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ABSTRACT
A recently conducted chemical genetic screen for pharmaceuticals that can 

extend longevity of the yeast Saccharomyces cerevisiae has identified lithocholic acid 
as a potent anti-aging molecule. It was found that this hydrophobic bile acid is also 
a selective anti-tumor chemical compound; it kills different types of cultured cancer 
cells if used at concentrations that do not compromise the viability of non-cancerous 
cells. These studies have revealed that yeast can be successfully used as a model 
organism for high-throughput screens aimed at the discovery of selectively acting 
anti-tumor small molecules. Two metabolic traits of rapidly proliferating fermenting 
yeast, namely aerobic glycolysis and lipogenesis, are known to be similar to those of 
cancer cells. The mechanisms underlying these key metabolic features of cancer cells 
and fermenting yeast have been established; such mechanisms are discussed in this 
review. We also suggest how a yeast-based chemical genetic screen can be used for 
the high-throughput development of selective anti-tumor pharmaceuticals that kill 
only cancer cells. This screen consists of searching for chemical compounds capable 
of increasing the abundance of membrane lipids enriched in unsaturated fatty acids 
that would therefore be toxic only to rapidly proliferating cells, such as cancer cells 
and fermenting yeast.

INTRODUCTION

Many pharmaceuticals that are currently used or 
undergoing clinical evaluation for cancer therapy have 
been developed as modulators of certain metabolic 
processes in cancer cells. These processes include the 
following: (1) nucleotide synthesis; (2) amino acid 
metabolism; (3) aerobic glycolysis, which is also known 
as ″the Warburg effect″; (4) lipogenesis, a de novo 
synthesis of bulk quantities of membrane lipids; (5) a 
lipolytic formation of fatty acids from monoacylglycerols; 
(6) mitochondrial transport and oxidation of fatty acids; 
(7) pentose phosphate pathway; and (8) mitochondrial 
tricarboxylic acid (TCA) cycle and electron transport chain 
(ETC) [1-10]. A body of evidence implies that at least two 
of these processes, aerobic glycolysis and lipogenesis, are 
common metabolic features of cancer cells and rapidly 
proliferating cells of the yeast Saccharomyces cerevisiae 
[11-20]. Thus, S. cerevisiae, a unicellular eukaryote 

amenable to comprehensive molecular analyses [21, 22], 
can be used as a model organism for the discovery of 
selective anti-tumor small molecules that target aerobic 
glycolysis or lipogenesis [19, 23-32]. In this review, we 
compare molecular and cellular mechanisms underlying 
aerobic glycolysis and lipogenesis in cancer cells and 
rapidly proliferating fermenting yeast. Based on our 
analysis, we propose a novel yeast-based chemical genetic 
screen for anti-tumor pharmaceuticals that kill cancer 
cells if used at concentrations that do not compromise 
functionality and viability of non-cancerous cells. This 
high-throughput screen is aimed at the identification 
of small molecules capable of increasing the fatty acid 
desaturation index of membrane lipids in fermenting yeast 
cells, thereby eliciting their liponecrotic death. 
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LIPONECROSIS IN YEAST: A CELL 
DEATH PROGRAM CAUSED BY 
CHANGES IN MEMBRANE LIPIDS

Our recent studies in the yeast S. cerevisiae have 
discovered and characterized a previously unknown form 
of programmed cell death (PCD) called ″liponecrosis″ 
[25, 33-35]. Liponecrotic PCD can be instigated by a 
short-term exposure of yeast to exogenous palmitoleic 
acid (POA), a 16-carbon monounsaturated fatty acid 
(16:1 n-7) [25]. Yeast cells undergoing liponecrotic 
PCD do not display morphological and biochemical 
hallmarks of the well-characterized apoptotic, autophagic 
or regulated necrotic forms of PCD. Indeed, unlike cell 
commitment to apoptotic PCD known to be accompanied 
by fragmentation of the nucleus and externalization of 
phosphatidylserine (PS) within the plasma membrane 

(PM) bilayer [36, 37], the commitment of yeast to the 
liponecrotic form of PCD does not involve nuclear 
fragmentation or PS enrichment in the extracellular (outer) 
leaflet of the PM [25, 35]. Furthermore, in contrast to cells 
undergoing autophagic PCD and therefore accumulating 
an excessive number of double-membraned vesicles called 
autophagosomes [36, 38-40], yeast cells that undergo 
liponecrotic PCD do not display such vast autophagic 
vacuolization of the cytoplasm [35]. Moreover, contrary 
to cells undergoing regulated necrotic PCD, which is 
characterized by a clearly visible rupture of the PM 
[41-44], yeast cells committed to liponecrotic PCD do 
not exhibit any noticeable perforations in the PM [35]. 
However, the necrotic and liponecrotic forms of PCD 
share at least one common trait - i.e., a substantial rise in 
the permeability of the PM for propidium iodide (PI) and 
other small molecules [25, 35, 41, 43, 44].

