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Abstract
The LIM-homeodomain (LIM-HD) family of transcription factors is well known
for its functions during several developmental processes including cell fate
specification, cell migration and axon guidance, and its members play
fundamental roles in hippocampal development. The hippocampus is a
structure that displays striking activity dependent plasticity.  We examined
whether LIM-HD genes and their co-factors are regulated during kainic acid
induced seizure in the adult rat hippocampus as well as in early postnatal rats,
when the hippocampal circuitry is not fully developed.  We report a distinct and
field-specific regulation of LIM-HD genes  , and , LIM-only gene  Lhx1, Lhx2 Lhx9

, and cofactor in the adult hippocampus after seizure induction. InLmo4 Clim1a 
contrast none of these genes displayed altered levels upon induction of seizure
in postnatal animals.  Our results provide evidence of temporal and spatial
seizure mediated regulation of LIM-HD family members and suggest that
LIM-HD gene function may be involved in activity dependent plasticity in the
adult hippocampus
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Introduction
Transcription factors regulate gene expression in the mammalian 
brain, playing a critical role in both neurodevelopment and in  
neuronal plasticity during its lifespan. During development, tran-
scription factor mediated regulation is essential for appropriate cell 
fate specification, cell migration and connectivity1–3. Transcription 
factors also regulate plasticity including activity-dependent process 
of dendritic pruning, axonal sprouting and cell proliferation and 
survival4–6.

One family of transcription factors, the LIM-homeodomain  
(LIM-HD) family, is known to play critical roles in regulating cell 
proliferation, axon outgrowth and pathfinding across several sys-
tems7–11. The LIM-HD proteins have a C-terminal homeodomain 
which binds to DNA and two zinc finger “LIM” domains that bind 
co-factors encoded by the Clim genes. The transcriptionally active 
complex is a tetramer comprising two LIM-HD molecules bridged 
by a dimer of two Clim molecules12,13. LIM-only (Lmo) proteins 
lack the homeodomain but can bind Clim molecules, and function 
as dominant-negative regulators of LIM-HD function12,14,15. At least 
thirteen LIM-HD (Lhx) genes four Lmo genes and two Clim genes 
have been identified in the mouse. A subset of genes is expressed 
in the embryonic and mature hippocampus and of these, Lhx2 and 
Lhx5 are critical to hippocampal development16. Lhx2 plays a fun-
damental role in early telencephalic development as a cortical se-
lector gene11. The neocortex and hippocampus do not form in the 
absence of Lhx211,17. At later stages, Lhx2 plays a new role in the 
developing hippocampus, as a necessary and sufficient repressor 
of astrogliogenesis18. Lhx2 continues to be expressed in the ma-
ture hippocampus. Lhx5 is critical for hippocampal development 
at early stages, but is not expressed in the embryonic hippocam-
pus once it is specified19. Lhx1, Lhx9, Clim1a, Clim2, Lmo3 and 
Lmo4 are all expressed in the hippocampus at embryonic and adult  
stages16, but no loss of function phenotypes have been reported in the  
hippocampus.

While several studies have implicated the LIM-HD family as a 
key modulator of important neurodevelopmental events, the un-
derstanding of the role of this transcription factor family in the 
postnatal and adult brain remains relatively unexplored. These tran-
scription factors are known to regulate cell proliferation8,20, axon  
pathfinding21,22 and neurite outgrowth23,24. These phenomena have 
parallels in the structural plasticity that occurs in postnatal and 
adult life. It is now well established that the same molecules that 
bring about the early development of the hippocampus are often 
reutilized in adult reorganization and structural plasticity25–27. Sev-
eral LIM-HD family members continue to be expressed in the adult 
hippocampus16 (this study). Therefore, we explored whether these 
genes display activity-dependent regulation in the adult hippocam-
pus, to provide a basis for studies that may uncover new functions 
for these genes in maturity.

Activity dependent neuronal plasticity has been suggested to reu-
tilize key developmental pathways to evoke plasticity in the ma-
ture nervous system. In particular, seizure models have been shown 
to induce dramatic changes in progenitor proliferation, axonal 
sprouting, dendritic reorganization, changes in neuronal cell sur-
vival and progenitor differentiation within the hippocampus28–31.  

