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Abstract 

Lung Ultrasound (LUS) images are considered to be effective for detecting Coronavirus Disease (COVID-19) as an alter-
native to the existing reverse transcription-polymerase chain reaction (RT-PCR)-based detection scheme. However, the 
recent literature exhibits a shortage of works dealing with LUS image-based COVID-19 detection. In this paper, a spec-
tral mask enhancement (SpecMEn) scheme is introduced along with a histogram equalization pre-processing stage 
to reduce the noise effect in LUS images prior to utilizing them for feature extraction. In order to detect the COVID-19 
cases, we propose to utilize the SpecMEn pre-processed LUS images in the deep learning (DL) models (namely the 
SpecMEn-DL method), which offers a better representation of some characteristics features in LUS images and results 
in very satisfactory classification performance. The performance of the proposed SpecMEn-DL technique is appraised 
by implementing some state-of-the-art DL models and comparing the results with related studies. It is found that the 
use of the SpecMEn scheme in DL techniques offers an average increase in accuracy and F1 score of 11% and 11.75% , 
respectively, at the video-level. Comprehensive analysis and visualization of the intermediate steps manifest a very 
satisfactory detection performance creating a flexible and safe alternative option for the clinicians to get assistance 
while obtaining the immediate evaluation of the patients.
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Introduction
In December 2019, the world discovered a novel type of 
coronavirus causing viral pneumonia outbreak which 
quickly reached the global stage, and the World Health 
Organization (WHO) declared this Coronavirus Disease 
(COVID-19) as a global pandemic [1]. The rapid spread 
of this disease has created a worldwide emptiness in the 
medical capacity, demanding an efficient complemen-
tary scheme to detect COVID-19 at the earliest period 
and thereby curtailing its spread. The reverse transcrip-
tion-polymerase chain reaction (RT-PCR) test, the gold 
standard for detecting COVID-19, is of limited capac-
ity, time-consuming, and strictly dependent on swab-
collection techniques [2]. Complementary attempts are 
aimed at using computed tomography (CT) scan, X-Ray, 

and Lung Ultrasound (LUS) images [3–5]. Considering 
the radiation hazards, cost, and flexibility, LUS is better 
than CT scans or X-Rays with even better performance 
in some cases than the others [6]. Therefore, introducing 
LUS imaging techniques in COVID-19 diagnosis by accu-
rately separating it from pneumonia or regular healthy 
cases can be a vital step to fight the current pandemic by 
ensuring rapid care for the patients.

Most of the machine learning (ML)-based works on 
COVID-19 detection are devoted to analyze the LUS 
images through the classification into certain categories 
[7, 8], sometimes followed by a supervised or unsuper-
vised segmentation step. Supervised segmentation needs 
properly annotated data, which is a mammoth task; and 
a publicly available annotated LUS dataset related to 
COVID-19 is quite inadequate. Video-based grading 
and frame-based disease severity score prediction are 
other ways to deal with the LUS images [9]. However, 
investigations on COVID-19 detection through LUS 
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images are somewhat limited compared to the studies 
on other relevant imaging-based diagnostic fields. In [7], 
a VGG16-based simple classification network namely 
POCOVID-Net is implemented with moderate clas-
sification performance. Here, the authors presented a 
collection of the open-source LUS dataset on COVID-
19, namely POCUS dataset, which is getting richer day 
by day. In [10], the same research group demonstrated 
explainable LUS image analysis on raw recordings for 
accelerating COVID-19 differential diagnosis. However, 
these attempts are quite straightforward and leave scope 
for improvement in this field. In [8], a comparative analy-
sis of COVID-19 detection performance is presented on 
CT scan, X-Ray, and ultrasound datasets, and it is con-
cluded that the LUS images exhibit comparatively the 
best result in terms of disease detection accuracy. Here, 
the authors utilized the same dataset for LUS that was 
used in [7, 10]. It is to be noted that these studies were 
conducted considering only a selected portion of LUS 
images from the large dataset. An adroit classification 
scheme with efficacious detection performance under 
source-independent conditions is therefore much cov-
eted to predict the disease class accurately and rapidly.

