽slope and 𝜎2
res 𝛽𝑖 int , 𝜷𝐬𝐥𝐨𝐩𝐞 𝝈2

𝐫𝐞𝐬
aRedundant parameters or constraints are presented in bold.

3 LONGITUDINAL MODELS FOR PRE- AND POSTTREATMENT
MEASUREMENTS

3.1 Data-generating model
We describe a data-generating model assuming only random allocation. We consider a randomized trial of two treatment groups.

Let 𝑌𝑖𝑗𝑘 denote, for the 𝑖-th (𝑖 = 1, 2) treatment group, the measurement of the 𝑗-th (𝑗 = 1,… , 𝑛𝑖) subject at the 𝑘-th (𝑘 = 1, 2)
time. 𝑌𝑖𝑗1 and 𝑌𝑖𝑗2 are pre- and posttreatment measurements, respectively. We assume that the pair (𝑌𝑖𝑗1 and 𝑌𝑖𝑗2) has finite

second moments and is distributed with the following mean and variance–covariance matrix:

Mean
(
𝑌𝑖𝑗1, 𝑌𝑖𝑗2

)
=
(
𝜇pre
𝜇𝑖 post

)
, Cov

(
𝑌𝑖𝑗1, 𝑌𝑖𝑗2

)
=

(
𝜎2pre 𝜎𝑖 cov
𝜎𝑖 cov 𝜎2

𝑖 post

)
.

Random allocation guarantees equal values for 𝜇pre and 𝜎2pre between groups, but not for 𝜇𝑖 post , 𝜎𝑖 cov, or 𝜎2
𝑖 post . Because 𝜇pre

is equal between groups, 𝜇2post − 𝜇1post can be considered as the treatment effect. Here, we do not assume normality.

3.2 Longitudinal models and asymptotic properties
We consider three longitudinal models for pre- and posttreatment measurements under random allocation in this section and four

ANCOVAs additionally in the next section for comparison. Table 1 shows the summary of these models. The first longitudinal
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model is the data-generating model, and we abbreviate it EMVUV from Equal baseline Means and Variances and Unequal

covariances and posttreatment Variances. The model is

𝐘𝑖𝑗 = 𝐗𝑖𝑗 𝜷 + 𝜺𝑖𝑗 ,

where

𝐘𝑖𝑗 =
(
𝑌𝑖𝑗1
𝑌𝑖𝑗2

)
, 𝐗𝑖𝑗 =

(
1 0 0
1 1 𝑥𝑖𝑗

)
, 𝜷 =

⎛⎜⎜⎝
𝛽int
𝛽t
𝛽trt

⎞⎟⎟⎠, 𝜺𝑖𝑗 =
(
𝜀𝑖𝑗1
𝜀𝑖𝑗2

)
, Cov

(
𝜺𝑖𝑗

)
=

(
𝜎2pre 𝜎𝑖 cov
𝜎𝑖 cov 𝜎2

𝑖 post

)
,

𝑥𝑖𝑗 = 0 for 𝑖 = 1, and 𝑥𝑖𝑗 = 1 for 𝑖 = 2. 𝜀𝑖𝑗𝑘 is a random error. Here, 𝛽int = 𝜇pre, 𝛽int + 𝛽t = 𝜇1post , and 𝛽int + 𝛽t + 𝛽trt = 𝜇2post .

𝛽t is the time effect in the first group and 𝛽t + 𝛽trt is the time effect in the second group. We are interested in 𝛽trt = 𝜇2post − 𝜇1post .

It is the difference in the posttreatment means between groups.

In EMUV, Equal baseline Means and Unequal Variance matrices, the variance–covariance matrices differ between groups.

This model has a redundant parameter, because 𝜎21pre and 𝜎22pre are used instead of common 𝜎2pre. In EMEV, Equal baseline

Means and Equal Variance matrices, the variance–covariance matrices are common between groups. This model is incorrect

under the situation that the covariances and posttreatment variances are different between groups, because 𝜎cov and 𝜎2post are

used instead of 𝜎1cov, 𝜎2cov, 𝜎21post , and 𝜎22post .

For each model, the maximum likelihood estimators of 𝜷 are obtained by 𝜷̂ = (𝐗′𝐕−1𝐗)−1 𝐗′𝐕−1𝐘. Here, 𝐘 =
(𝐘′

11,… ,𝐘′
1𝑛1

,𝐘′
21,… ,𝐘′

2𝑛2
)′ and 𝐗 = (𝐗′

11,… ,𝐗′
1𝑛1

,𝐗′
21,… ,𝐗′

2𝑛2
)′. 𝐕 is a 2(𝑛1 + 𝑛2) × 2(𝑛1 + 𝑛2) block diagonal matrix

of 𝐕 = diag(𝐕11,… ,𝐕1𝑛1 ,𝐕21,… ,𝐕2𝑛2 ) with 𝐕𝑖𝑗 = Cov(𝜺𝑖𝑗). The model-based asymptotic variance of 𝛽trt is given by the

corresponding element of Cov (𝜷̂) = (𝐗′𝐕−1𝐗)−1.