Intriguingly, the nature of neuroplastic changes evoked by sei-
zures differs quite dramatically in the postnatal versus the adult 
brain32–34. Regulation at the level of signaling and transcription fac-
tors has been shown to be important for structural plasticity in the  
hippocampus35. While neuronal activity and seizures are likely to 
recruit major developmental signalling pathways in the hippocam-
pus, thus far the role of key developmental transcription factor fam-
ilies as targets is relatively unexplored.

An earlier study reported that LIM-only genes Lmo1, 2 and 3 are 
differentially regulated in a field-specific manner in the adult rat 
hippocampus in response to kainic acid-induced seizure36. We ex-
amined a broader set of Lmo and LIM-HD genes as well as their 
co-factors in a similar paradigm, not only in the adult rat hippocam-
pus, but also in early postnatal stages when hippocampal circuitry is 
not fully developed37–39. Our study provides evidence that LIM-HD, 
LIM-only, and Clim gene mRNA displays selective field-specific 
regulation in the hippocampus in response to kainate induced sei-
zures. This provides a basis to explore potential new functions of 
these genes in activity-dependent synaptic plasticity.

Results
In this study we focused on LIM-HD genes that are expressed in 
the adult hippocampus, Lhx1, Lhx2 and Lhx9 and their co-factors, 
Clim1a and Clim2. Among the LIM-only genes, Lmo1, Lmo2, 
and Lmo3 have been previously reported to display differential 
regulation in kainate-induced seizure36. In our study, we included 
Lmo3 as a control to allow comparison with the earlier study36, and 
also Lmo4 which was not examined previously. We examined the 
mRNA expression of these genes at postnatal day P7 when the hip-
pocampal circuitry is not yet fully developed, and also in adult rats  
(2–3 months old) with mature hippocampal neurocircuitry.

Differential expression of LIM family members and their 
co-factors across different hippocampal fields
We used non-radioactive in-situ hybridization to examine gene ex-
pression in the CA1 and CA3 fields of the Ammon’s horn as well 
as the dentate gyrus (DG) of control animals (Figure 1a). Lhx1 
transcripts were not detectable in the hippocampus at P7, and only 
weakly expressed in the adult DG (Figure 1b). In contrast, Lhx2 
and Lhx9 are expressed intensely in the DG and CA3, with weaker 
expression in CA1 at P7. In the adult, expression was strong in the 
DG, but weak in CA1 and CA3 (Figure 1c, d). Lmo3 and Clim2 
are strongly expressed in CA1 and DG, with weaker expression in 
the CA3 region at both stages (Figure 1e, h). Lmo4 shows strong 
expression in CA1 but is weakly expressed in CA3 and DG at both 
stages (Figure 1f). Clim1a displays expression in all fields at P7, but 
is weak to undetectable in CA3 in the adult (Figure 1g).

Activity is known to regulate structural plasticity and neurogenesis 
in the adult hippocampus40,41. We administered kainate intraperito-
neally to both early postnatal and adult rats to induce seizures as a 
model of activity and analysed whether there is differential regula-
tion of LIM genes in response to kainate-evoked seizures 6 hours 
later. All animals administered kainate exhibited classical hallmarks 
of seizure. Using radioactive in-situ hybridization and optical den-
sitometry we assessed the expression of Lhx1, Lhx2, Lhx9, Lmo3, 
Lmo4, Clim1a and Clim2 in the postnatal and adult hippocampal 

Page 3 of 12

F1000Research 2013, 2:205 Last updated: 23 JUL 2014



subfields (see Materials and methods). Radioactive in-situ hybridi-
zation has an important advantage over quantitative PCR since it 
provides spatial resolution. The hippocampal CA1 and CA3 fields 
are molecularly distinct, and the dentate gyrus contains a distinct 
cell population from the Ammon’s horn42. Therefore it is necessary 
to quantitate the gene expression in each region individually.