In this paper, an automatic scheme is proposed for 
classifying the LUS images into COVID-19, pneumonia, 
and regular/healthy categories. The main idea here is to 
develop an efficient LUS image enhancement scheme and 

utilize the resulting enhanced LUS images in the deep 
learning (DL)-based classification networks for achiev-
ing better classification performance. The pipeline of the 
proposed method is presented in Fig. 1. For the purpose 
of LUS image enhancement, first, the contrast-limited 
adaptive histogram equalization (CLAHE) pre-process-
ing is performed. A spectral mask enhancement (namely 
SpecMEn) scheme is proposed that generates a mask by 
utilizing the CLAHE enhanced images and the mask is 
then employed on each image plane to further reduce 
the effect of noise. The 3-channel pre-processed LUS 
images are headed towards the DL classification network. 
A thorough evaluation of the proposed scheme by both 
frame-level and video-level results, and comparison with 
related studies manifest its capability of enhancing the 
prediction performance of the classification networks.

Materials and methods
Dataset
In this paper, the point-of-care ultrasound (POCUS) 
dataset is utilized [7], which is publicly available and 
an open-sourced dataset. It comprises various types of 
videos from the COVID-19, pneumonia, and regular/ 
healthy cases. The COVID-19 class includes some sub-
classes, such as pregnant cases, dialytic cases, and some 
unlabelled cases. Similarly, the pneumonia class includes 
viral pneumonia and unlabelled pneumonia cases. In 

Fig. 1 Pipeline of the proposed method
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this paper, all these three classes, namely COVID-19, 
pneumonia, and healthy cases are considered (excluding 
the unlabeled data). The dataset used in this study con-
sists of 123 LUS videos. After extracting the frames from 
each video, a total of 41,529 images are obtained. Among 
them, 74 videos ( 60% ) with 27,920 frames are placed 
in the training set, and the other 49 videos ( 40% ) with 
13,609 frames are placed in the testing set. The detailed 
distribution of these training and testing sets for each of 
the three classes is presented in Table 1.

Preprocessing
It is well known that noises can be introduced in ultra-
sound images during the data acquisition, transmis-
sion, storage, and retrieval processes. The presence of 
noise generally tends to reduce the image resolution and 

contrast, thereby reducing its diagnostic capability. Espe-
cially, the low-intensity regions of ultrasound images 
with very low contrast may create an obstacle to extract 
resolvable details for differentiating various classes.

In order to reduce the effect of noise in ultrasound 
images, the contrast-limited adaptive histogram equali-
zation (CLAHE) is employed, which is found to be very 
effective in enhancing the ultrasound images [8, 11, 12]. 
In the CLAHE method, better equalization in terms of 
maximum entropy is obtained and it limits the contrast 
of an image [13]. Here, the neighboring block boundaries 
are eliminated using a bilinear interpolation. The tradi-
tional adaptive histogram equalization (AHE) method 
over-amplifies the contrast in comparatively homoge-
neous regions of the image, resulting in an increased 
amount of noise as well [14]. Although the CLAHE 
method offers better performance in comparison to the 
performance of the AHE method, in many cases, over-
enhancement is observed. Due to the over-enhancement, 
noises may get boosted in some cases. In order to dem-
onstrate the noise-reduction performance of the CLAHE 
pre-processing technique, in Fig.  2, the LUS images of 
three different classes (COVID-19, pneumonia, and 
normal) are shown considering three cases: without 
using any pre-processing (raw images), using histogram 
equalization and using the CLAHE. It is observed from 
the figure that after applying the CLAHE pre-process-
ing technique, exposure and contrast of the images are 