We provide the asymptotic variances of 𝛽trt for the three longitudinal models. Table 2 summarizes the asymptotic variances.

Here and throughout, we neglect o(1∕𝑁) terms with 𝑁 = 𝑛1 + 𝑛2. For EMVUV, the asymptotic variance of 𝛽trt is given as

formula (I) in Table 2. EMUV has a redundant parameter. The asymptotic variance of 𝛽trt is

(
1
𝑛1

+ 1
𝑛2

)⎧⎪⎨⎪⎩
(
𝑛2𝜎

2
1post + 𝑛1𝜎

2
2post

𝑛1 + 𝑛2

)
−

(
𝑛1𝜎

2
1pre + 𝑛2𝜎

2
2pre

𝑛1 + 𝑛2

)−1(
𝑛2𝜎1cov + 𝑛1𝜎2cov

𝑛1 + 𝑛2

)2⎫⎪⎬⎪⎭ ,

and it is the same as formula (I) under random allocation with 𝜎21pre = 𝜎22pre.

For EMEV, the assumed model is incorrect. The asymptotic variance of 𝛽trt under random allocation is the 3,3-th element of

E[(𝐗′𝐕−1𝐗)−1{(𝐗′𝐕−1Var(𝐘)𝐕−1𝐗)}(𝐗′𝐕−1𝐗)−1], and it is given as formula (II) in Table 2. However, the model-based asymp-

totic variance of 𝛽trt under random allocation is the 3,3-th element of E[(𝐗′𝐕−1𝐗)−1]. Table 3 shows model-based asymptotic

variances which are biased from asymptotic variances given in Table 2, and the bias, model-based asymptotic variance minus

asymptotic variance. For EMEV, there are both conservative and liberal cases under unequal sample sizes, and there is no bias

under equal sample sizes. Under equal sample sizes, the asymptotic variances of EMVUV, EMUV, and EMEV are the same and

these are given as formula (VI) in Table 2.

3.3 ANCOVA and t-test and asymptotic properties
In this section, we show the asymptotic variances of the treatment effect estimators in four ANCOVAs and four t-tests. The

ordinary least squares (OLS) estimator of the treatment effect in the ANCOVA with equal slopes and equal residual variances,

ANCOVA_ESEV, is a consistent estimator under random allocation and its asymptotic variance is the same as formula (II) or

formula (VI) for 𝑛1 = 𝑛2 in Table 2 (Funatogawa et al., 2011; Yang & Tsiatis, 2001). The asymptotic variance, model-based

asymptotic variance, and its bias are given in Funatogawa et al. (2011), and these are the same as those of EMEV.

Funatogawa et al. (2011) showed the properties of the ANCOVA with equal slopes and unequal residual variances,

ANCOVA_ESUV, under random allocation. The generalized least squares (GLS) estimator of the treatment effect is obtained

by 𝜷̂gls = (𝐗′𝐕−1𝐗)−1 𝐗′𝐕−1𝐘. Here, 𝐘 = (𝑌112,… , 𝑌1𝑛12, 𝑌212,… , 𝑌2𝑛22) and 𝐗 = (𝐗11,… ,𝐗1𝑛1 ,𝐗21,… ,𝐗2𝑛2 ) with 𝐗𝑖𝑗 =
(1 𝑌𝑖𝑗1 𝑥𝑖𝑗 ) and 𝜷 = ( 𝛽int 𝛽slope 𝛽trt )′. 𝐕 is an (𝑛1 + 𝑛2) × (𝑛1 + 𝑛2) diagonal matrix whose 𝑙-th diagonal elements are

the residual variances 𝜎21res (𝑙 = 1,… , 𝑛1) and 𝜎22res (𝑙 = 𝑛1 + 1,… , 𝑛1 + 𝑛2). The asymptotic variance of 𝛽trt is given as formula

(III) or (VII) for 𝑛1 = 𝑛2 in Table 2. Because 𝜎21res and 𝜎22res are unknown, we often estimate these variances using likelihood-

based methods under the assumption of normality. Consequently, this estimator is based on maximum likelihood methods.
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T A B L E 2 Asymptotic variances of the treatment effect estimators for the longitudinal models, ANCOVAs, and t-tests under random allocation

in the cases of (A) arbitrary allocation ratios and (B) equal sample sizes

Methods Asymptotic variances of 𝜷𝐭𝐫𝐭
(A) Arbitrary 𝑛1, 𝑛2

EMVUV

EMUV

ANCOVA_USa

(
1
𝑛1

+ 1
𝑛2

){(
𝑛2𝜎

2
1post + 𝑛1𝜎

2
2post

𝑛1 + 𝑛2

)
− 1

𝜎2
pre

(
𝑛2𝜎1cov + 𝑛1𝜎2cov

𝑛1 + 𝑛2

)2
}

(I)

