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Development of survival predictors for high-grade
serous ovarian cancer based on stable radiomic features
from computed tomography images

Jiaqi Hu,1,8 Zhiwu Wang,2,8 Ruocheng Zuo,1,8 Chengcai Zheng,1,3 Bingjian Lu,1,7 Xiaodong Cheng,1,7

Weiguo Lu,4,7 Chunhui Zhao,6 Pengyuan Liu,5,7,* and Yan Lu1,7,9,*

SUMMARY

Less than 35% of advanced patients with high-grade serous ovarian cancer
(HGSOC) survive for 5 years after diagnosis. Here, we developed radiomics-
based models to predict HGSOC clinical outcomes using preoperative contrast-
enhanced computed tomography (CECT) images. 891 radiomics features were
extracted between primary, metastatic, or lymphatic lesions from preoperative
venous phase CECT images of 217 patients with HGSOC. A heuristic method, Fre-
quency Appearance in Multiple Univariate preScreening (FAMUS), was proposed
to identify stable and task-relevant radiomic features. Using FAMUS, we con-
structed predictivemodels of overall survival and disease-free survival in patients
with HGSOC based on these stable radiomic features. According to their CT im-
ages, patients with HGSOC can be accurately stratified into high-risk or low-
risk groups for cancer-related death within 2-6 years or for likely recurrence
within 1-5 years. These radiomicmodels provide convincing and reliable non-inva-
sive markers for individualized prognostic evaluation and clinical decision-making
for patients with HGSOC.

INTRODUCTION

Ovarian cancer is a leading global cause of cancer-related deaths in women, accounting for 4.7% of all fe-

male cancer deaths (Sung et al., 2021), and showing a rising trend in mortality (Chen et al., 2016). High-

grade serous ovarian cancer (HGSOC) is themost frequently occurring gynecological malignancy, account-

ing for 70-80% of ovarian cancer deaths (Bowtell et al., 2015). The 5-year survival rate of patients with

HGSOC is only 34% (Vang et al., 2009), with relapse being the main factor responsible for such a high mor-

tality rate (Vaughan et al., 2011). The identification of new biomarkers to predict clinical outcomes of

ovarian cancer, which will facilitate the timely inclusion of patients with poor prognosis into personalized

treatment strategies or clinical trials, is of high urgency.

Contrast-enhanced computed tomography (CECT) plays an essential role in HGSOC diagnosis and treat-

ment assessment, providing a low-cost and non-invasive method to extract prognostic information (Nou-

garet et al., 2017). Radiomics has been proposed to explore the correlation between medical images and

underlying genetic characteristics, enabling the generation of a comprehensive overview of the spatiotem-

poral heterogeneity of tumors. The use and applications of radiomics are similarly expanding in many

spheres of biology (Aerts et al., 2014), with varied studies showing applications for radiomics toward im-

provements in chemoradiotherapy effectiveness (Xie et al., 2019), the classification of molecular character-

istics (Rathore et al., 2018), or in distant metastasis prediction (Wu et al., 2017), and so forth.

Feature selection is a crucial step for high-dimensional data analysis in radiomics. By removing irrelevant and

‘‘noisy’’ factors, feature selection makes the overall analysis more manageable, efficient, and productive (Yu

and Liu, 2003). The sensitivity of feature selection results to sample variation has been a recent focus of discus-

sion (Kalousis et al., 2007). When applying feature selection aimed at a specific targeted discovery, the high

stability of the feature selection result is one of the key focus areas. Though various routinely used radiomic

feature selection methods have a good performance, improving the stability of features against sample vari-

ation is still desirable to further increase the robustness and efficacy of such radiomic models.
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In this work, we propose a heuristic method, termed Frequency Appearance in Multiple Univariate pre-

Screening (FAMUS), to identify radiomic features with stability against sample variation (SASV). Using

FAMUS, we construct and validate prognostic models for predicting overall survival (OS) and disease-

free survival (DFS) in patients with HGSOC based on radiomic features extracted from venous phase

enhanced-CT images of preoperative patients (Figure 1). Two sets of three most robust, non-redundant,

and predictive SASV features were selected to develop prognostic models for individualized, preopera-

tive evaluation of OS and DFS in patients with HGSOC, respectively. The performance of these two

radiomic models was evaluated using both internal and external validation cohorts. Additionally, two

nomograms were constructed in conjunction with the corresponding radiomic signatures. These are

proposed as a low-cost and non-invasive means for predicting the risk for HGSOC-related death or

relapse.

RESULTS

Clinical characteristics and outcomes of patients

A total of 217 patients with HGSOC from the Women‘s Hospital of Zhejiang University School of

Medicine and the First Affiliated Hospital of Wenzhou Medical University were enrolled in this

study. Table 1 depicts the clinical characteristics and outcomes of these patient samples in this study.