Table 1 Dataset used in this study

Stage Class Videos Frames Total frames

Train COVID-19 25 10,559 27,920

Pneumonia 16 4088

Regular/healthy 33 13,961

Test COVID-19 16 3662 13,609

Pneumonia 11 1485

Regular/healthy 22 8036

Fig. 2 Quality enhancement by applying the CLAHE preprocessing
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increased, which makes the darker portions of the images 
more visible. The CLAHE method shows a better perfor-
mance in this regard, but a boost to noise still exists to 
some extent. In order to overcome this problem, in the 
proposed method, a spectral domain noise enhancement 
scheme is introduced.

Proposed spectral mask enhancement scheme
In the proposed method, a spectral-domain LUS image 
enhancement approach is introduced prior to the clas-
sification stage, so that better detection performance is 
achieved. As discussed before, after the CLAHE-based 
pre-processing stage, both the significant features and 
noises may also get enhanced. However, the effect of 
noises should be eliminated while preserving the major 
features.

The strength of the Fourier transform in analyzing 
ultrasound image characteristics is widely known [15]. 
For this purpose, 2D spectral analysis is performed using 
the discrete Fourier transform (DFT) which is found to 
be very effective in analyzing ultrasound image charac-
teristics [15]. For a 2D signal g(x, y), the DFT is defined 
as [16]:

where x = 0, 1, ....(M − 1); y = 0, 1, ....(N − 1) , and u,  v 
are the frequency coordinates.

From a recent study on COVID-19 and pneumonia 
affected ultrasound images, it is experimentally found 
that COVID-19 affected ultrasound images exhibit some 
distinguishable sonographic features, such as thicken-
ing, blurring, and discontinuities in the pleural lines of 
the ultrasound images [17, 18]. The spectral domain rep-
resentation of an image obtained by using the DFT fol-
lows the geometric structure in the spatial domain. For 
example, the high-frequency components arise due to the 
sharp intensity changes in the border regions. The Fourier 
spectrum of an ultrasound image is expected to exhibit 
bright rays emitting from the central frequency based on 
the information related to directions of dominant dis-
continuities in edges and other geometric textures [15]. 
Hence, the spectral analysis of ultrasound images under 
consideration can extract some key information and pre-
sent that through some frequency components [16, 19]. 
By investigating the 2D spectral masks of several ultra-
sound images of three different classes: healthy, pneumo-
nia, and COVID-19, it is found that the central region of 
the spectral mask exhibits significant differences among 
the three classes, as expected. More energy concentration 
is also observed in the central regions of the spectrum.

(1)G(u, v) =

M−1∑

x=0

N−1∑

y=0

g(x, y)e−j2π( uxM +
vy
N )
,

The pre-processed LUS images, following the imple-
mentation of CLAHE-based image enhancement, are 
resized into 128× 128× 3 RGB channels and converted 
into grayscale images. Considering the efficient imple-
mentation, 2D fast Fourier transform (FFT) is applied 
to the pre-processed image. In the resulting magnitude 
spectrum, it is observed that the low-frequency com-
ponents exhibit a higher magnitude than that of the 
high-frequency components. More energy concentra-
tion is also observed in the central regions of the spec-
trum. As a result, a brighter area can be found near the 
central region. A rectangular window covering that low-
frequency region is used to adjust the magnitudes near 
the central region, as shown in Fig. 3. Such a magnitude 
scaling operation helps to further control the contrast. 
This scaled magnitude spectrum is used along with the 
phase spectrum to construct the spectral mask. The 
enhanced image can be reconstructed from the spectral 
mask through inverse fast Fourier transform (IFFT), and 
the resulting single-channel grayscale image is found, 
the normalized version of which is then multiplied with 
the 3-channel CLAHE pre-processed LUS images. The 
resulting spectral mask enhanced 3-channel images are 
then employed in the DL models to perform the classi-
fication task. The proposed spectral mask enhancement 
stage followed by the DL models to classify the LUS 
images is termed as SpecMEn-DL method.