EMEV

ANCOVA_ESEV

(
1
𝑛1

+ 1
𝑛2

){(
𝑛2𝜎

2
1post + 𝑛1𝜎

2
2post

𝑛1 + 𝑛2

)
− 1

𝜎2
pre

(
𝑛1𝜎1cov + 𝑛2𝜎2cov

𝑛1 + 𝑛2

)(
𝑝𝜎1cov + 𝑞𝜎2cov

𝑝 + 𝑞

)}
(II)

where 𝑝 = 2𝑛2 − 𝑛1 and 𝑞 = 2𝑛1 − 𝑛2.

ANCOVA_ESUV

(
1
𝑛1

+ 1
𝑛2

){(
𝑛2𝜎

2
1post + 𝑛1𝜎

2
2post

𝑛1 + 𝑛2

)
− 1

𝜎2
pre

(
𝑛∗1𝜎1cov + 𝑛∗2𝜎2cov

𝑛∗1 + 𝑛∗2

)(
𝑝∗𝜎1cov + 𝑞∗𝜎2cov

𝑝∗ + 𝑞∗

)}
(III)

where 𝑛∗1 = 𝑛1∕𝜎2
1res, 𝑛

∗
2 = 𝑛2∕𝜎2

2res, 𝑝
∗ = 2𝑛2 − 𝑛∗1(𝑛1 + 𝑛2)∕(𝑛∗1 + 𝑛∗2), and

𝑞∗ = 2𝑛1 − 𝑛∗2(𝑛1 + 𝑛2)∕(𝑛∗1 + 𝑛∗2).

t-test_Changea

(
1
𝑛1

+ 1
𝑛2

){(
𝑛2𝜎

2
1post + 𝑛1𝜎

2
2post

𝑛1 + 𝑛2

)
+ 𝜎2

pre − 2
(
𝑛2𝜎1cov + 𝑛1𝜎2cov

𝑛1 + 𝑛2

)}
(IV)

t-test_Posta
(

1
𝑛1

+ 1
𝑛2

)(
𝑛2𝜎

2
1post + 𝑛1𝜎

2
2post

𝑛1 + 𝑛2

)
(V)

(B) Under 𝑛1 = 𝑛2 = 𝑛

EMVUV

EMUV

EMEV

ANCOVA_USa

ANCOVA_ESEV

2
𝑛

{(
𝜎2
1post + 𝜎2

2post

2

)
− 1

𝜎2
pre

(
𝜎1cov + 𝜎2cov

2

)2
}

(VI)

ANCOVA_ESUV
2
𝑛

{(
𝜎2
1post + 𝜎2

2post

2

)
− 1

𝜎2
pre

(
𝜎2
2res𝜎1cov + 𝜎2

1res𝜎2cov

𝜎2
1res + 𝜎2

2res

)(
𝜎2
1res𝜎1cov + 𝜎2

2res𝜎2cov

𝜎2
1res + 𝜎2

2res

)}
(VII)

t-test_Changea 2
𝑛

{(
𝜎2
1post + 𝜎2

2post

2

)
+ 𝜎2

pre − 2
(
𝜎1cov + 𝜎2cov

2

)}
(VIII)

t-test_Posta
2
𝑛

(
𝜎2
1post + 𝜎2

2post

2

)
(IX)

aThe estimates with equal and unequal variances are identical for ANCOVAs with unequal slopes and t-tests.

In the ANCOVA with unequal slopes, the difference of expected values of posttreatment measurements between groups

depends on pretreatment measurements, and the treatment effect is often estimated at the observed mean of pretreatment

measurements. In the ANCOVA of unequal slopes with equal residual variances, ANCOVA_USEV, the OLS estimator of the

treatment effect at the observed mean is a consistent estimator for the treatment effect at the true mean (Yang & Tsiatis, 2001).

This OLS estimator is identical with the GLS estimator for the ANCOVA of unequal slopes with unequal residual variances,

ANCOVA_USUV. The asymptotic variance of the treatment effect estimator is the same as formula (I) in Table 2 (Funatogawa

& Funatogawa, 2011; Yang & Tsiatis, 2001). However, it differs from the model-based asymptotic variances given in Table 3.

In ANCOVA_USUV irrespective of equal or unequal sample sizes and ANCOVA_USEV under equal sample sizes, the bias

is (𝜎1cov − 𝜎2cov)2{(𝑛1 + 𝑛2)𝜎2pre}
−1, and the model-based variances are always underestimated and the tests are liberal. This is

caused because it is not corrected for estimating the unknown pretreatment expectation (Chen, 2006; Funatogawa & Funatogawa,

2011; Winkens et al., 2007). In ANCOVA_USEV under unequal sample sizes, there are both conservative and liberal cases.