There were no significant differences between the two hospitals in age (p = 0.45), stage (p = 0.422),

metastasis lesions (p = 0. 346), or patient vital status (p = 0.88), but there was significant difference

in lymphoid lesions (p = 0.003). Between all patients, the median (IQR) death and recurrence

time were 30.0 months (17.0–46.0 months) and 17.9 months (13.0–26.7 months), respectively. The me-

dian (IQR) follow-up time for OS and DFS was 56.0 months (34.5–71 months) and 56.0 months

(35.0–70.0 months) in the censored patients, respectively. There was no significant difference in OS be-

tween the training cohort and two validation cohorts, but there was a marginal difference in DFS

(Figure S1).

Figure 1. Flowchart of building prognosis prediction models using CT images

Briefly, the steps of establishing prognosis prediction models include CT acquisition, ROI segmentation, preliminary feature selection, detection of stable

features by FAMUS, model construction, data analysis, and validation. FAMUS represents Frequency Appearance in Multiple Univariate preScreening, a

heuristic algorithm to select stable features for constructing prognosis prediction models.
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Extraction and selection of radiomic features

A total of 851 radiomic features were extracted for each patient based on the regions of interest (ROI) of CT

images, including 14 shape features, 19 histogram features, 23 Gy-level co-occurrence matrix features, 16

Gy-level size zone matrix features, 16 Gy-level run length matrix features, five neighborhood gray-tone dif-

ference matrix features, 14 Gy-level dependence matrix features and 744 wavelet-based features (Table S1

and Figure S2). Owing to the high-dimensional feature size, the feature selection procedure was performed

to remove irrelevant and redundant information whichmay greatly degrade the prognostic performance of

the learning algorithms. It included three main steps, as shown in Figure 1. Firstly, redundant features were

eliminated using the Spearman correlation coefficient (SCC). When SCC was >0.8 between two features

with p value <0.05, the one with larger p value, as calculated by univariate Cox regression, was regarded

as redundant and removed. SCC analysis revealed that a total of 130 and 93 non-redundant features

were significantly correlated with OS and DFS, respectively.

Secondly, the stability of the SCC-filtered features against sample variation was further evaluated. Small

changes in the datasets often result in a different subset of selected features. This decreases the reliability

of the feature selection results. To identify features with good stability against sample variation (SASV), a

method of Frequency Appearance in Multiple Univariate preScreening (FAMUS) was proposed (Figure 1).

In this method, a subset of samples was drawn randomly from the training dataset, and then the univariate

Cox regression model was used for selecting candidate features. A p value <0.25 instead of <0.05 was

taken as a threshold for feature prescreening as suggested (Grant et al., 2019) to avoid important covariate

variables being dropped from the model owing to stochastic variability. To obtain a more versatile subset

of data, the data were separately sampled from failing and censored patients at a sampling rate r. A total of

N samplings were performed, and the frequency of each feature appearing in the selection process was

accounted. Through our Monte Carlo simulation analysis, we determined that N = 2000 and r = 1/6

were appropriate for our study (Table S2 and Figure S3). The frequencies of SASV features are expected

Table 1. Demographic and clinical characteristics and outcomes of patients in three cohorts

Characteristics Training cohort In-valid cohort Ex-valid cohort P-valuea

Age, years (median, range) 50 (20–73) 51.5 (18–73) 55 (32–68) 0.450

Clinical stage 0.422

I 13 14 5

II 28 13 2

III 49 56 16

IV 3 4 1

Metastatic lesion 0.346

Yes 54 47 14

No 41 43 18

Lymphoid lesion 0.003

Yes 68 83 18

No 27 7 14

Death 0.880

Yes 37 15 10

No 58 75 22

Recurrence 0.068

Yes 49 31 20

No 46 59 12

Follow-up in death (month), Median (IQR) 35(18, 50) 18(12.5, 27.5) 26(18.5, 48.25) /

Follow-up in recurrence (month), Median (IQR) 24(15, 36) 15(11.5, 21) 14.5(10, 23) /

Follow-up in censored patients for OS (month), Median (IQR) 71.5(62, 92) 38(26.5, 58) 42(35.25, 60.75) /

Follow-up in censored patients for DFS, Median (IQR) 70.5(62, 86) 38(28, 56.5) 41(36, 63.75) /

aThe differences in clinical characteristics in the three cohorts were compared by using the Kruskal-Wallis test or Chi-square test.
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to be close to each other, but much higher than non-SASV features. Therefore, when sorting by the fre-

quencies of these features, there should be some degree of sharp frequency change (SFC, similar to a

change point) at the boundary between SASV and non-SASV features (Figure S3). Our Monte Carlo simu-

lation analysis demonstrated that the first SFC can preserve sufficient features and thus can be used as a

boundary to distinguish stable and unstable features (Table S2 and Figure S4). Using FAMUS, 13 and six

SASV features were identified for OS and DFS, respectively. The frequency histograms indicated the

appearance frequency of these features in FAMUS (Figures 2A and 2B).

Thirdly, these features retained after the FAMUS procedure were further subjected to variable selection

using the least absolute shrinkage and selection operator (LASSO) (Figure S5). As a result, two sets of three
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Figure 2. Frequency of radiomic features in FAMUS

(A) OS-related features.