Seizure induced regulation of LIM family members and 
their co-factors in the adult dentate gyrus (DG)
The DG displays robust structural changes in response to seizure. 
Increase in dentate granule cell neurogenesis43 and extensive mossy 
fiber sprouting41,44 are hallmarks of kainate induced seizure. Upon 
kainate treatment, the expression of Lhx1 showed a striking in-
crease (25%; p = 0.019) in the adult DG. This is in contrast with the 
adult Lhx2 and Lhx9 expression, the mRNA levels of which show 
a drastic reduction (60% for Lhx2, p = 0.0004 and 36% for Lhx9,  
p = 0.003; Figure 2, Figure 3a). Interestingly, the LIM-only genes 
Lmo3 and Lmo4 also showed opposite changes: whereas Lmo3 lev-
els decreased significantly (53%, p = 0.002), Lmo4 mRNA levels 
showed a remarkable increase (55%, p = 0.009) in kainate-treated 
animals. The decrease in Lmo3 levels was consistent with that report-
ed previously36. The mRNA levels of the cofactor Clim1a decreased 

slightly in treated animals (15%, p = 0.048) whereas no significant 
difference was observed with Clim2 (Figure 2, Figure 3b).

Seizure induced regulation of LIM family members and 
their co-factors in the adult CA3 subfield
The CA3 subfield has pyramidal neurons, which receive input 
from the dentate granule cells. They display profound alterations 
in dendritic structure and branching in response to seizure. In our 
experiments using kainate-induced seizure, Lhx1 mRNA increased 
(20%, p = 0.014) in the adult CA3. In contrast, Lhx2 and Lhx9 
levels decreased (30%, p = 0.028; 35%, p = 0.044 respectively;  
Figure 2, Figure 4a). Levels of both Lmo3 and Lmo4 were reduced 
(40%, p = 0.007; 25%, p = 0.002 respectively). The levels of the 
cofactor Clim1a also decreased (15%, p = 0.047) whereas Clim2 
levels remained unaltered in the adult CA3 (Figure 2, Figure 4b).

Seizure induced regulation of LIM family members and 
their co-factors in the adult CA1 subfield
The CA1 pyramidal neurons receive input from the CA3 neurons. They 
displayed altered dendritic shape and density and also axon sprout-
ing as a result of seizure45. In the CA1 field, Lhx1 mRNA increased 
(20%, p = 0.02), whereas Lhx2 levels decreased (19%, p = 0.024) but, 

Figure 1. Expression of LIM genes and co-factors in early postnatal and adult hippocampus. (a) A schematic illustrating hippocampal 
subfields; dentate gyrus (DG) (yellow), CA3 (red) and CA1 (green) fields of Ammon’s horns. (b–d) Non-radioactive in-situ hybridization of 
LIM-homeodomain genes at postnatal day (P)7 and in adult control animals showing differential expression of LIM-homeodomain genes; Lhx1 
(b), Lhx2 (c) and Lhx9 (d), Lmo3 (e), Lmo4 (f) Clim1a (g), Clim2 (h) across the hippocampal subfields. Scale bars = 200µm.
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there was no change in Lhx9 mRNA levels in the adult CA1 upon  
kainate-induced seizure (Figure 2, Figure 5a). Lmo3 mRNA levels de-
creased (41%, p = 0.0018) whereas Lmo4, Clim1a, and Clim2 levels 
remained unchanged (Figure 2, Figure 5b).

A summary of seizure induced regulation of LIM family 
members and their co-factors across all hippocampal fields
Table 1 summarizes the data such that seizure-induced regulation 
can be compared within a particular field as well as for a particular 
gene across all fields. For example, upon kainate induced seizure, 
Lhx1 mRNA shows a significant increase over very low baseline 
expression in all the hippocampal fields in response to seizure. In 
contrast, Lhx2 and Lmo3 show a significant decrease in all hip-
pocampal fields. Interestingly, Lhx9 and Clim1a show a significant 
decrease in CA3 and DG, but not in CA1. Lmo4 transcript levels 
increase in the DG, decrease in the CA3 and show no change in the 
CA1. This correlates with the fact that the DG and CA3 undergo 

a more drastic structural reorganization in response to seizure46,47. 
Clim2 shows no alteration suggesting it may not have any addition-
al roles in kainate-induced plasticity, but continues to be available 
to LIM-HD transcription factors at the same levels.