The point estimate of the t-test on change with unequal variances, t-test_ChangeUV, is the same as that with equal variances,

t-test_ChangeEV. Under random allocation with 𝜎21pre = 𝜎22pre, it is given as formula (IV) or (VIII) for 𝑛1 = 𝑛2 in Table 2. The

point estimate of the t-test on posttreatment measurements with unequal variances, t-test_PostUV, is the same as that with

equal variances, t-test_PostEV, and the asymptotic variance of the treatment effect estimator is given as formula (V) or (IX) for

𝑛1 = 𝑛2 in Table 2. The model-based asymptotic variances are correct in t-test_ChangeUV and t-test_PostUV irrespective of

equal or unequal sample sizes and t-test_ChangeEV and t-test_PostEV under equal sample sizes. However, these are incorrect

in t-test_ChangeEV and t-test_PostEV under unequal sample sizes as given in Table 3.
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T A B L E 3 Biased model-based asymptotic variances of the treatment effect estimators, bias, and bias under equal sample sizes

Methods Model-based asymptotic variances of 𝜷𝐭𝐫𝐭 , Biasa, Bias under 𝒏𝟏= 𝒏𝟐

EMEV

ANCOVA_ESEV

(
1
𝑛1

+ 1
𝑛2

){(
𝑛1𝜎

2
1post + 𝑛2𝜎

2
2post

𝑛1 + 𝑛2

)
− 1

𝜎2
pre

(
𝑛1𝜎1cov + 𝑛2𝜎2cov

𝑛1 + 𝑛2

)2
}

,

(𝑛1 − 𝑛2)
(
𝜎2
1post − 𝜎2

2post
)

𝑛1𝑛2
−

2(𝑛1 − 𝑛2)(𝑛1𝜎1cov + 𝑛2𝜎2cov)(𝜎1cov − 𝜎2cov)
𝑛1𝑛2(𝑛1 + 𝑛2)𝜎2

pre
, 0

ANCOVA_USEV

(
1
𝑛1

+ 1
𝑛2

){(
𝑛1𝜎

2
1post + 𝑛2𝜎

2
2post

𝑛1 + 𝑛2

)
− 1

𝜎2
pre

(
𝑛1𝜎

2
1cov + 𝑛2𝜎

2
2cov

𝑛1 + 𝑛2

)}
,

(𝑛1 − 𝑛2)
(
𝜎2
1post − 𝜎2

2post
)

𝑛1𝑛2
−

(𝑛1 − 𝑛2)
(
𝜎2
1cov − 𝜎2

2cov
)

𝑛1𝑛2𝜎
2
pre

−
(𝜎1cov − 𝜎2cov)2

(𝑛1 + 𝑛2)𝜎2
pre

,

(𝜎1cov − 𝜎2cov)2

(𝑛1 + 𝑛2)𝜎2
pre

ANCOVA_USUV

(
1
𝑛1

+ 1
𝑛2

){(
𝑛2𝜎

2
1post + 𝑛1𝜎

2
2post

𝑛1 + 𝑛2

)
− 1

𝜎2
pre

(
𝑛2𝜎

2
1cov + 𝑛1𝜎

2
2cov

𝑛1 + 𝑛2

)}
,

(𝜎1cov − 𝜎2cov)2

(𝑛1 + 𝑛2)𝜎2
pre

,
(𝜎1cov − 𝜎2cov)2

(𝑛1 + 𝑛2)𝜎2
pre

t-test_ChangeEV

(
1
𝑛1

+ 1
𝑛2

){(
𝑛1𝜎

2
1post + 𝑛2𝜎

2
2post

𝑛1 + 𝑛2

)
+ 𝜎2

pre − 2
(
𝑛1𝜎1cov + 𝑛2𝜎2cov

𝑛1 + 𝑛2

)}
,

(𝑛1 − 𝑛2)
(
𝜎2
1post − 𝜎2

2post
)

𝑛1𝑛2
−

2(𝑛1 − 𝑛2)(𝜎1cov − 𝜎2cov)
𝑛1𝑛2

, 0

t-test_PostEV

(
1
𝑛1

+ 1
𝑛2

)(
𝑛1𝜎

2
1post + 𝑛2𝜎

2
2post

𝑛1 + 𝑛2

)
,
(𝑛1 − 𝑛2)

(
𝜎2
1post − 𝜎2

2post
)

𝑛1𝑛2
, 0

aThe bias is calculated by model-based asymptotic variance minus asymptotic variance.