(B) DFS-related features.
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different features were eventually selected from these stable features for OS and DFS, respectively

(Table S3).

Construction of prognostic signatures

Next, using these stable and task-relevant features, radiomics-based signatures were identified to predict

OS and DFS in patients with HGSOC using Cox proportional hazard models (Table S3). In the OS radiomic

signatures, the hazard ratios of the three stable features were 1.35, 1.46, and 1.84, respectively. In the DFS

radiomic signatures, the hazard ratios of the other three stable features were 1.34, 1.37, and 1.38, respec-

tively. To faciliate query, the radiomic signatures of OS or DFS were computed by summing the raw and

unnormalized scores of their respective three features multiplied with corresponding coefficients in the

Cox models. The radiomic signatures could be formulated as:

Radiomic signature for OS =
0:01273MNR-AL
+ 0:00913HLH GLN1
+ 3:05813 LLL IMC2
� 3:7236

Radiomic signature for DFS =
86:99123HHL CT
+ 0:48353 SD
+ 2:56903 LLL IMC2
� 45:3635

where the numerical coefficients were transformed by the inverse process of z-scores (Table S3).

Performance and validation of prognostic models

Then, the predictive performance of the radiomic models was assessed using the concordance index (C-

Index) in the training set, internal validation set, and external validation set. For OS, the C-Index was

0.791 (95% confidence interval (CI:) 0.706–0.857), 0.816 (95% CI: 0.674–0.924) and 0.858 (95% CI: 0.707–

0.942) in the training, internal validation, and external validation cohorts, respectively. For DFS, the

C-Index was 0.734 (95% CI: 0.662–0.794), 0.754 (95% CI: 0.666–0.833) and 0.700 (95% CI: 0.569–0.813) in

the same three cohorts, respectively. The receiver operation characteristics (ROC) curves showing the per-

formance of radiomics-based classifier at various classification thresholds were plotted for 2–6 years OS

and 1–5 years DFS in the three cohorts (Figure 3). The area under the ROC curves (AUC) for predicting

5-year OS was 0.844 (95% CI: 0.760–0.931) in the training cohort, 0.834 (95% CI: 0.679–0.966), and 0.803

(95% CI: 0.542–0.986) in the internal and external validation cohort, respectively (Figures 3A–3C). The

AUC for predicting the 3-year DFS was 0.769 (95% CI: 0.663–0.867) in the training cohort, 0.823 (95% CI:

0.713–0.915), and 0.733 (95% CI: 0.537–0.912) in the internal and external validation cohorts, respectively

(Figures 3D–3F). Overall, all the median AUCs for OS were higher than 0.80 and all median AUCs for

DFS were higher than 0.73. The high C-indexes and AUCs for both OS and DFS in all cohorts indicated

the good prognostic performance of the developed radiomics-based prediction models.

Kaplan-Meier survival curves were also plotted for groups stratified by the risk of 5-year OS or 3-year DFS

predicted by their radiomic models (Figure 4). The predicted low-risk group of patients had a significantly

longer OS or DFS than the high-risk group in both internal and external validation cohorts (p value <0.01,

Log rank test). Similarly, other Kaplan-Meier curves of high- and low-risk groups, stratified by different sur-

vival predictions using the developed radiomic models (Figures S6–S9), also showed significant differences

in OS or DFS between their two corresponding stratified groups in both of the validation cohorts (all p

values <0.05, Log rank test). These results consistently demonstrated that the developed models were

robust and of clinical utility in stratifying high-risk patients for the adjustment of treatment strategies ac-

cording to their preoperative CT images.

The best cut-off values, as determined by the Youden Index for low- and high-risk group stratification, are

listed in Table S4. Sensitivity, specificity, PPV, and NPV for 5-year OS and 3-year DFS under their correspond-

ing cut-off values are listed in Table 2. For example, for 5-year OS in which patients were predicted to live

Figure 3. ROC curves of newly developed prognosis prediction models in three cohorts

(A–C) The performance of 2-6 years OS prediction in the training cohort (A), internal validation cohort (B), and external validation cohort (C).

(D–F) The performance of 1-5 years of DFS prediction in the training cohort (D), internal validation cohort (E), and external validation cohort (F).
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longer than 5-year OS, these were assigned to the low-risk group, and the rest of the patients were assigned

to the high-risk group. For this, the sensitivity, specificity, PPV, andNPVwere 0.750, 0.778, 0.750, and 0.778 in

the external validation cohort, respectively. For 3-year DFS, patients that were predicted with longer than

3-year DFS were assigned into the low-risk group and otherwise assigned into the high-risk group. Here

the sensitivity, specificity, PPV, and NPV were 0.636, 0.778, 0.636, and 0.778 in the external validation cohort,

respectively. These metrics also proved the good performance of these developed radiomic modes.