Seizures do not affect LIM-gene expression in the 
postnatal hippocampus
Seizure evoked structural plasticity differs between the postnatal 
and adult hippocampus in its extent as well as the type of changes 
seen. Although postnatal kainate treatment evokes powerful sei-
zures, the immature brain is relatively resistant to seizure-evoked 
structural remodeling. For example, mossy fiber sprouting is absent 
or delayed48–50, and DG neurogenesis is unaltered or biphasically 
regulated with an initial decline and a delayed increase51–53 in re-
sponse to seizure in the postnatal hippocampus. We asked whether 
the postnatal hippocampus differs from the adult hippocampus in 
kainic acid induced regulation of LIM genes and co-factors. We 
administered kainic acid to rat pups on postnatal day P7 and an-
alyzed changes in transcript levels of several LIM genes 6 hours 
later. In striking contrast to the changes observed in the adult brain, 
the postnatal hippocampus appears refractory to regulation of 
the LIM-HD family following kainate evoked seizures (Figure 2,  
Figure 3c, d, Figure 4c, d, Figure 5c, d).

In summary, the LIM gene family and its co-factors display distinct 
and highly field-specific regulation in response to kainate induced 
seizure in the adult, but not in the postnatal hippocampus.

Seizure evoked regulation of LIM genes in the hippocampus

1 Data Widget

http://dx.doi.org/10.6084/m9.figshare.807690

Discussion
Differential regulation of LIM-gene expression in response 
to seizures
Seizures can lead to different forms of hippocampal plasticity, which 
include axonal/dendritic remodeling and neurogenesis. Chemical-
induced seizures like the kainic acid (kainate) treatment are used as 

Figure 2. Expression of LIM genes and co-factors used for 
densitometric analysis. Representative images of sections of 
brains from control and kainate-administered animals processed for 
radioactive in-situ hybridization of LIM-homeodomain genes in the 
hippocampus. 1 section from each condition is shown for adult (a) 
and P7 (b) animals. Colored lines mark the areas for quantification 
of expression in different hippocampal subfields: DG (yellow); CA3 
(red); CA1 (green). Scale bars = 200µm.

Table 1. Summary of seizure evoked regulation of LIM genes 
and co-factors across the hippocampal fields.

LIM gene
DG CA3 CA1

Adult P7 Adult P7 Adult P7

Lhx1 ↑ _ ↑ _ ↑ _

Lhx2 ↓ _ ↓ _ ↓ _

Lhx9 ↓ _ ↓ _ _ _

Lmo3 ↓ _ ↓ _ ↓ _

Lmo4 ↑ _ ↓ _ _ _

Clim1a ↓ _ ↓ _ _ _

Clim2 _ _ _ _ _ _
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models for epilepsy and have been shown to increase neurogenesis 
in the adult DG28 and extensive mossy fiber sprouting where mossy 
fibers aberrantly synapse onto dentate granule cells instead of CA3 
pyramidal neurons41,44. Kainic acid administration causes animals 
to display motor signs including convulsions. In our experiments, 
we observed changes in the transcript levels 6 hours post kainic 
acid administration, after the animals displayed all the character-
istic physical stages of seizures. In future experiments it would be 
interesting to examine whether any LIM gene transcript regulation 
occurs in a shorter time window post kainic acid administration, 
prior to the physical manifestation of seizure by the animal.

Transcription factors important for brain development are also 
known to regulate structural changes and reorganization in the adult 
brain, one example being members of the basic Helix-Loop-Helix 
(bHLH) family25,26. Members of the LIM-HD family of transcrip-
tion factors are necessary for different aspects of the development 
of the hippocampus11,18,19, a structure that is vulnerable to changes 
in response to activity. LIM genes are differentially expressed in 
both the postnatal and adult hippocampus, suggesting that there 
might be a role for these genes in postnatal circuit development and 
adult reorganization16. We therefore hypothesized that the LIM-HD 
family members are differentially regulated in response to activ-
ity. Indeed, from our analysis of radioactive in-situ hybridization, 
we find that each hippocampal field displays differential expression 
and post-seizure regulation of different LIM genes. LIM-only genes 
Lmo1, 2 and 3 were previously shown to be regulated in response 
to kainate-induced seizures in the adult hippocampus36. We report 
that Lmo4 is also regulated by kainate-induced seizures throughout 
the hippocampus. We also discovered that LIM-HD genes Lhx1, 
Lhx2, Lhx9 and cofactor Clim1a are differentially regulated in re-
sponse to seizures in a field-specific manner. Furthermore, we show 
that this differential regulation of LIM genes is restricted to adult 
animals and when we administered kainic acid to postnatal pups, 
no such regulation was observed. This is intriguing because these 
results highlight that a developing system such as the hippocam-
pal circuitry in the early postnatal brain is relatively resistant to  
seizure-induced structural remodelling and plasticity32. For  
example, in the adult, seizure induces an increase in DG neuro-
genesis whereas in early postnatal stages, it is either decreased or 
unchanged34. Our results raise the intriguing possibility that such 
differences in molecular regulation of transcription factors may un-
derlie the differing nature of cellular changes evoked by seizures in 
the postnatal versus adult brain.