Figure 1: A model for the molecular mechanism underlying a liponecrotic form of programmed cell death (PCD) in 
yeast. A brief exposure of yeast to exogenously added palmitoleic acid (POA) can trigger liponecrotic PCD, which differs from all other 
presently known programs of cell death. Liponecrosis in yeast is caused by a massive remodeling of lipid metabolism and lipid transport 
in the endoplasmic reticulum (ER), peroxisomes (PER), plasma membrane (PM), lipid droplets (LD) and mitochondria (MIT). Activation 
arrows and inhibition bars denote pro-death cellular processes (which are displayed in red color) or pro-survival cellular processes (which 
are displayed in green color). See text for more details. Abbreviations: PE, phosphatidylethanolamine; ROS, reactive oxygen species.
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The molecular mechanism underlying liponecrosis 
has begun to emerge; it is driven by an extensive 
remodeling of lipid metabolism and lipid transport in yeast 
cells briefly exposed to exogenous POA [34, 35]. A model 
for such mechanism is depicted schematically in Figure 
1. The model posits that the extent of yeast susceptibility 
to liponecrotic PCD depends on the relative rates of pro-
death and pro-survival cellular processes. In Figure 1 these 
processes are displayed in red or green color, respectively. 

The pro-death cellular processes accelerating 
liponecrotic PCD can create the acute cellular stress. 
These processes are elicited when exogenously 
added POA is initially used for the synthesis of POA-
containing phospholipids in the endoplasmic reticulum 
(ER); the bulk quantities of these phospholipids then 
accumulate in the membrane bilayers of mitochondria 
and PM [34, 35], likely after being transported from the 
ER to these membrane bilayers via mitochondria-ER 
and PM-ER junctions (Figure 1) [45-48]. The buildup 
of POA-containing phospholipids in the inner and 
outer mitochondrial membranes of yeast committed to 
liponecrosis compromises mitochondrial functionality 
because it deteriorates such vital mitochondrial processes 
as respiration, electrochemical membrane potential and 
ATP synthesis [34, 35]. These dysfunctional mitochondria 
are unable to generate ATP in quantities that are sufficient 
for the energy-demanding process of assimilating 
exogenously added POA into triacylglycerols (TAG); 
TAG are neutral lipids initially synthesized in the ER 
and then deposited in lipid droplets (LD) [34, 35]. The 
synthesis and deposition of POA-containing TAG are 
considered pro-survival processes because they allow a 
reduction in the incorporation of POA into phospholipids, 
thus lowering their accumulation in the membranes of the 
ER, mitochondria and PM (Figure 1) [34, 49-52]. The 
dysfunctional mitochondria that are formed in yeast cells 
committed to liponecrosis can be selectively eliminated 
in the process of mitophagy. This autophagic degradation 
of dysfunctional mitochondria operates as a pro-survival 
process [34, 35], probably because of its well-known 
essential role in sustaining a population of functional 
mitochondria in a yeast cell (Figure 1) [53-55].

The accumulation of POA-containing phospholipids 
in both mitochondrial membranes can commit yeast 
to liponecrotic PCD not only because it weakens 
mitochondrial respiration, membrane potential and ATP 
synthesis but also because it considerably enhances 
the formation of reactive oxygen species (ROS) in 
mitochondria [34]. Due to such formation of mitochondrial 
ROS in bulk quantities, the cellular concentrations 
of ROS outside mitochondria in yeast committed to 
liponecrosis can exceed a cytotoxic threshold. This not 
only considerably reduces functionalities of various 
organelles by oxidatively damaging their protein and lipid 
constituents but also compromises cellular proteostasis 
by oxidatively damaging protein molecules confined to 

the cytosol (Figure 1) [34]. The numerous oxidatively 
damaged and dysfunctional organelles accumulated 
in yeast committed to liponecrosis undergo massive 
degradation. This pro-death process is executed by 
the cytosolic serine/threonine protein kinase Atg1 and 
several other proteins known to govern a non-selective 
autophagic breakdown of various organelles (Figure 1) 
[34, 35, 56, 57]. The oxidatively damaged, dysfunctional, 
unfolded and aggregated cytosolic proteins that amass in 
yeast committed to liponecrosis are degraded in a pro-
survival process executed by the metacaspase Yca1 and 
serine protease Nma111 (Figure 1) [34]. Of note, Yca1 
and Nma111 are known to be the key components of the 
caspase-dependent apoptotic pathway for breakdown of 
cytosolic proteins in yeast undergoing an apoptotic mode 
of PCD [58-60].