Radiomic nomograms

Nomogram models that incorporate the corresponding radiomic signatures for predicting OS and DFS

were established (Figures 5A and 5C). In these nomogram models, the probability of 2–6-year survival

for OS or 1–5-year survival for DFS could be queried. It is notable that the coefficient values of the radiomic

Figure 4. Kaplan-Meier curves of high-risk and low-risk groups stratified by the developed radiomics prediction

models

(A and B) 5-year OS prediction in the internal validation cohort (A) and external validation cohort (B). For 5-year OS

prediction, patients that were predicted to live longer than 5-year OS were assigned as the low-risk group, otherwise they

were assigned as the high-risk group.

(C and D) 3-year DFS prediction in the internal validation cohort (C) and external validation cohort (D). For 3-year DFS

prediction, patients that were predicted to live longer than 3 years with DFS were assigned as the low-risk group,

otherwise they were assigned as the high-risk group. Log rank tests were used to compare the differences between the

survival curves of these paired groups.
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signature formulas were quite different because all the feature values were original and unnormalized

values. This is to facilitate the querier to directly use the original feature values instead of requiring

them to calculate the normalized values. In addition, the parameters of each feature for the Z score are

listed in Table S3.

Furthermore, the calibration curve of the radiomic nomogram used to estimate OS or DFS outcomes were

tightly distributed along the diagonal (Figures 5B and 5D), implying good agreement between prediction

and observation in training, internal, and external validation sets.

Analysis of features with the stability against sample variation

Finally, the impact of FAMUS on the performance of the developed radiomic models was assessed. Four

different feature selection strategies with FAMUS, that is, (i) SCC + FAMUS + LASSO, (ii) SCC +

FAMUS + SFFS, (iii) SCC + FAMUS + ReliefF, and (iv) SCC + FAMUS + mRMR, were compared with their

counterparts without FAMUS, that is, (i) SCC + LASSO, (ii) SCC + SFFS, (iii) SCC + ReliefF, and iv) SCC +

mRMR. In all feature selection strategies, redundant features were first filtered by SCC. Then, in the four

strategies with FAMUS, the unique features obtained via the SCC filtering were further selected by our

newly proposed FAMUS before the processing of LASSO (i.e., SCC + FAMUS + LASSO), SFFS (i.e.,

SCC + FAMUS + SFFS), ReliefF (i.e., SCC + FAMUS + ReliefF), or mRMR (i.e., SCC + FAMUS + mRMR).

In the four strategies without FAMUS, the unique features obtained after the SCC filtering were directly

processed by LASSO (i.e., SCC + LASSO), SFFS (i.e., SCC + SFFS), ReliefF (i.e., SCC + ReliefF), or mRMR

(i.e., SCC + mRMR).

At the step of FAMUS, the median frequency of features for OS and DFS was 29.1% (IQR 20.1–44.0%) and

35.3% (IQR 26.5–56.9%), respectively. Only 17% of features for OS and 8% of features for DFS were retained

in the study, indicating that most features were unstable to sample variation (Figure 2).

Average Hamming Distance (AHD) was calculated to measure the stability of the feature selection results.

Table 3 lists the AHD obtained from different methods. The four methods with FAMUS had much smaller

AHDs than their counterparts without FAMUS, suggesting that FAMUS could greatly improve the stability

of the feature selection algorithm.

Incorporating these stable features into the radiomic models improved the efficiency of survival prediction

in several aspects. Firstly, for both OS and DFS, the mean C-indexes of the four FAMUS-containing

methods were significantly higher than those of their corresponding non-FAMUS-containing methods in

both internal and external validation datasets (all p values < 0.001, paired t-test) (Figure 6). Secondly,

compared with SCC + LASSO, the performance of the other non-FAMUS-containing methods was signif-

icantly worse, but the performance of adding FUMUS was improved to be close or even better than SCC +

FAMUS + LASSO. It was also indicated that adding FAMUS to Filter (e.g., ReliefF and mRMR) or Wrapper

(e.g., SFFS) methods could benefit more than Embedded (e.g., LASSO) methods. Thirdly, the box bodies of

non-FAMUS-containing methods were longer than those of FAMUS-containing methods in all datasets for

all tasks, indicating that the latter four methods were more robust than the former four methods.

Table 2. Sensitivity, specificity, PPV, and NPV for 5-year OS and 3-year DFS under cut-off value determined using

the Youden Index

Cut-off value Sensitivity Specificity PPVa NPV

5-year OS

Training cohort 0.699 0.827 0.774 0.860 0.727

Internal validation cohort 0.776 0.824 0.714 0.778 0.769

External validation cohort 0.710 0.750 0.778 0.750 0.778

3-year DFS

Training Cohort 0.692 0.707 0.778 0.837 0.622

Internal validation cohort 0.795 0.800 0.714 0.778 0.741

External validation cohort 0.612 0.636 0.778 0.636 0.778

aPPV: positive predictive value; NPV: negative predictive value.

ll
OPEN ACCESS

8 iScience 25, 104628, July 15, 2022

iScience
Article



Furthermore, the mean C-indexes of the four non-FAMUS-containing methods between the training and

validation datasets were less consistent than those of their corresponding FAMUS-containing methods,

indicating that adding FAMUS to the construction of prognostic signatures could reducemodel overfitting.