Structural changes in the hippocampus
Seizure leads to an increase in neuronal activity thereby induc-
ing the transcription of several immediate early genes (IEGs). The 
IEGs are hypothesized to be involved in seizure-induced structural  
remodelling54. The LIM family of transcription factors could be part 
of effector cascades downstream of these IEGs, which may eventu-
ally lead to the structural changes seen in different hippocampal 
subfields. CREB, a well-known activity regulated transcription fac-
tor, has been shown to interact in the same transcriptional complex 
as Lmo4 in response to activity55. It is also interesting to note that 
well known seizure-responsive IEGs in the adult hippocampus, such 
as the AP-1 complex, are not regulated by postnatal seizures56. This 
further supports the idea that distinct molecular changes evoked by 

Figure 3. Kainate-induced regulation of LIM genes and co-
factors in the dentate gyrus (DG) of adult and P7 rats. Quantitative 
densitometric analysis of the adult DG region following kainate 
administration in adult (a,b) and P7 (c,d) rats. Grey bars are controls, 
white bars are kainate treated animals. Results are expressed 
as mean ± SEM percentage of control for mRNA expression  
(*p < 0.05, unpaired Student’s t test).

Page 6 of 12

F1000Research 2013, 2:205 Last updated: 23 JUL 2014



postnatal versus adult seizures may contribute to the age-dependent 
differences in seizure-evoked plasticity.

Distinct structural changes occur in response to seizure in differ-
ent subfields of the hippocampus. On seizure induction, DG shows 
an increase in the granule cell neurogenesis46, enhanced integra-
tion of granule cells into the neurocircuitry, a profound increase 
in mossy fiber sprouting by these neurons and formation of recur-
rent synapses57–59. The CA3 and CA1 pyramidal neurons show 
a loss of dendritic spine and dendritic branches47 post seizure. 
Some axon sprouting is also seen in CA1 neurons45,60. LIM genes 
may bring about activity induced structural changes in the hip-
pocampus. They are known to regulate neurite outgrowth24. Some  
LIM-HD genes also control key axon guidance molecules such as 
Eph/ephrins61, which affect mossy fiber sprouting in the DG62. Lhx1 
is known to regulate the transcription of Eph/ephrins in a subset 
of motor neurons61. Our results show increased Lhx1 mRNA levels 
in the DG in response to seizure that could lead to increased Eph/
ephrin levels therefore contributing to mossy fiber sprouting. Lhx2 
represses Robo1 and 2 expression in the thalamus during thalamo-
cortical pathfinding22 and so down regulation of Lhx2 mRNA in 
response to seizure could be important for mossy fiber sprouting via 
upregulation of the Robo receptors. Lmo4 has been shown to confer 
a neuroprotective role in response to hypoxia63. Interestingly, we 
find an increase in the Lmo4 mRNA after kainate treatment, which 
could lead to neuronal survival in response to seizure.

Our study provides new evidence of seizure mediated regulation 
of LIM-HD transcription factors. We show that this regulation is  
age-dependent and field specific. Future experiments will aim at 
testing whether LIM genes are necessary for mediating seizure 
induced structural alterations. Examining the effect of kainic acid 
treatment on structural changes such as DG neurogenesis in LIM 
gene loss-of-function mutants will begin to address this issue. In 
addition, determining the interactions of LIM gene family proteins 
with other factors known to mediate structural changes such as the 
bHLH family members25,26 will open avenues for the mechanistic 
understanding of this process. These results therefore provide impe-
tus for future studies to explore the role of the LIM-HD transcription 
factors, LIM only genes, and their cofactors in activity-dependent 
reorganization and plasticity in the mature nervous system.