The accumulation of POA-containing phospholipids 
in the PM of yeast committed to liponecrosis leads to a 
re-distribution of phosphatidylethanolamine (PE) from 
the extracellular (outer) leaflet to the intracellular (inner) 
leaflet of the PM. The resulting depletion of PE in the 
outer leaflet of the PM is a pro-death process because it 
substantially increases the permeability of the PM for 
PI and other small molecules (Figure 1) [25, 34]. Such 
re-distribution of PE within the PM bilayer is driven 
by the alkaline-pH- and lipid-asymmetry-responsive 
Rim101 signaling pathway, which can be activated in 
response to the buildup of POA-containing phospholipids 
in this membrane bilayer [34]. Noteworthy, the Rim101 
signaling pathway has been shown not only to accelerate 
the movement of PE from the outer leaflet of the PM to 
its inner leaflet but also to decelerate the movement of 
this phospholipid across the PM bilayer in the opposite 
direction [61-63].

It needs to be emphasized that at least two cellular 
processes can decelerate liponecrotic PCD because 
they both prevent a portion of exogenously added POA 
from being used for the synthesis of POA-containing 
phospholipids. As previously mentioned, one of these 
pro-survival cellular processes is POA incorporation into 
TAG and the ensuing deposition of these neutral lipids in 
LD (Figure 1) [34, 35]. Another such pro-survival cellular 
process is POA oxidation in peroxisomes of yeast cells 
exposed to this monounsaturated fatty acid (Figure 1) [34, 
35]; peroxisomes are known for the essential role they 
play in oxidative degradation of fatty acids [64, 65].

AEROBIC GLYCOLYSIS AND 
LIPOGENESIS: SIMILAR METABOLIC 
FEATURES OF THE FERMENTING 
YEAST S. CEREVISIAE AND CANCER 
CELLS

A body of evidence implies that rapidly proliferating 
cells of the yeast S. cerevisiae grown in nutrient- and 
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glucose-rich media exhibit some metabolic features that 
are similar to the key tumorigenic metabolic traits of 
different types of cancer cells [15, 17, 19, 20, 32, 66-68]. 

One of these similar metabolic traits is aerobic 
glycolysis, also known as the Warburg effect. This trait 
consists in the ability of cancer cells to metabolically 
convert glucose to lactate under aerobic conditions [18, 
20, 69-71]. In all cancer cell types, this ability is known 
to be caused by enhanced glucose uptake and glycolysis, 

and in many types of cancer cells, such ability is also due 
to ″the Crabtree effect″ of suppressing mitochondrial 
respiration and oxidative phosphorylation [72-76]. It 
should be stressed that the conversion of glucose to lactate 
taking place in cancer cells under aerobic conditions is 
substantially less efficient in terms of ATP production 
per molecule of glucose than the one observed in non-
cancerous cells under the same conditions [12, 20, 72, 77, 
78]. In the presence of oxygen, these non-cancerous cells 

Figure 2: Some of the key metabolic processes underlying aerobic glycolysis in the fermenting yeast S. cerevisiae and 
cancer cells have similar rates and patterns of regulation in these two cell types. Because of these similarities, aerobic 
glycolysis is a common metabolic feature of rapidly proliferating yeast and cancer cells. Enzymes, metabolites and processes whose 
activities, concentrations and rates are increased or decreased are displayed in red or green color, respectively. See text for more details. 
Abbreviations: CCO, cytochrome c oxidase; ETC, electron transport chain; HK, hexokinase; PDC, pyruvate decarboxylase; PDH, pyruvate 
dehydrogenase; PDHK, pyruvate dehydrogenase kinase; PFK, phosphofructokinase; PK, pyruvate kinase; PM, plasma membrane; LDH, 
lactate dehydrogenase; MIT, mitochondrion; SDH, succinate dehydrogenase; TCA, tricarboxylic acid. 
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use the glycolytic metabolic pathway to convert glucose 
to pyruvate, which is then metabolized to carbon dioxide 
via oxidative phosphorylation in mitochondria [79-83]. 
Several metabolic processes are known to underlie the 
phenomenon of aerobic glycolysis. It seems that aerobic 
glycolysis is common to the fermenting yeast S. cerevisiae 
and different types of cancer cells because many of these 
metabolic processes have similar relative rates, exhibit 
similar regulation patterns, and are catalyzed by enzymes 
sharing significant sequence homologies in yeast and 
cancer cells [15, 18, 66-68, 72, 77, 83]. Such similarities 
between the key metabolic processes underlying aerobic 
glycolysis in rapidly proliferating yeast and cancer cells 