Classification architecture
From the LUS images obtained after the SpecMEn stage, 
the target is now to extract effective features for classify-
ing the images into three classes: COVID-19, pneumonia, 
and normal/regular. Instead of using the conventional 
ML-based techniques, in the proposed scheme, a deep 
convolutional neural network (CNN) architecture is 
employed. The CNN is capable of automatically pulling 
out multi-variant features and learning the spatial hier-
archies of features using multiple building blocks, such 
as convolution layers, pooling layers, and fully connected 
layers. Back-propagation calibrates the weights of a neu-
ral network based on the error rate and helps to mini-
mize the cost function in each iteration [20].

There are various efficient deep CNN architectures 
available in the literature. The objective of this study 
is not to design a new deep CNN architecture, rather 
demonstrate the effectiveness of the proposed spec-
tral mask enhancement (SpecMEn) scheme in classify-
ing the LUS images into three classes (i.e. COVID-19, 
pneumonia, and normal) using state-of-the-art efficient 
deep CNN models (overall SpecMEn-DL method). 
For this purpose, DenseNet-201 [21], ResNet-152V2 
[22], Xception [23], VGG19 [24], and NasNetMobile 
[25] architectures pre-trained with ImageNet [26] are 
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considered. The ResNet and DenseNet architectures 
are designed in such a way that these deep networks are 
capable of overcoming the vanishing gradient problem. 
The sigmoid activation function is used that squeezes 
the input so that larger values can be easily computed. 
With the increase in number of layers, these values may 
tend to zero as every layer consists of activation func-
tions. This problem is known as the vanishing gradient 
problem. As a result, as the network goes deeper, its 
performance does not get saturated. In order to solve 
this problem, the DenseNet allows layers to obtain 
additional information from all previous layers and 
pass on its feature-maps to all subsequent layers by 

concatenating them and the ResNet tends to pass fea-
tures skipping some layers in between. The Xception 
architecture inspired from the Inception network is a 
linear stack of depth-wise separable convolution lay-
ers with residual connections (skip connections like 
ResNet). Depth-wise separable convolutions are faster 
to compute as it splits the multiplication operation into 
two parts. In depthwise separable convolution, three 
separate kernels of size 3× 3× 1 are used to replace 
a single filter of size 3× 3× 3 . (M − 2)× (N − 2)× 1 
feature maps are generated from an input of size 
M × N × 3 and combining these maps, images of 
size (M − 2)× (N − 2)× 3 are found. The VGG19 

Fig. 3 Noise reduction and quality enhancement by the proposed SpecMEn method
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architecture is a very large neural network with three 
fully connected layers at the closure path along with a 
softmax function for classification. Due to its depth, it 
is very troublesome to train. Images are passed through 
a stack of convolutional layers, where the kernels are 
used with a very small receptive area which takes a lot 
of time to calculate. The NasNetMobile or NasNet-A 
architecture, a family of NasNet that utilizes the NAS 
framework, is used for both frame-based and video-
level detection due to its high performance. The Neural 
Architecture Search (NAS) is a data-driven intelligent 
approach that allows the network block to learn from 
data through reinforcement learning instead of 
experiments.

Decision tree scheme for video‑level detection
The proposed method is implemented to classify the 
LUS images into three classes for both frame-level and 
video-level results. Following the frame-level stage, 
analysis is carried out at the video-level as well. Each 
LUS video contains a large number of frames but one 
particular class label among the three possible classes 
and predicting that particular video class is the ulti-
mate target of a classification network.