Materials and methods
Animals and treatment paradigm
Sprague-Dawley rats were bred in the Tata Institute of Funda-
mental Research (TIFR) Animal house, maintained under normal  
12-hour light/dark cycle and were provided with food and water ad 
libitum. A total of 84 adults and 101 pups (P7) were used. Adults 
were between 2–3 months old and weighed between 200–250 grams. 
All animal procedures were performed in accordance with the NIH 
guidelines for use and maintenance of animals and were approved 
by the TIFR Institutional Animal Ethics committee. The male 
rats were sexed at P21 and were used for experiments when they 
reached adulthood. Postnatal pups of both sexes were used for 
experiments at P7. All animals were grouped based on their treat-
ment with either saline (control group; n = 44 adults; n = 47 P7 
pups) or with 10mg/kg kainic acid (Sigma, USA; n = 40 adults; 
n = 54 P7 pups) administered intraperitoneally and were housed  

Figure 4. Kainate-induced regulation of LIM genes and co-factors 
in CA3 of adult and P7 rats. Quantitative densitometric analysis of 
the adult CA3 region following kainate administration in adult (a,b) 
and P7 (c,d) rats. Grey bars are controls, white bars are kainate 
treated animals. Results are expressed as mean ± SEM percentage 
of control for mRNA expression (*p < 0.05, unpaired Student’s t test).

Page 7 of 12

F1000Research 2013, 2:205 Last updated: 23 JUL 2014



isolated for 6 hours after the treatment. The kainic acid treated group 
was observed every 30 minutes across the 6 hours and displayed all 
the characteristic stages of seizures. The animals displayed facial 
clonus (Racine Stage 1) to front and hindlimb clonus and continu-
ous falling down (Racine Stage 5).

Animals were decapitated using a guillotine 6 hours after treat-
ment and the brains were immediately frozen on dry ice and 
stored at -70°C. Coronal sections (14µm) were generated on the 
cryostat and mounted onto Probe-plus RNase free slides (Elec-
tron Microscopy Sciences, USA). Slides were then treated with 
4% paraformaldehyde (PFA; Merck Chemicals), washed in 1X 
phosphate-buffered saline, acetylated with acetic acid (Qualigens 
Fine Chemicals) in 0.1M triethanolamine (Sigma-Aldrich), rinsed 
in 2X sodium saline citrate (SSC), pH 4.5 and then dehydrated 
through grades (30%, 70% and 100% in double distilled water) of 
ethanol (Commercial Alcohols, Ontario, Canada) prior to storage 
at -70°C.

mRNA in-situ hybridization
The in-situ hybridization for DIG-labeled probes was carried out 
as described previously (Bulchand et al., 2003)16. Plasmid DNAs 
encoding different LIM genes and co-factors were linearized by 
restriction digestion to provide template for making DIG-labeled 
RNA probe16. Briefly, the slides were incubated in hybridiza-
tion buffer (50% formamide, 5X SSC and 1% SDS) containing  
DIG-labeled riboprobes (Roche) for 16 hours at 70°C followed by 
post-hybridization washes using Solution X (50% formamide, 2X 
SSC and 1% SDS), 2X SSC and 0.2X SSC.

Radioactive in-situ hybridization was carried out as described pre-
viously64. Briefly, the slides were incubated in the hybridization 
buffer (50% formamide, 0.6M sodium chloride, 10mM Tris pH 
7.4, 1X Denhardts solution, 10mM dithiotheritol (DTT), 250µg/
ml yeast tRNA, 50µg/ml Salmon sperm DNA, 10% Dextran sul-
phate) containing35 S-UTP labeled riboprobes (Amersham, Buck-
inghamshire, UK) at a concentration of 106cpm/250µl for 20–24 
hours at 60°C. Post-hybridization, the slides were washed with 
2XSSC, treated with RNase A (20µg/ml for 30 minutes at 37°C; 
USB Corporation, Cleveland, Ohio), 0.5X SSC for 30 minutes at 
60°C, 0.1X SSC for 20 minutes and then rinsed in double distilled 
water. Slides were air dried and exposed to Biomax film (Kodak) 
for 3–6 weeks. To confirm the specificity of the signal observed 
with antisense riboprobes, controls used were sense riboprobes 
or RNase treatment (40µg/ml at 37°C for 30 minutes) prior to 
hybridization.