are outlined schematically in Figure 2 and include the 
following: (1) elevated cytosolic levels of hexokinase 
isoforms that have high affinities for glucose and 
low sensitivities to feedback inhibition by glucose-6-
phosphate [11, 13, 14, 84, 85]; (2) increased enzymatic 
activities of cytosolic phosphofructokinase and augmented 
concentrations of fructose-2,6-bisphosphate, a potent 
allosteric activator of phosphofructokinase [15, 18, 66, 82, 
86]; (3) raised levels of cytosolic pyruvate kinase isoforms 
highly sensitive to allosteric activation by fructose-1,6-
bisphosphate, a product of the reaction catalyzed by 
phosphofructokinase [82, 87-92]; (4) elevated cytosolic 
levels and enzymatic activities of pyruvate decarboxylase 

Figure 3: Some changes affecting lipid metabolism in cancer cells can play causal roles in certain aspects of cancer 
initiation, promotion and progression. These aspects include malignant transformation of cells A., tumorigenic impairment of 
normal organization of the tissue of origin B., migration of cancer cells within the tissue of origin and interaction with stromal components 
of this tissue C., tumor angiogenesis and the ensuing formation of metastases D., and growth and further spreading of the cancer cells 
metastasizing adipose tissue E.. See text for more details. Abbreviations: DAG, diacylglycerol; FA-CoA, acyl-CoA ester of fatty acid; LPA, 
lysophosphatidic acid; MAG, monoacylglycerol; PGE2, prostaglandin E2; PI (4, 5) P2, phosphatidylinositol-4, 5-bisphosphate; PI (3, 4, 5) 
P3, phosphatidylinositol-3, 4, 5-triphosphate. 



Oncotarget5209www.impactjournals.com/oncotarget

in yeast and lactate dehydrogenase in cancer cells, both 
of which lower mitochondrial oxidation of pyruvate by 
catalyzing its conversion into cytosolic acetaldehyde 
or cytosolic lactate, respectively [66, 82, 93-96]; (5) 
increased levels of mitochondrial pyruvate dehydrogenase 
kinase, which causes a decrease in mitochondrial pyruvate 
oxidation by phosphorylating and inhibiting pyruvate 
dehydrogenase in mitochondria [66, 97-101]; and (6) 
reduced levels and/or activities of such vital components 
of the mitochondrial ETC as succinate dehydrogenase 
(complex II; it is also an enzyme of the mitochondrial 
TCA cycle), cytochrome c oxidase (complex IV) and 
ATP synthase (complex V) [102-108]. Of note, although 
most known types of cancer cells permanently exhibit the 
Warburg effect of enhanced glucose uptake and intensified 
glycolysis, some of these cancer cell types display the 
Crabtree effect of suppressed mitochondrial TCA cycle, 
ETC and/or ATP synthesis only temporally whereas others 
never exhibit such an effect [15, 66, 109-113].

Fermenting cells of the yeast S. cerevisiae have 
another characteristic metabolic feature which is known as 
one of the key tumorigenic metabolic traits of cancer cells. 
This metabolic feature is called lipogenesis. It is common 
to rapidly proliferating yeast and cancer cells because both 
cell types require abundant quantities of membrane lipids 
that can be used for (1) cell growth and mitotic division, 
and (2) membrane trafficking and membrane-associated 
signaling [7, 11, 14, 16, 19, 20, 77, 80, 114-121]. 
Lipogenesis refers to a type of metabolic reprogramming 
in which the surplus metabolites produced by aerobic 
glycolysis can be used for the de novo synthesis of bulk 
quantities of membrane lipids, mainly (but not exclusively) 
fatty acids, phospholipids and cholesterol [1, 18, 20, 77, 
114, 119]. Recent evidence indicates that certain features 
of such reprogramming of lipid metabolism in cancer cells 
may play causal roles in malignant transformation and 
tumor development. The features of reprogrammed lipid 
metabolism that can affect some specific aspects of cancer 