In the LUS video dataset, only the labeling for each 
video is available. As a result, all the images of a par-
ticular video are assigned to the same class according 
to the class label of the video. For example, if a COVID-
19 labeled video contains 300 image frames, all the 300 
frames are considered as COVID-19. But in real life 
LUS-imaging, it is not necessary that all the frames 
of a COVID-19 labeled video must exhibit the char-
acteristics of COVID-19. There may be some frames 
that contain normal or pneumonia characteristics. 
A COVID-19 labeled LUS video may contain frames 
that depict a healthy condition, whereas the rest of the 
frames are infectious. In this study, all the frames of 
a certain class of video are considered as members of 
that class; as individual frames are not annotated in the 
dataset, rather the videos are labeled as a whole. During 
the testing phase, individual video-level cases are con-
sidered where for each video, a decision-tree approach 
is followed to predict the class label. The analysis is per-
formed in two steps, where a thresholding approach is 
applied at the first step to detect whether the frames 
of a certain video are healthy or not. If the number of 
frames in a video predicted as healthy crosses beyond 
a threshold, it is termed as normal or healthy case. If it 
does not cross the threshold, the decision on whether it 
is a COVID-19 case or pneumonia case is made by ana-
lyzing the predictions made on the other two types. The 

process is repeated for various threshold values and the 
results are presented for each of the thresholds.

Experimental results
Training‑testing and optimization
The deep learning models used in the proposed scheme 
are trained with a learning rate of 0.002, batch size 64, 
and the number of epochs 30. The Adam Optimizer [27] 
is used in each of the stages as an optimizing function. 
Various types of data augmentation are utilized at the 
training phase including rotation, horizontal and verti-
cal shifts, scaling, and flips. The categorical cross-entropy 
loss function [28] is applied to calculate loss between 
ground truth labels and predicted results.

Frame‑level results
The performance of the proposed method is evaluated 
on a test set consisting of 13,609 frames acquired from 49 
LUS videos available in [7]. The models trained on 27,920 
frames from 74 LUS videos are used to predict the frames 
into one of the three classes: COVID-19, pneumonia, and 
regular or healthy cases. Some standard statistical meas-
ures, such as the accuracy, sensitivity, specificity, and F1 
score are considered as the parameters for evaluating the 
performance of the proposed method. Five deep learning 
architectures, namely the DenseNet-201, VGG16, Xcep-
tion, ResNet152V2, and NasNetMobile are employed 
to train through the proposed strategy and applied on 
the test set. Detailed results obtained for each of these 
five models are presented in Table  2 considering the 
two cases: with and without using the proposed spec-
tral mask enhancement scheme (SpecMEn). The aver-
age increase in COVID-19 detection accuracy ranges up 
to 4% as noticeable from the Table. For example, in the 
case of the Xception model, for all three classes, each 
performance measure exhibits higher values when the 
proposed SpecMEn is applied, except a slightly lower 
specificity value in the regular class (0.952 and 0.949). A 
similar scenario is observed for the case of NasNetMo-
bile, with relatively low accuracy in comparison to that 
achieved with the Xception model. It can be concluded 
that by using the proposed SpecMEn scheme, a signifi-
cant increase is obtained in most of the performance 
evaluating parameters.

The models are trained to perform two-class classifi-
cation by categorizing the images into healthy and dis-
eased (COVID-19 and pneumonia) classes. The overall 
accuracy, weighted sensitivity, specificity, and F1 score 
are presented in Table 3. For all the five models, the use 
of the proposed technique achieves a propitious perfor-
mance by improving all the evaluating parameters in a 
congruous manner, as distinct by the results.
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Video‑level results
The ultimate goal of a classification network is to pre-
dict the class of an individual video through a certain 
decision, based on the frame-based results. In order to 
achieve this goal, the proposed classification scheme is 
implemented on the videos separately to check its effi-
cacy at the individual video-level as well. For this pur-
pose, the same 49 videos used for the frame-based results 
are tested by espousing the methodology presented in 
“Decision tree scheme for video-level detection” sec-
tion. It is observed from the results in both Table 2 and 
3 that NasNetMobile provides the closest result to the 
proposed technique, with slightly improved performance 
in a few parameters. Thence, the NasNetMobile model is 
considered for conveying the picture of improvement by 
the proposed method at the video-level.