3.4 Comparison of asymptotic variances
In this section, we compare the asymptotic variances of the treatment effect estimators. Let 𝑉I to 𝑉V be the asymptotic variances

for formulae (I)–(V) shown in Table 2. We compare 𝑉I with the other asymptotic variances. VII–VI is

(
1
𝑛1

+ 1
𝑛2

)
1

𝜎2pre

(
𝑛1 − 𝑛2
𝑛1 + 𝑛2

)2(
𝜎1cov − 𝜎2cov

)2
. (1)

Therefore, 𝑉I ≤ 𝑉II, and equality holds under equal sample sizes. Although equality also holds under equal covariances, we

consider data with unequal covariances in this paper. The formula (1) is the same as the difference of the asymptotic variances

between the ANCOVA_ESEV and ANCOVA_USEV in Funatogawa and Funatogawa (2011). 𝑉I ≤ 𝑉III from the difference of the

asymptotic variances between the ANCOVA_ESUV and ANCOVA_USEV in Funatogawa and Funatogawa (2011). 𝑉IV − 𝑉I is

(
1
𝑛1

+ 1
𝑛2

)
1

𝜎2pre

(
𝜎2pre −

𝑛2𝜎1cov + 𝑛1𝜎2cov
𝑛1 + 𝑛2

)2
. (2)

Therefore, 𝑉I ≤ 𝑉IV, and equality holds when the pretreatment variance equals the weighted mean of covariances. Under

𝑛1 = 𝑛2, formula (2) is 2𝑛−1𝜎−2pre{𝜎
2
pre − (𝜎1cov + 𝜎2cov)∕2}2, and 𝑉I = 𝑉II ≤ 𝑉IV. Lastly, 𝑉I ≤ 𝑉V.

4 SIMULATION STUDIES AND NUMERICAL EXAMPLE

4.1 Simulation studies
For continuous pre- and posttreatment measurements in randomized trials, we compared the following methods: three longitudi-

nal models, four ANCOVAs, and four 𝑡-tests. We compared actual type I error rates of these methods with a two-sided nominal
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type I error rate of 5% and root relative mean squared errors (RRMSE) in simulated experiments. We simulated 100,000 data

sets with unequal covariances and posttreatment variances by the following model:

(
𝑌𝑖𝑗1
𝑌𝑖𝑗2

)
∼ MVN

{(
𝜇pre
𝜇𝑖 post

)
,

(
𝜎2pre 𝜎𝑖 cov
𝜎
𝑖 cov 𝜎2

𝑖 post

)}
,

where 𝑌𝑖𝑗𝑘 is, for the 𝑖-th (𝑖 = 1, 2) treatment group, the measurement of the 𝑗-th (𝑗 = 1,… , 𝑛𝑖) subject at the 𝑘-th (𝑘 = 1, 2)
time. MVN represents a multivariate normal distribution. If an actual type I error rate is 5%, the 95% confidence interval is

4.86–5.14% with 100,000 data sets.

We set the parameters of variance–covariance matrices as (𝜎2pre, 𝜎𝑖 cov, 𝜎
2
𝑖 post ) = (25, 15, 59) for Group 1 (𝑖 =1) and

(25, 23, 30) for Group 2 (𝑖 = 2). For the parameter setting, we refer to the estimates of the blood lead data introduced in

Section 2, as well as Funatogawa et al. (2011) and Funatogawa and Funatogawa (2011). Note that the means and variances of

pretreatment measurements are equal between groups. In this parameter setting, the residual variances of Group 1 and Group 2

are about 50 and 10 in the ANCOVA, 54 and 9 in the 𝑡-test on change and 59 and 30 in the 𝑡-test on posttreatment measurements.

In each method, Group 1 has a larger variance. The slopes in the ANCOVA are 15/25 = 0.6 and 23/25 ≈ 0.9, respectively, and

the correlation coefficients between pre- and posttreatment measurements are 15∕(
√
25
√
59) ≈ 0.4 and 23∕(

√
25
√
30) ≈ 0.8,

respectively.

The sample sizes in each group are set to (𝑛1, 𝑛2) = (300, 300), (400, 200), and (200, 400) as large sample-size situations.

In the first case, sample sizes are equal, in the second case, a group with a large sample size has a larger variance (𝑛1 > 𝑛2),
and in the last case, a group with a larger sample size has a smaller variance (𝑛1 < 𝑛2). Similarly, the numbers are also set

to (𝑛1, 𝑛2) = (45, 45), (60, 30), and (30, 60) as moderate sample-size situations. We use the Kenward–Roger approximation

(Kenward & Roger, 1997) for longitudinal models and the Satterthwaite approximation for the degrees of freedom (Satterthwaite,

1946) for the ANCOVAs and t-tests. To obtain actual type I error rates, we calculate the proportions of data sets in which

a significant difference was detected under 𝜇1post = 𝜇2post . Note that the proportions for which the true treatment effect is

included in the 95% confidence intervals (coverage proportion) are expressed by subtracting the actual type I error rates (%)

from 100% under 𝜇1post ≠ 𝜇2post . In the simulation studies and analysis of numerical examples in the next section, we use the
SAS 9.4, SAS proc MIXED for the longitudinal models and ANCOVAs, SAS proc ttest for the t-tests. The program codes

of the longitudinal models are provided in the Appendix. The program codes of the ANCOVAs are provided in Funatogawa

and Funatogawa (2011). Source code to reproduce the results is available as Supporting Information on the journal’s web page

(http://onlinelibrary.wiley.com/doi/10.1002/bimj.201800389/suppinfo).