Figure 4: Several of the key metabolic processes underlying lipogenesis in the fermenting yeast S. cerevisiae and cancer 
cells have comparable rates and exhibit analogous patterns of regulation in these two cell types. Due to such similar 
properties of the key metabolic processes that underlie lipogenesis, it is a common metabolic trait of the rapidly proliferating yeast and 
cancer cells. Enzymes and processes exhibiting increased activities and rates are displayed in red color. Glycolytic processes whose rates 
are elevated in yeast and cancer cells are also shown in red color; enzymes catalyzing these processes are named in Figure 2. See text for 
more details. Abbreviations: ACC, acetyl-CoA carboxylase; ACS, acyl-CoA synthetase; FA-CoA, acyl-CoA ester of fatty acid; FASN, fatty 
acid synthase; FFA, free fatty acid; LD, lipid droplets; MAG, monoacylglycerol; MAGL, monoacylglycerol lipase; MIT, mitochondria; 
PM, plasma membrane; SCD, stearoyl-CoA desaturase; SPHK, sphingosine-1-kinase; TAG, triacylglycerol; TCA, tricarboxylic acid.
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initiation, promotion and progression are recapitulated 
schematically in Figure 3 and include the following: (1) 
a stimulation of the mevalonate pathway of cholesterol 
synthesis, activation of fatty acid synthesis and induction 
of phosphatidylinositol-3,4,5-triphosphate synthesis - 
which can all promote malignant transformation of cells 
and can also contribute to the tumorigenic impairment 
of normal tissue organization (Figure 3A and 3B) [7, 
120, 122-130]; (2) a lipogenic incorporation of fatty 
acids into diacylglycerol, lysophosphatidic acid and 
prostaglandin E2, as well as a lipolytic, monoacylglycerol 
lipase (MAGL)-driven formation of fatty acids from 
monoacylglycerols, all of which can help cancer cells to 
invade the tissue of origin by stimulating the migration 
of cancer cells within this tissue and also by promoting 
the interaction of cancer cells with stromal components of 
this tissue (Figure 3C) [6, 125, 131-137]; (3) the de novo 
synthesis of fatty acids from acetyl-CoA and the formation 
of lysophosphatidic acid, sphingosine-1-phosphate and 
prostaglandin E2 from fatty acids which can support cancer 
cell invasion within the tissue of origin by guiding the 
bidirectional communications between the invading cancer 
cells and such stromal components as cancer-associated 

fibroblasts, M2 macrophages and natural killer cells 
(Figure 3C) [125, 138-141]; (4) the de novo synthesis of 
fatty acids, sphingosine-1-phosphate and prostaglandin E2 
which can accelerate tumor angiogenesis, thus facilitating 
the spreading of cancer cells into other tissues and 
supporting the formation of metastases (Figure 3D) [125, 
142-148]; and (5) the lipolysis of TAG deposited in LD 
within adipocytes adjacent to cancer cells that metastasize 
adipose tissue which allows cancer cells to generate 
bulk quantities of fatty acids; after being transferred to 
metastatic cancer cells, these fatty acids can be oxidized in 
mitochondria to support the growth and further spreading 
of the cancer cells (Figure 3E) [149-152].

Akin to aerobic glycolysis, lipogenesis is common 
to the fermenting yeast S. cerevisiae and cancer cells 
because several key processes underlying this metabolic 
trait exhibit comparable rates, display analogous patterns 
of regulation and are driven by orthologous proteins in 
yeast and cancer cells [1, 16, 19, 50, 51, 81, 114, 119, 120, 
153, 154]. Such similar properties of the key metabolic 
processes underlying lipogenesis in rapidly proliferating 
yeast and cancer cells are displayed schematically in 
Figure 4 and include the following: (1) increased activities 

Figure 5: Different mechanisms by which various anti-tumor pharmaceuticals can inhibit lipogenesis in cancer cells. 
These mechanisms decelerate lipogenesis-related processes common to rapidly proliferating yeast and cancer cells. Genes, proteins and 
processes whose increased expression levels, activities and rates promote tumorigenesis in cells that are not exposed to lipogenesis-
inhibiting small molecules are displayed in red color. Proteins and processes whose activities and rates attenuate tumorigenesis in response 
to cell treatment with lipogenesis-inhibiting small molecules are displayed in green color. See text for more details. Abbreviations: 25-
HC, 25-hydroxycholesterol; ACC, acetyl-CoA carboxylase; ACS, acyl-CoA synthetase; AICAR, 5-aminoimidazole-4-carboxamide 
ribonucleoside; AMPK, AMP-activated protein kinase; EGCG, epigallocatechin-3-gallate; ER, endoplasmic reticulum; FA-CoA, acyl-
CoA ester of fatty acid; FASN, fatty acid synthase; FFA, free fatty acid; LXR, liver-X-receptor; MAG, monoacylglycerol; MAGL, 
monoacylglycerol lipase; PM, plasma membrane; SCD, stearoyl-CoA desaturase; SREBP, sterol regulatory element-binding protein; 
TOFA, 5-(tetradecyloxy)-2-furoic acid; TZDs, thiazolidinediones.
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of the enzymes involved in the de novo synthesis of acyl-
CoA esters of saturated fatty acids from acetyl-CoA; 
among these enzymes are acetyl-CoA carboxylase (ACC), 
fatty acid synthase (FASN) and acyl-CoA synthetase 
(ACS) in cancer cells and their orthologues Acc1, Fas1/
Fas2 complex and Faa1 in yeast [1, 19, 155-160]; (2) an 
elevated enzymatic activity of stearoyl-CoA desaturase 
(SCD; this enzyme catalyzes the desaturation of stearoyl-
CoA to oleoyl-CoA) in cancer cells and of the orthologous 
enzyme Ole1 in yeast [1, 5, 16, 19, 161-163]; (3) an 
amplified enzymatic activity of sphingosine-1-kinase 
(which accelerates the formation of the potent signaling 
molecule sphingosine-1-phosphate from acyl-CoA esters 
of fatty acids) in cancer cells and of its orthologues Lcb4 
and Lcb5 in yeast [16, 19, 143, 164-167]; and (4) an 
elevated enzymatic activity of MAGL (which catalyzes the 
lipolytic formation of fatty acids from monoacylglycerols) 
in cancer cells; in rapidly proliferating yeast, the TAG 
lipase Tgl4 is likely to play a similar role in providing 
fatty acids to support cell growth, division, membrane 
trafficking and membrane-associated signaling [6, 19, 115, 
117, 133, 137]. Noteworthy, although many types of solid 
tumors exhibit both aerobic glycolysis and lipogenesis, 
primary prostate cancers display only lipogenesis as a 
characteristic metabolic trait [10, 158, 168-171].