The results for each of the thresholds are shown in 
Table 4. It is evident from the table that for the threshold 
of 60% , i.e., when the individual video is predicted as nor-
mal if > 60% frames of that individual video are predicted 

as normal, the best results are achieved. Examining the 
results, an unvarying hike is conspicuous with an increase 
of 8.1% , 6.4% , and 8.6% in accuracy, specificity, and F1 
score, respectively. The improvement in accuracy, sen-
sitivity, and specificity for the three cases separately are 
shown in Fig. 4. The COVID-19 cases are predicted with 
an accuracy of 85.26± 0.9% by the proposed technique, 
whereas it becomes 75.28± 1.46% for NasNetMobile 
only. The average increase in sensitivity and specificity 
for COVID-19 prediction is 7.64% and 11% , respectively, 
compared with the traditional NasNetMobile model 
alone. Similarly, pneumonia and regular cases are pre-
dicted with the accuracies of 87.76% and 89.80% , which 
are respectively 2% and 8% greater than that achieved by 
the NasNetMobile. After the threshold of 0.6, the model 
converges and the same result is achieved for both 0.55 
and 0.50 thresholds. The consistent improvement is 
noticeable in the visualization of the performance eval-
uating parameters in Fig.  4. For the various thresholds, 
the average classification accuracy, specificity, and F1 
score increases by an average of 11% , 7.96% , and 11.75% , 
respectively, than the NasNetMobile model alone.

It is to be noted that the proposed technique is imple-
mented on a large scale of data with all the 49 vid-
eos, comprised of a total of 13,609 frames. This is 
the very first study following the training and testing 
on this massive amount of LUS frames to the best of 
our knowledge. Among the videos, 3 COVID-19 vid-
eos are falsely predicted by both NasNetMobile and 
NasNetMobile+SpecMEn as pneumonia and 2 videos 
as healthy. Result deviates from the usual format in these 
unique cases where most of the frames are predicted 
wrongly. Reshaping the test set with the elimination of 
certain frames from these unique sources tremendously 
increases both individual and overall accuracy. However, 
the proposed technique is employed regardless of these 
to convey the true picture of the efficacy of this model.

Table 3 Two-class i.e. healthy vs. diseased cases (COVID-19 
and pneumonia) classification results by using five differ-
ent deep learning models

Model Accu‑
racy

Sensitiv‑
ity

Specific‑
ity

F1 score

DenseNet 0.836 0.836 0.751 0.827

DenseNet+SpecMEn 0.849 0.849 0.781 0.843

VGG19 0.837 0.837 0.745 0.826

VGG19+SpecMEn 0.848 0.848 0.765 0.840

Xception 0.835 0.835 0.735 0.822

Xception+SpecMEn 0.861 0.861 0.792 0.856

ResNet152V2 0.872 0.872 0.811 0.868

ResNet152V2+SpecMEn 0.904 0.904 0.865 0.902

NasNetMobile 0.816 0.816 0.762 0.812

NasNetMobile+SpecMEn 0.827 0.827 0.745 0.818

Table 4 Video-level classification results for varying thresholds

Threshold Overall accuracy Average sensitivity Average specificity Average F1 score