All these results demonstrated that FAMUS could substantially improve the performance of the survival

prediction model based on feature selection methods.

DISCUSSION

In this study, the predictionmodels of OS andDFS in patients with HGSOCwere developed based on SASV

radiomic features. The effectiveness of the two models was evaluated using independent internal and

external validation datasets. Notably, as stability of the selected features against sample variation was

considered, it was demonstrated that the addition of SASV features resulted in a significant improvement

in the performance of the models. This could help to guide future clinical decision-making processes in a

reliable and reproducible fashion. Specifically, by using the developed prediction models, patients with

HGSOC can be accurately stratified into high-risk or low-risk groups of 2–6 years predictions for cancer-

related death or 1–5 years for likely recurrence, according to their CT images. This can give more detailed

information for clinicians to formulate treatment plans, providing more aggressive treatment for high-risk

patients and less aggressive treatment for low-risk patients. Finally, two nomograms based on the two cor-

responding radiomic signatures were developed, offering a low-cost, non-invasive means for predicting

the risk for HGSOC cancer-related death or relapse.

Studies have shown that radiomic analysis is feasible as a non-invasive prediction tool of prognosis

based on CT images (Rathore et al., 2018; Wu et al., 2017; Xie et al., 2019). Some previous radiomic

analyses of ovarian cancer extracted features only from primary lesions (Lu et al., 2019; Wei et al.,
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Figure 5. Radiomics nomograms constructed by the prognosis prediction models

(A) Radiomics nomogram to estimate the risk of cancer death in patients with HGSOC.

(B) 5-year OS calibration curves of the radiomics nomogram in the training cohort and combined validation cohort.

(C) Radiomics nomogram to estimate the risk of cancer recurrence in patients with HGSOC.

(D) 3-year DFS calibration curves of the radiomics nomogram in the training cohort and combined validation cohort.
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2019). However, metastatic lesions have also been significantly correlated with both OS and DFS

(Leffers et al., 2009). In our cohorts, patients with metastatic lesions had dramatically different survival

curves from ones without metastatic lesions (Figure S10). Therefore, metastatic lesions were included in

our subregions for feature extraction. Totally, 891 radiomic features were extracted from CT images in

the study, and SCC was then used to exclude redundant features which may slow down the training

process and adversely affect the performance of the prediction models. After the SCC analysis, 130

and 93 features remained for OS and DFS, respectively. In other words, about 85% (761/891) of the fea-

tures for OS and 89.6% (798/891) of the features of DFS were regarded as redundant. During feature

selection, the stability of features against sample variation was further considered, and a heuristic

method, termed FAMUS, was proposed to determine stable features. As a result, 12 features of OS

and six features of DFS were judged by FAMUS to have particularly high stability in sample variation.

Finally, LASSO, a high-performance feature selection algorithm commonly used in machine learning,

was used to select features closely related to the risk of cancer death or recurrence. Two different

sets of three features were determined to establish accurate prediction models for OS and DFS,

respectively.

Both OS and DFS prediction models showed high prognostic values with a C-index of 0.791–0.858 and

0.700–0.754 in the training, internal, and external validation cohorts, respectively. The consistent results

achieved in the validation cohorts indicated the stability of both OS and DFS models in independent

datasets. Both 2–6 years OS ROC curves and 1–5 years DFS ROC curves (Figures 3A–3F) visualized the

high performance of the two models. Furthermore, high-risk and low-risk groups of 2-6 years cancer-

related death and 1–5 years relapse were successfully stratified according to the prediction results.

An OS radiomic signature and a DFS radiomic signature were built using coefficients of features in

the prediction models. The two radiomic signatures were then used to develop a radiomic nomogram

of OS and DFS, respectively.

Though these newly developed models can provide clinicians with strong prognostic information before

therapy and help tailor treatment strategies for patients, it was worth noting that the performance of radio-

mic analysis in DFS was worse than that in OS, which is in good agreement with previous studies (Lu et al.,

2019; Wei et al., 2019). This is perhaps owing to the small number and low frequency of the SASV features of

DFS in FAMUS compared with OS (Figure 2), which highlighted the weakness of using only radiomic anal-

ysis in DFS. Further studies are needed to combine more clinical data with radiomic features for DFS to

develop better radiomic prediction models of DFS.

Previous studies on feature stability have mainly focused on the effect of different scanning settings on

radiomics features (Wei et al., 2019; Wu et al., 2017). One study focused on the influence of radiomics

itself on reliable prognostic results. Though the effect of dataset changes on feature selection results

has been studied to some extent (Pes, 2017), they have yet to be applied to practical radiomic analysis.