A CURRENT APPROACH TO 
DEVELOPING SELECTIVE ANTI-
TUMOR PHARMACEUTICALS 
THAT CAN REORGANIZE LIPID 
METABOLISM: SEARCHING FOR 
INHIBITORS OF LIPOGENESIS

The current strategy for discovering anti-tumor 
pharmaceuticals that target lipid metabolism consists 
of searching for small molecules capable of inhibiting 
lipogenesis in cancer cells. Such molecules are expected 
to diminish the quantities of membrane lipids available 
to support proliferation and survival of cancer cells 
without impairing functionality and viability of non-
cancerous cells. This strategy for uncovering anti-tumor 
therapeutic agents has recently been extensively exploited 
in a number of studies, and their major findings have 
been reviewed elsewhere [1-3, 6, 10, 19, 81, 82, 119, 133, 
148, 155, 158, 170, 172-177]. Figure 5 schematically 
summarizes four different mechanisms through which 
various pharmacological interventions can inhibit 
lipogenesis in cancer cells by slowing down lipogenesis-
related processes that are also known to support rapid 
proliferation of fermenting yeast. These mechanisms 
include the following: (1) a direct chemical inhibition 
of ACC, FASN, ACS, SCD or MAGL by a distinct set 
of small molecules, each of which can specifically bind 
to one of these enzymes (Figure 5) [1, 6, 10, 133, 155, 
160, 178-191]; (2) a metformin-, 5-aminoimidazole-4-

carboxamide ribonucleoside (AICAR)- or A-769662-
dependent activation of AMP-activated protein kinase 
(AMPK), which then phosphorylates and inhibits 
ACC and FASN (Figure 5) [1, 10, 19, 192-197]; (3) an 
interaction of the small molecule SR9243 with the nuclear 
liver-X-receptor (LXR); such interaction attenuates the 
LXR-driven transcription of nuclear genes encoding ACC, 
FSN and SCD (Figure 5) [2, 198]; and (4) an inhibition 
of the ER-to-Golgi transport of sterol regulatory element-
binding proteins (SREBP) by betulin and several other 
small molecules; such inhibition impairs the proteolytic 
processing of SREBP in the Golgi, thus preventing the 
import of active fragments of SREBP into the nucleus and 
attenuating SREBP-dependent transcription of nuclear 
genes encoding ACC, FSN and SCD (Figure 5) [1, 199-
201].

A NOVEL APPROACH TO DISCOVERING 
SELECTIVE ANTI-TUMOR 
PHARMACEUTICALS THAT CAN ALTER 
LIPID METABOLISM: THE SEARCH FOR 
ACTIVATORS OF LIPONECROSIS

A growing body of evidence indicates that 
the proliferation of cancer cells can be decelerated 
and their survival can be compromised by genetic 
and pharmacological interventions capable of 
altering (i.e. decreasing or increasing) ″the fatty acid 
desaturation index″. The index is defined as the ratio 
of monounsaturated fatty acids (MUFA) to saturated 
fatty acids (SFA) [202, 203]. The value of this index in 
human cells depends mainly on the enzymatic activity of 
the SCD1 isoform of stearoyl-CoA desaturase. This ER-
associated acyl-CoA delta-9 desaturase accelerates the 
introduction of a cis-double bond between carbons 9 and 
10 of acyl-CoA esters of palmitic or stearic acid to produce 
acyl-CoA esters of palmitoleic or oleic acid, respectively 
[204-207]. Palmitic and stearic acid are the most abundant 
SFA in cancer cells, whereas palmitoleic and oleic acid 
are the major MUFA [5, 208-211]. All four of these fatty 
acids are the predominant forms of cellular lipids that 
can be found as free SFA or MUFA and their acyl-CoA 
esters. The bulk of these fatty acids (especially MUFA) 
in cancer cells can also be incorporated into membrane 
phospholipids, neutral lipids and sphingolipids [114, 158, 
208-211].