The results are shown in Table 4. In large sample sizes, the actual type I error rates of the two longitudinal models with

unequal variances (EMVUV and EMUV) were close to the nominal level, even in unequal sample sizes. The ANCOVA with

equal slopes and unequal residual variances (ANCOVA_ESUV), and the t-tests with unequal variances were also close to the

nominal level. The actual type I error rates of the longitudinal models with equal variance matrices (EMEV), ANCOVA_ESEV,

and the t-tests with equal variances were close to the nominal level only in equal sample sizes. The ANCOVAs with unequal

slopes (ANCOVA_USs: ANCOVA_USUV and ANCOVA_USEV) did not keep a nominal type I error rate even in equal sample

sizes. The actual type I error rates of the methods with equal variances (EMEV, ANCOVA_ESEV, ANCOVA_USEV, and t-tests

with equal variances) were less than 5%, that is conservative, when the group with a larger variance had a larger sample size

(𝑛1 > 𝑛2), and these were more than 5%, that is liberal, when the group with a larger variance had a smaller sample size (𝑛1 < 𝑛2).

The RRMSEs of EMVUV and ANCOVA_USs (ANCOVA_USUV and ANCOVA_USEV) were the smallest in large sample

sizes irrespective of allocation ratios. However, ANCOVA_USs did not keep a nominal type I error rate. The RRMSEs of

EMUV, which has redundant unequal baseline variances, were the second smallest. In equal sample sizes, the RRMSEs of

EMEV and ANCOVA_ESEV were also the second smallest. The RRMSEs of the best and second-best models were similar,

and the differences were too small to be detected in Table 4. The ANCOVA with equal slopes and unequal residual variances

(ANCOVA_ESUV) was less efficient compared to EMVUV, EMUV, and ANCOVA_USs, but the loss of efficiency was small

compared to the t-tests on change. The t-test on posttreatment measurements was not efficient.

In moderate sample sizes, the results were similar with those of large sample sizes. Under (𝑛1, 𝑛2) = (30, 60), the actual

type I error rates were 5.11 for EMVUV and EMUV, and slightly larger than the nominal level of 5%. Under (𝑛1, 𝑛2) =
(45, 45), the actual type I error rates were slightly larger than the nominal level for the methods with equal variances (EMEV,

ANCOVA_ESEV, t-test_ChangeEV, and t-test_PostEV). Under (𝑛1, 𝑛2) = (30, 60), EMEV and ANCOVA_ESEV showed

slightly better efficiency than EMVUV, EMUV, and ANCOVA_USs, but these models with equal variances did not keep a

nominal type I error rate.

http://onlinelibrary.wiley.com/doi/10.1002/bimj.201800389/suppinfo
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T A B L E 4 Actual type I error rates and RRMSEs in the simulation studies for the data with unequal covariances and unequal variances of

posttreatment measurements under random allocation with large and moderate sample sizes

Large sample sizesa Moderate sample sizesa

300:300 400:200 200:400 45:45 60:30 30:60
Type I error rate (%)

Longitudinal EMVUV

EMUV

EMEV

4.95

4.95

4.97

4.89

4.87

1.36

4.98

4.99

12.20

5.04

5.02

5.18

5.02

5.02

1.51

5.11

5.11

12.42

ANCOVA USUV

USEV

ESUV

ESEV

5.20

5.23

4.96

4.97

5.16

1.38

4.87

1.36

5.13

12.57

4.95

12.20

5.28

5.44

5.01

5.16

5.33

1.43

5.02

1.51

5.24

13.00

5.02

12.39

t-test ChangeUV

ChangeEV

PostUV

PostEV

5.01

5.03

5.02

5.02

4.89

1.22

4.96

2.84

4.94

12.39

4.98

7.89

5.04

5.19

5.07

5.08

4.97

1.36

4.96

2.91

4.99

12.71

5.01

7.92

RRMSE

Longitudinal EMVUV

EMUV

EMEV

4.07

4.07

4.07

3.78

3.78

3.80

4.78

4.78

4.79

10.6

10.6

10.6

9.8

9.8

9.9

12.5

12.5

12.4

ANCOVA USb

ESUV

ESEV

4.07

4.09

4.07

3.78

3.78

3.80

4.78

4.83

4.79

10.6

10.6

10.6

9.8

9.8

9.9

12.5

12.5

12.4

t-test Changeb

Postb
4.16

4.96

3.84

4.96

4.91

5.53

10.8

12.8

10.0

12.8

12.7

14.3

aSample size of the group with a larger variance: sample size of the group with a smaller variance.
bThe estimates with equal and unequal variances are identical for ANCOVAs with unequal slopes and t-tests.