NasNetMobile NasNetMo‑
bile +Spec‑
MEn

NasNetMobile NasNetMo‑
bile +Spec‑
MEn

NasNetMobile NasNetMo‑
bile +Spec‑
MEn

NasNetMobile NasNetMo‑
bile +Spec‑
MEn

0.90 0.572 0.714 0.572 0.714 0.786 0.880 0.572 0.720

0.85 0.612 0.735 0.612 0.735 0.792 0.886 0.613 0.740

0.80 0.612 0.776 0.612 0.776 0.792 0.895 0.613 0.779

0.75 0.653 0.776 0.653 0.776 0.803 0.884 0.655 0.777

0.70 0.694 0.796 0.694 0.796 0.823 0.890 0.693 0.794

0.65 0.714 0.816 0.714 0.816 0.826 0.896 0.708 0.812

0.60 0.735 0.816 0.735 0.816 0.832 0.896 0.726 0.812

0.55 0.735 0.816 0.735 0.816 0.832 0.896 0.726 0.812
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Comparison with related studies
The studies related to automatic prediction based 
on LUS datasets are limited until now. In [8], a rela-
tively small dataset is used to consider the LUS cases 
through two different experiments: (1) 226 normal vs. 
235 COVID-19 and 220 pneumonia cases, and (2) 235 
COVID-19 vs. 220 pneumonia cases. VGG19 model is 
trained to classify the images into two classes each time, 
three-class classification is not performed there. The 
train-test split in that study is a bit unclear. Although 
the dataset used in this study can hardly be compared 
with them, a relative presentation of classifying the LUS 
images into healthy and unhealthy (COVID-19 and 
pneumonia) is provided in Table  5. In this study, 3662 
COVID-19, 1485 pneumonia, and 8036 normal images 
are utilized in the testing set which is unseen at the 
training phase. For the same task, in [8], the amount of 
data was 5% to ours, with 235 COVID-19, 220 pneumo-
nia, and 225 normal images.

In both [7] and [10], they utilized a selected portion of 
the POCUS dataset. In [7], they utilized 654 COVID-19, 

277 bacterial pneumonia, 172 healthy images from 64 
videos; whereas in [10], they utilized 693 COVID-19, 
377 bacterial pneumonia, and 295 healthy images from 
86 videos and 28 images. In both works, they gathered 
the images through manual processing with 30 frames 
per video as the maximum rate. It is apparent from our 
analysis in “Video-level results” section, that neglecting a 
portion of the dataset holds the capability of magnifying 
the overall performance tremendously.

Fig. 4 Accuracy, sensitivity and specificity of individual classes for video-level results

Table 5 Comparison for two-class classification

Model Class Precision Recall F1 score Quantity

VGG19 Healthy 0.96 0.60 0.74 3662 COVID-19,  
1485 Pneu-
monia, 8036 
Normal

Unhealthy 0.80 0.99 0.88

VGG19+ 
SpecMEn

Healthy 0.95 0.63 0.76

Unhealthy 0.81 0.98 0.89

[8] Healthy 0.94 0.98 0.96 235 COVID-19, 
220 Pneumonia, 
226 Normal

Unhealthy 0.99 0.97 0.98
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Conclusion
In this paper, a spectral-domain enhancement scheme 
along with a histogram equalization pre-processing 
technique is implemented to extract the noise-reduced 
LUS images, which are used in the DL-based classi-
fication networks. Instead of directly using the given 
LUS images, the proposed SpecMEn-DL scheme uti-
lizes noise reduced LUS images which helps in extract-
ing better features for the classification networks and 
enhancing the classification performance to a signifi-
cant margin. For example, at the frame-level evalua-
tion, the proposed SpecMEn-DL scheme can enhance 
the COVID-19 and pneumonia detection accuracy by 
up to 4–6% in both 3-class and 2-class problems. At 
the video-level, where a single prediction is done on a 
particular patient’s video, the detection accuracy, speci-
ficity, and F1 score improve drastically by an average of 
11% , 7.96% , and 11.75% , respectively, in comparison to 
the results obtained by the traditional DL model. Rig-
orous analysis with five established DL models in the 
source-independent conditions is presented to appraise 
the skill of the proposed technique. Consistently prom-
ising performance in both frame-level and video-level 
results demonstrate the superior ability of the pro-
posed scheme in automatic COVID-19 detection from 
the LUS data, which can be a vital tool in this ongoing 
pandemic.
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