Inhibition of SCD1 activity, either by certain genetic 
manipulations or by some pharmaceuticals (see Figure 
5), decreases the fatty acid desaturation index. Such 
inhibition has been shown to exhibit potent anti-tumor 
effects in different forms of cancer by affecting various 
aspects of cancer initiation, promotion and progression 
[5, 163, 180, 184, 186, 188, 212-219]. Recent studies 
have suggested two different types of mechanisms 
through which such inhibition of SCD1 and the resulting 
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decrease of the fatty acid desaturation index (i.e. a rise 
of cellular SFA concentration and a concomitant decline 
of cellular MUFA concentration) can cause the observed 
anti-tumor effects. These two types of mechanisms are 
recapitulated schematically in Figure 6. They include the 
following: (1) the build-up of SFA alters the structure of 
the ER membrane and impairs its functionality, thereby 
eliciting the unfolded protein response signaling pathway 
in the ER and excessively stressing this organelle [162, 
220-229]; if such SFA-driven stress in the ER exceeds a 
cytotoxic threshold in cancer cells with inhibited SCD1, 
these cells undergo apoptosis [215, 219]; and (2) SCD1 
inhibition in cancer cells substantially decelerates the 
flow of the surplus glycolytic metabolites into fatty 

acid synthesis (and thus, suppresses lipogenesis) by 
eliciting a significant decrease in the enzymatic activity 
of ACC; this suppressing effect of SCD1 inhibition on 
lipogenesis is due to the following demonstrated abilities 
of such inhibition: (a) it activates AMPK, which then 
phosphorylates and inhibits ACC, (b) it elevates cellular 
concentrations of saturated acyl-CoA species known 
to inhibit ACC allosterically, and (c) it attenuates the 
phosphatidylinositol-3 kinase/Akt signaling pathway 
needed for SREBP-driven transcription of nuclear genes 
encoding ACC and other lipogenic enzymes [5, 80, 163, 
180, 188, 214, 230-233]. 

Noteworthy, various cell lines of breast, colorectal 
and prostate cancers have been shown to possess 

Figure 6: Mechanisms through which an inhibition of stearoyl-CoA desaturase (SCD) by some pharmaceuticals can 
cause potent anti-tumor effects. Such inhibition elicits a rise of cellular concentrations of acyl-CoA esters of saturated fatty acids 
and a concomitant decline of cellular concentrations of acyl-CoA esters of unsaturated fatty acids. Genes, proteins and processes whose 
increased expression levels, activities and rates promote tumorigenesis in cells that are not exposed to the SCD inhibitors are displayed in 
red color. Proteins and processes whose activities and rates attenuate tumorigenesis in response to cell treatment with the SCD inhibitors 
are displayed in green color. See text for more details. Abbreviations: ACC, acetyl-CoA carboxylase; AMPK, AMP-activated protein 
kinase; Akt, a serine/threonine-specific protein kinase; ER, endoplasmic reticulum; FA-CoA, acyl-CoA ester of fatty acid; FASN, fatty 
acid synthase; PI3K/Akt, phosphatidylinositol-3 kinase/Akt signaling pathway; PM, plasma membrane; SREBP, sterol regulatory element-
binding protein; UPRER, the unfolded protein response signaling pathway in the ER.
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substantially increased lipogenic activities [217]. 
Moreover, in primary prostate cancers, lipogenesis (but 
not aerobic glycolysis) is known to be the only prominent 
tumorigenic trait of metabolism [10, 158, 168-171]. 
It needs to be emphasized that cells of all these highly 
lipogenic cancer forms have been shown to exhibit a 
considerably reduced fatty acid desaturation index (i.e. 
the concentrations of MUFA in these cells are decreased 
whereas cellular concentrations of SFA are increased) if 
the cells are not exposed to an anti-tumor agent [217]. 
However, these highly lipogenic cancer cells display 
a substantially elevated fatty acid desaturation index 
(i.e. the concentrations of both SFA and MUFA in these 
cells are decreased whereas cellular concentrations of 
polyunsaturated (PUFA) fatty acids are substantially 
increased) if the cells are subjected to genetic or 
pharmaceutical interventions lowering lipogenesis and 
causing robust anti-tumor effects [217]. Because the 
highly lipogenic cells of breast, colorectal and prostate 
cancers exposed to such anti-tumor interventions exhibited 