FAMUS proposed in the study is an effective algorithm to find prognostic features with stability against

sample variation. For our specific tasks in prognosis, the univariate Cox regression was taken as the

prescreening method in the FAMUS step. The stable features selected by FAMUS tended to have a

stronger correlation with prognosis, whereas less stable features lacked this correlation. As shown in

Figures 6A and 6B, the models trained on stable features had better performance than those trained

Table 3. AHDs of eight different methods for building OS and DFS prognosis prediction models

Methods AHD for OS AHD for DFS

SCC + FAMUS + LASSO 3.533 2.258

SCC + FAMUS + SFFS 5.021 2.351

SCC + FAMUS + ReliefF 2.713 2.035

SCC + FAMUS + mRMR 3.155 1.137

SCC + LASSO 8.460 8.456

SCC + SFFS 12.688 12.845

SCC + ReliefF 4.667 3.811

SCC + mRMR 6.959 7.482

ll
OPEN ACCESS

10 iScience 25, 104628, July 15, 2022

iScience
Article



A
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C D E F

Figure 6. Impacts of FAMUS on the performance of prognosis prediction models

Eight different methods used for constructing the prognosis prediction models are compared, including SCC + FAMUS + LASSO, SCC + LASSO, SCC +

FAMUS + SFFS, SCC + SFFS, SCC + FAMUS + ReliefF, SCC + ReliefF, SCC + FAMUS + mRMR and SCC + mRMR.

(A) OS radiomics prediction model. (B) DFS radiomics prediction model. Data are shown in boxplots. The thick line in the box is median and box spans from

Q1 (25th percentile) to Q3 (75th percentile). The whiskers extend to the most extreme observation within 1.5 times the interquartile range (Q3–Q1) from the

nearest quartile.

(C–F) Scatterplots displaying the relationship between two stable features of OS (C) or DFS (E), and the relationship between two unstable features of OS (D)

or DFS (F).
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on features selected directly from SCC. Interestingly, stable features showed distinct patterns between

high-risk and low-risk groups stratified by either OS or DFS (Figures 6C and 6E), while unstable

features did not have such distinct patterns between high-risk and low-risk groups of survival

(Figures 6D and 6F).

In conclusion, the newly developed prognosis models and their associated nomograms based on radio-

mics features have great performance in predicting the risk of OS or DFS for patients with HGSOC treated

with primary debulking surgery followed by neoadjuvant chemotherapy. The improved performance of

these prognosis prediction models is mainly attributed to the heuristic FAMUS that was used for selecting

radiomics features with the stability against sample variation. It is proposed as a convincing and reliable

model for use in radiomic signature analysis based on stable features as a non-invasive prognostic marker

for the individualized evaluation of patients with HGSOC.

Limitations of the study

Several study caveats should be acknowledged. Firstly, this is a retrospective study, and the validation co-

horts are of relatively small size. The proportion of cancer-related death cases in the internal validation co-

horts is also small. Secondly, other types of images like magnetic resonance spectroscopy and other rele-

vant pathological information normally used in clinical practice were not included in the study. Prospective

trials are thus required in future studies to address these limitations. Thirdly, the cut-off value of FAMUSwas

determined empirically and subjectively, which means it may not be optimal and some stable features may

have been removed. Although stable features selected by FAMUS exhibited excellent performance in the

prognostic prediction in the present study, an objective method to determine the exact cut-off value

should be fine-tuned in further studies to solve these limitations. Lastly, in a study, based upon a fairly local-

ized Chinese cohort, any potential racial or geographic disparities in histological and clinical features may

also require consideration before global application.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Yan Lu (yanlu76@zju.edu.cn).

Materials availability

This study did not generate new materials.

Data and code availability

d All data generated during this study are included in this published article and its supplemental

information.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patient recruitment

A total of 217 patients diagnosed with HGSOC were enrolled in this study. Patient inclusion criteria were 1)

pathologically confirmed primary HGSOC, 2) both OS and DFS data fully available, and 3) preoperative

venous phase contrast enhanced CT of the abdomen and pelvis conducted and available. Patient exclusion

criteria were 1) undergoing neoadjuvant chemotherapy before primary debulking surgery, 2) non-treat-

ment related death, 3) no qualified CT within two months before surgery, or 4) CT with high noise or arti-

facts in the lesion. Patients from the Women‘s Hospital of Zhejiang University School of Medicine were

divided into a training cohort comprised of 95 patients (diagnosed between January 2008 and November

2012), and an internal validation cohort comprised of 90 patients (diagnosed between January 2013 and

November 2018). Thirty-two patients (diagnosed between Match, 2009 and November 2017 at the First

Affiliated Hospital of Wenzhou Medical University) were used as an external independent validation

cohort. The median age of patients in the training, internal validation, and external validation cohorts

was 50 (20–73), 51.5 (18–73), and 55 (32, 68), respectively (Table 1). There was no significant age difference

between the three cohorts (p-value = 0.450). This study was reviewed and approved by the Institutional Re-

view Board of both hospitals. The study was conducted in accordance with the International Ethical Guide-

lines for Biomedical Research Involving Human Subjects.