Quantitation and data analysis
Densitometric analysis of LIM gene transcript levels was performed using 
the Macintosh-based Scion Imaging software (Scion, Frederick, Mary-
land, USA). Sections were observed directly on the monitor using a 
Sony 3 CCD color video camera (Model DXC-390P). 14C standards 
were used for calibration to correct for non-linearity. An equiva-
lent area was outlined for each of the hippocampal subfields and 
optical density measurements from both hemispheres of 3–4 in-
dividual sections from each animal were analysed to calculate 
the mean value. Results were subjected to statistical Student’s 
t-test. Significance was determined at p < 0.05 using GraphPad 

Figure 5. Kainate-induced regulation of LIM genes and co-factors 
in CA1 of adult and P7 rats. Quantitative densitometric analysis of 
the adult CA1 region following kainate administration in adult (a,b) 
and P7 (c,d) rats. Grey bars are controls, white bars are kainate 
treated animals. Results are expressed as mean ± SEM percentage 
of control for mRNA expression (*p < 0.05, unpaired Student’s t test).
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The authors showed field-specific changes in expression of LIM-HD genes , , and ,Lhx1 Lhx2 Lhx9
LIM-only gene , and cofactor in the adult hippocampus at 6 hours after seizure induction byLmo4 Clim1a 
kainic acid. No significant changes in expression were observed after seizure induction with the same
dose of kainic acid in rat pups of postnatal day 7 (P7).
 
The subfield-specific changes in expression after kainic acid seizures were clearly presented for different
members of the LIM-HD/ LIM-only family of transcription factors.  This work extends previous studies that
showed seizure-induced changes in expression of LIM-only genes in adult rats. The lack of expression
change in P7 rat pups may be related to the lack of seizure-induced structural plasticity in immature
animals, i.e., lack of cell death, mossy fiber sprouting and neurogenesis. Members of the LIM-HD family of
transcription factors are necessary for different aspects of the development of the hippocampus. Thus,
the changes in these transcription factors after seizures in adult rats may be related to seizure-induced
neural plasticity, such as axon sprouting, progenitor proliferation, and changes in neuronal cell survival.
 
The central question of whether LIM-HD/ LIM-only transcription factors are causally related to the neural
plasticity induced by kainic acid seizures remains unanswered. Are transient changes in these
transcription factors, at ~6 hours after seizures, sufficient or necessary for the structural changes induced
by kainic acid seizures? The design of the present study does not allow the consequences of kainic acid
seizures to be studied, and not all adult rats induced with kainic acid seizures showed plasticity to the
same extent. In fact, whether seizures are essential for the expression changes is not totally clear. In other
studies, a single dose of kainic acid (intraperitoneal 10 mg/kg) may not induce seizures in all adult rats,
and the 10 mg/kg i.p. given to P7 rats was >5 times the dose needed for seizures as reported by Lynch et

.  The authors should provide some justification of the kainic acid dose used, inal. ( , 2000)Eur J Neurosci
terms of seizure induction in their adult and P7 rats.
 

 in the title apparently means “changes in expression” rather than better control or lack of“Regulation”
control of the genes and cofactors.

The results are presented in an organized manner.

I would prefer to see the sample sizes (Ns) in the figure legend rather than in the “Quantitation and data
 section.analysis”

The issue of whether seizures are necessary and sufficient for the expression changes can be further
discussed. Perhaps other molecules implicated for seizure-induced plasticity, e.g., neurotrophins, should

be mentioned.
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be mentioned.

Overall, the experimental study appears to be well done.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.
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Lakhina . examine the effect of chemically induced seizure on the expression of Lim family memberset al
and their cofactors, specially within the rodent hippocampus. Using  hybridization to measurein situ
mRNA levels they demonstrate that transcription of Lim, Lmo and Clim family members is altered in a
field-specific manner specifically in adult but not early postnatal (P7) rats. These interesting observations
extend previous work on seizure induced changes in Lmo1-3 expression (Hinks ) and raise severalet al.
important questions for future study:

How rapid and persistent are the changes in gene expression following kainic acid administration?
 
Do alterations in gene expression drive physical remodeling within hippocampal neurons or vise
verse?
 
Are there field specific differences in the timing of transcriptional changes?
 
What are the functional consequences of these transcriptional changes?
 
It is interesting that changes in transcription were observed in adult but not juvenile animals, whose
circuits generally believed to be more plastic. Might these transcriptional changes be a means by
which to counteract decreasing circuit plasticity in adults?
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