T A B L E 5 Estimates of the treatment effect in numerical example

Equal sample sizesa Unequal sample sizesa Unequal sample sizesa

50:50 50:25 25:50
Estimate SE Estimate SE Estimate SE

Longitudinal EMVUV

EMUV

EMEV

11.23

11.23

11.23

1.13

1.13

1.13

10.26

10.25

10.39

1.25

1.25

1.55

11.45

11.44

11.43

1.34

1.34

1.10

ANCOVA USUV

USEV

ESUV

ESEV

11.23

*

11.24

11.23

1.11

1.11

1.13

1.12

10.26

*

10.24

10.39

1.23

1.53

1.25

1.54

11.45

*

11.42

11.43

1.31

1.07

1.34

1.09

t-test ChangeUV

ChangeEV

PostUV

PostEV

11.26

**

11.13

***

1.15

**

1.34

***

10.11

**

11.09

***

1.25

1.57

1.66

1.78

11.41

**

11.51

***

1.37

1.11

1.50

1.43

aSample size of the active group with a larger variance: sample size of the placebo group with a smaller variance.
*The estimates with equal and unequal variances are identical for ANCOVAs with unequal slopes.
**The values are identical with those of t-test_ChangeUV.
***The values are identical with those of t-test_PostUV.

4.2 Numerical example
We applied the statistical methods to the numerical examples shown in Section 2, and the results are shown in Table 5. The sample

sizes of the active and placebo groups are 𝑛1 and 𝑛2, respectively, and the posttreatment variance of the active group is larger

than that of the placebo group. When 𝑛1 = 𝑛2 = 50, the treatment effect estimates of EMVUV, EMUV, EMEV, ANCOVA_USs,

and ANCOVA_ESEV were almost the same, and the standard errors (SEs) were also similar.
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We then examined the influences of unequal sample sizes reducing half of data from one group; (𝑛1, 𝑛2) = (50, 25) as the

case a group with a large sample size has a larger variance and (𝑛1, 𝑛2) = (25, 50) as the case a group with a large sample

size has a smaller variance. These data are shown in Figure 1. The SEs of the methods with unequal variances (EMVUV,

EMUV, ANCOVA_USUV, ANCOVA_ESUV, and t-test_ChangeUV) under (𝑛1, 𝑛2) = (50, 25) were smaller than those under

(𝑛1, 𝑛2) = (25, 50). These SEs under reduced sample sizes were larger than those under equal sample sizes, (𝑛1, 𝑛2) = (50, 50).
In contrary, the SEs of the methods with equal variances (EMEV, ANCOVA_USEV, ANCOVA_ESEV, and t-test_ChangeEV)

under (𝑛1, 𝑛2) = (50, 25) were larger than those under (𝑛1, 𝑛2) = (25, 50) and the SEs of the above methods with unequal vari-

ances under (𝑛1, 𝑛2) = (50, 25). The SEs of the methods with equal variances under (𝑛1, 𝑛2) = (25, 50) were even smaller

than those under the equal sample sizes (𝑛1, 𝑛2) = (50, 50), although the former data are the reduced sample from the lat-

ter data. These results were caused by the wrong assumption of equal variances, and these models were conservative under

𝑛1 > 𝑛2 and liberal under 𝑛1 < 𝑛2. These results of these numerical examples correspond to those of the simulation stud-

ies. Because the t-test on posttreatment measurements does not take into account the baseline measurements and the ratio

of posttreatment variances was not relatively large in this example, the results of this method differed from those of the other

methods.

5 DISCUSSION

Longitudinal models with equal baseline means and unequal covariances and posttreatment variances (EMVUV and EMUV)

asymptotically keep a type I error rate and these are efficient in randomized trial. The assumption of equal baseline variances

is not important for efficiency. Statistical models asymptotically do not keep nominal type I error rates if the model-based

asymptotic variance differs from the asymptotic variance, and these models are shown in Table 3 including ANCOVAs and

t-tests. The discrepancies occur by two reasons: the equal variance assumption and unequal slope assumption. Under equal

sample sizes, the discrepancies caused by the equal variance assumption disappear, but the discrepancies caused by equal slope

assumption still exist. The longitudinal model with equal variance matrices (EMEV) asymptotically keeps a type I error rate

and its efficiency is the same as EMVUV and EMUV under equal sample sizes, but it does not keep a type I error rate under

unequal sample sizes.

Funatogawa and Funatogawa (2011) provided the details of the order of the asymptotic efficiency for the treatment effect

estimators among ANCOVAs. Based on Tables 2 and 3, EMVUV and EMUV correspond to ANCOVAs with unequal slopes

(ANCOVA_USUV and ANCOVA_USEV) regarding only the point estimate of the treatment effect. ANCOVA_USUV and

ANCOVA_USEV have the same high efficiency as EMVUV and EMUV, but asymptotically do not keep a type I error rate.