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

ITK-SNAP ITK-SNAP http://www.itksnap.org/pmwiki/pmwiki.php?n=Downloads.SNAP3

Radiomic feature extraction pyradiomics https://pyradiomics.readthedocs.io/en/latest/

LASSO scikit-survival https://pypi.org/project/scikit-survival/

SFFS github https://github.com/AKittenOfMrHu/SFFS_for_survival

ReliefF ReliefF https://pypi.org/project/ReliefF/

mRMR mrmr-selection https://pypi.org/project/mrmr-selection/

Survival prediction model lifelines https://lifelines.readthedocs.io/en/latest/

Statistical analysis by Python scipy https://scipy.org/

Statistical analysis by R R http://www.R-project.org

nomogram model R https://cran.r-project.org/web/packages/rms/

https://cran.r-project.org/web/packages/survival/index.html
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Follow-up times

The outcome variables are OS (the time from the date of primary debulking surgery to the date of death)

and DFS (the time from the date of primary debulking surgery to the first evidence of locoregional or distant

recurrence). All patients were followed up yearly and were regularly evaluated at the end of their treatment

for evidence of disease recurrence. Recurrence dates were determined according to a follow-up physical

exam, CT findings, and CA-125 levels.

METHOD DETAILS

Tumor segmentation and pre-processing

Regions of interest (ROI) were segmented by three radiologists with 17, 11, and 17 years’ experience in in-

terpreting CT images of ovarian cancer separately using the ITK-SNAP software (http://www.itksnap.org/

pmwiki/pmwiki.php), respectively. Feature extraction was then performed based on three segmented tu-

mor subregions, namely primary, metastatic, and lymphatic lesions. The slice in-plane spacing ranged from

1.25 mm to 10.00 mm. To compensate for differences in radiomic features caused by different reconstruc-

tion slice thicknesses and pixel sizes, the voxel sizes of all CT images in this study were reconstructed to

1 3 1 3 10 mm3.

Feature extraction

Before the feature extraction, CT intensity values were limited to between �105 and 195 Hounsfield Units

(window level: 45, window width: 300) and were then normalized to 64 gray levels by linear mapping. A total

of 851 radiomic features in 7 categories were extracted for each patient based on the patient’s ROI using an

open-source Python package ‘‘pyradiomics’’ (van Griethuysen et al., 2017). Details on these features can be

found in Table S1 and Figure S2 with more comprehensive definitions and descriptions available in the

study of Vallieres et al. (Vallieres et al., 2015).

Feature selection by SCC

Feature selection is a key step for high-dimensional data analysis in radiomics. It is a method of making the

overall analysis more manageable, efficient, and productive by eliminating irrelevant and ‘noisy’ features.

The Z-score was used to perform data normalization before feature selection. The Spearman correlation

coefficient (SCC) was first taken to determine redundant features. When SCC >0.8 with p value between

two features <0.05, the one with larger p value calculated by univariate Cox regression was regarded as

a redundant and removed.

Feature selection by FAMUS

The stability of the features after the SCC filtering to sample variation was evaluated. This is a very impor-

tant issue and seeking a solution should be a high priority. However, it seems this issue has been rarely

considered in previous studies. Even if the predictive performance is good in both training and validation

datasets, this contingency cannot be ignored. A feature is regarded as stable if it is always selected when

samples in the dataset varies. To this end, a heuristic method, FAMUS, was developed to identify features

with good stability against sample variation (Figure 1). To obtain more general subset of data, the training

data was sampled from failing and censored patients, respectively. At the sampling rate r and sampling

time N, the frequency of each feature appearing in the selection process was calculated.

Suppose that the probability distribution of optimal selected features f from data space D is pðfÞ, and the

probability distribution of selected features bf from experimental data bD is pðbf jbDÞ. Therefore, differently
sampled datasets will result in different selected features. Ideally, f = bf and pðfÞ =

R
pðbf jbDÞpðbDÞdbD .

Due to the limitation of experimental data, FAMUS aims to calculate approximate distribution gðbf Þ
asymptotically equal to pðfÞ. Monte Carlo simulation was employed to differently sampled datasets

bD i, i ˛ f1; 2; .; Ng from bD with a sampling rate r. At the sampling rate r and sampling time N, gðbf Þ =
PN

i = 1pðbf jbD iÞpðbD iÞ.

Two hyper-parameters, the sampling rate r and sampling time N, are related the above equation gðbf Þ.
There should be sufficient variation between differently sampled datasets. As an extreme example,
bD i = bD is equivalent to one time of univariable prescreening. In other words, r should be small to reflect

the differences between stable and task-relevant features and other features. To determine the
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appropriate sampling rate r, in our Monte Carlo simulations, N was set to 2000 and r to 1/6, 1/5, 1/4 or 1/3.

The sharper frequency changes were observed in the experiments with r of 1/6 and 1/5 comparing to those

with r of 1/4 and 1/3 (Figure S3). Therefore, r of 1/6 was chosen in the study.