EMEV corresponds to the ANCOVA with equal slopes and equal residual variances (ANCOVA_ESEV) regarding the point

estimate and the model-based variances. EMEV and ANCOVA_ESEV have the same characteristics. The ANCOVA with equal

slopes and unequal residual variances (ANCOVA_ESUV) asymptotically keeps a type I error rate and the loss of efficiency is

small under either equal or unequal sample sizes. When there are missing data, the longitudinal models use all observed data,

but the ANCOVAs and t-tests on change use only paired data.

Unequal allocation of patients to treatments is sometimes applied in clinical trials. The following properties are known for

the t-test with equal variances, the Student’s t-test (Algina, 2005). In unequal sample sizes and unequal variances, the actual

type I error rate is not at a nominal. The actual rate is over a nominal level when a group with a large sample size has a smaller

variance, and that is under a nominal level when a group with a large sample size has a larger variance. These properties are

applied to the ANCOVAs with equal residual variances (Funatogawa & Funatogawa, 2011; Funatogawa et al., 2011) and the

longitudinal model with equal variance matrices. Because large discrepancies from the nominal rate can occur, the longitudinal

model with equal variance matrices should not be used when the sample sizes and covariances and variances of posttreatment

measurements are unequal between groups.

Funatogawa et al. (2011) discussed a conceptual data-generating model under random allocation with two random subject

effects for the true pre- and posttreatment measurements, respectively. The number of the variance parameters in this model is

too large to estimate from the pre- and posttreatment measurements data. Crager (1987) considered a model assuming a common

random subject effect for the true pre- and posttreatment measurements. The variance–covariance matrices are equal between

two groups, and the model corresponds to EMEV in this paper.

In this paper, we examined longitudinal models with equal baseline means because of random allocation. Under ran-

dom allocation, the longitudinal model with unequal baseline means and unequal variance–covariance matrices has redun-

dant parameters. Let 𝜇𝑖 pre be the pretreatment mean of the 𝑖-th treatment group. The treatment effect is estimated by
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(𝜇2post − 𝜇2pre) − (𝜇1post − 𝜇1pre) based on this model. It corresponds to the t-test on change with unequal variances regarding

the point estimate and the model-based variance, and those are identical if there are no missing data. The asymptotic variance is

(
1
𝑛1

+ 1
𝑛2

){(
𝑛2𝜎

2
1post + 𝑛1𝜎

2
2post

𝑛1 + 𝑛2

)
+

(
𝑛2𝜎

2
1pre + 𝑛1𝜎

2
2pre

𝑛1 + 𝑛2

)
− 2

(
𝑛2𝜎1cov + 𝑛1𝜎2cov

𝑛1 + 𝑛2

)}
.

Under random allocation with 𝜎21pre = 𝜎22pre, the asymptotic variance is given as formula (IV) for arbitrary allocation ratios

or formula (VIII) for 𝑛1 = 𝑛2 in Table 2. The treatment effect is also estimated by 𝜇2post − 𝜇1post based on this model. It

corresponds to the t-test on posttreatment measurements with unequal variances, and those are identical if there are no missing

data. These are less efficient. The assumption of equal baseline means is important for efficiency.
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APPENDIX

A.1 Program codes

We provide the SAS codes of the MIXED procedure to obtain estimates of the longitudinal models of EMVUV and EMUV in

Section 3.2. For EMEV, just remove the GROUP = trt option from the REPEATED statement of EMUV. In the following code,

y is pre- and posttreatment measurements, no is an indicator of subjects, trt is a continuous variable for the groups taking 0 or

1, t is a continuous variable for the time taking 0 at the pretreatment and 1 at the posttreatment. Time1 is a discrete variable and

takes two levels, such as time1 = t. Time2 is a discrete variable and takes three levels. For example, time2 = 0 if t = 0, time2 = 1

if t = 1 and trt = 0, and time2 = 2 if t = 1 and trt = 1.

/* Longitudinal EMVUV: equal baseline means and variances and unequal covariances and posttreatment variances */

PROC MIXED METHOD = REML;

CLASS no time2;

MODEL y = t trt*t/ DDFM = KR;

REPEATED time2/ TYPE = UN SUBJECT = no;

ESTIMATE ‘diff’ trt*t -1;

RUN;

/* Longitudinal EMUV: equal baseline means and unequal variance covariance matrices */

PROC MIXED METHOD = REML;

CLASS no time1;

MODEL y = t trt*t/ DDFM = KR;

REPEATED time1/ TYPE = UN SUBJECT = no GROUP = trt;

ESTIMATE ‘diff’ trt*t -1;

RUN;
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