The sampling time N should be large so that gðbf Þ approximates to pðfÞ. When r was set to 1/6, simulation

experiments of N of 800, 900, 1000, 1500 and 2000 were implemented. According to their frequencies, the

selected 13 OS features or 6 DFS features in the study were always the top 13 or the top 6 features in these

experiments with N of 2000. Furthermore, similar results were observed in experiments with r of 1/6, 1/5,

1/4 or 1/3 and with N of 2000. Therefore, N was set to 2000 in the study.

In addition, the univariable prescreening included only covariates that were significant at a particular

threshold based on a univariable model. However, a commonly used threshold is p value <0.05, which

may result in the removal of important covariate variables from the model due to stochastic variability. It

was reflected that when r was 1/6 and N was 2000, the frequencies of features with p value <0.05 in

FAMUS were much lower than those of features with p value <0.25. The median (the interquartile ranges,

IQR) frequencies of the top 10 features with p value <0.05 in FAMUS were 0.367 (0.331, 0.495) for OS and

0.312 (0.285, 0.361) for DFS, suggesting that most features had frequencies lower than 0.5. The median

(IQR) frequencies of the top 10 features with p value <0.2 in FAMUS were 0.761 (0.743, 0.832) for OS and

0.709 (0.668, 0.735) for DFS. Other researchers empirically recommended p values of 0.20 and 0.25 for

feature selections (Grant et al., 2019). Therefore, a p value <0.25 instead of <0.05 was taken as threshold

for FAMUS prescreening to avoid removing important covariates from themodel due to random variability.

Feature selection by LASSO

The FAMUS-filtered features were selected using the least absolute shrinkage and selection operator

(LASSO) for Cox regression analysis (Tibshirani, 1997), in which 5-fold cross-validation was performed to

determine features with maximal correlation to survival outcomes (Figure S5). This led to the identification

of two sets of three different features, one set for OS and the second for DFS.

Construction of radiomic signature

The prediction models were built using the Cox proportional hazards model using the corresponding fea-

tures for OS and DFS, respectively. The radiomic signatures were calculated based on the coefficients of

the corresponding features in the models. For visualization purposes, OS and DFS radiomic nomograms

were constructed based on the two radiomic signatures. These can serve as low-cost, non-invasive means

to predict the risk of death or relapse for HGSOC patients.

Prognostic performance evaluation

The predictive performance of the survival models was evaluated in the training cohort and further verified

in both the internal and external validation cohorts using the concordance index (C-index) (Harrell et al.,

1996). In addition, the receiver operation characteristics (ROC) curves of 2-6 years OS and 1–5 years DFS

were plotted for the three datasets. Patients were divided into a high-risk group or low-risk group of cor-

responding specific years for bothOS andDFS according to the cut-off risk score determined by these ROC

curves. The optimal cut-off values of each stratification were determined using the Youden index (Hu et al.,

2019) where the sum of sensitivity and specificity was maximized in the training dataset. The Kaplan-Meier

survival analysis and Log rank test were used to compare the differences between the survival curves of

these paired groups (van Timmeren et al., 2017).

Comparison of the feature selection methods

Comparative experiments between our FAMUSmethod and other commonly used methods for feature se-

lection were conducted to reveal the importance of SASV features in radiomics-based prediction of clinical

outcomes of HGSOC. To evaluate the performance of survival models using features pre-scanned by

FAMUS, 200 experiment repetitions were performed. Each time, LASSO, sequential forward floating selec-

tion (SFFS) (Tan et al., 2014), ReliefF (Pupo et al., 2013), or mRMR (X Fau et al., 2021) were used to select

features from FAMUS (i.e., SCC + FAMUS + LASSO, SCC + FAMUS + SFFS, SCC + FAMUS + ReliefF,

and SCC + FAMUS + mRMR) or from SCC (i.e., SCC + LASSO, SCC + SFFS, SCC + ReliefF, and SCC +

mRMR) directly using the same samples from the training dataset. Three-quarters of training datasets

were sampled in each experiment. The C-Index was used to evaluate the performance of survival models
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based on these methods, and the IQRs of the recorded C-Index of each method was displayed in box-plots

to compare thesemethods intuitively. Average Hamming Distance (AHD) was used to assess the stability of

the results of feature selection, and a lower AHD indicated a more stable feature selection result (Dunne

et al., 2002). A paired t-test was performed to evaluate the improvement margin of FAMUS over other

methods. Additionally, the top two features with the highest and lowest frequency in FAMUS were plotted

to interpret how FAMUS worked.

QUANTIFICATION AND STATISTICAL ANALYSIS

The 95% confident interval (CI) of C-index was calculated by 1,000 bootstrap resamples. The differences in

patient survival characteristics in the three cohorts were compared using a Log rank test. The differences in

patient clinical characteristics in the three cohorts were compared by using the Kruskal-Wallis test or Chi-

square test. Chi-square test, nomogram models and their calibration curves were performed using R

(version 3.5.1, http://www.R-project.org). All other statistical analyses were performed with Python (version

3.6.4, https://www.python.org).
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