an elevated fatty acid desaturation index and increased 
concentrations of peroxidation-susceptible PUFA, these 
cells displayed raised concentrations of oxidatively 
damaged membrane lipids, enhanced susceptibility to 
oxidative stress, declined protein mobility within lipid 
membrane bilayers and augmented permeability of the 
PM bilayer to small molecules [217]. It is conceivable 
therefore that some small molecules capable of increasing 
the fatty acid desaturation index in the highly lipogenic 
cancer cells (for instance, by stimulating SCD1 activity) 
may exhibit robust anti-tumor effects in these rapidly 
proliferating cells. Because lipogenesis is a common 
metabolic trait of cancer cells and rapidly proliferating 
fermenting yeast (see above), it is likely that such anti-
tumor small molecules may also cause rapid loss of cell 
viability in yeast. 

Furthermore, it has been demonstrated that 
cancer cells constitutively overexpressing Ole1, a yeast 
ortholog of human SCD1, exhibit an increased fatty acid 
desaturation index due to the elevated concentrations of 

Figure 7: Different ways of increasing the fatty acid desaturation index of various membrane lipids in yeast with the 
help of small molecules. A small molecule eliciting any of these methods for increasing the fatty acid desaturation index can commit 
rapidly proliferating fermenting yeast to liponecrotic programmed cell death. Proteins and processes whose elevated or lowered activities 
and rates can increase the fatty acid desaturation index of membrane lipids are displayed in red or green color, respectively. Thick black 
arrows indicate processes whose rates are expected to be intensified in yeast exposed to a small molecule capable of increasing the fatty acid 
desaturation indexes of various membrane lipids. See text for more details. Abbreviations: CDP-DAG, cytidine diphosphate diacylglycerol; 
CL, cardiolipin; DAG, diacylglycerol; EE, ergosteryl ester; ER, endoplasmic reticulum; FA-CoA, acyl-CoA ester of fatty acid; FFA, 
free fatty acid; PA, phosphatidic acid; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PI, phosphatidylinositol; PM, plasma 
membrane; PS, phosphatidylserine; TAG, triacylglycerol.
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MUFA in these cells [234, 235]. It should be stressed that 
such a rise in the fatty acid desaturation index not only 
enhances the fluidity of membrane bilayers in these cancer 
cells but also considerably increases cell susceptibility 
to exogenous tumor necrosis factor [234, 235]. Of note, 
an elevated level of Ole1 expression has been shown to 
impair growth and division of fermenting yeast [236]. 
Thus, again, it seems that pharmaceuticals capable of 
increasing the fatty acid desaturation index in rapidly 
proliferating cancer cells by elevating SCD activity may 
have high anti-tumor potential. It is feasible that these 
anti-tumor pharmaceuticals may also compromise survival 
of rapidly proliferating yeast. 

Moreover, a yeast mutant concurrently lacking 
acyltransferases Lro1, Dga1, Are1 and Are2 is known to be 
unable to incorporate acyl-CoA esters of MUFA into TAG 
[237]. It has been shown that cells of this mutant exhibit 
excessive proliferation of ER membranes and rapidly die 
only if exposed to exogenous MUFA [237]. In contrast, an 
exposure of these mutant cells to SFA does not cause ER 
membrane proliferation or loss of cell viability [237]. It 
is therefore likely that some small molecules capable of 
reducing the incorporation of MUFA into TAG may kill 
fermenting yeast cells. Due to similarities of lipogenic 
processes taking place in these rapidly proliferating cells 
and in cancer cells (see above), it is conceivable that 
such small molecules may also exhibit robust anti-tumor 
effects.

Based on the above findings, we propose the 
following approach to using fermenting yeast as a model 
organism for the discovery of anti-tumor pharmaceuticals 
that can alter lipid metabolism. As discussed above, small 
molecules that can increase the fatty acid desaturation 
index of free fatty acids, phospholipids, ergosterol and 
sphingolipids in fermenting yeast cells may not only 
cause death of these cells but may also selectively kill 
rapidly proliferating cancer cells. There are at least four 
different ways of increasing the fatty acid desaturation 
index of various lipid classes in yeast with the help of 
small molecules. These ways are outlined schematically 
in Figure 7 and include the following: (1) elevating the 
enzymatic activity of the delta-9 fatty acid desaturase 
Ole1, which catalyzes the formation of acyl-CoA esters of 
unsaturated fatty acids from acyl-CoA esters of saturated 
fatty acids [16, 50, 51]; (2) raising the enzymatic activities 
of lipases involved in the hydrolytic formation of acyl-
CoA esters of unsaturated fatty acids from TAG and 
ergosteryl esters (EE); these lipases include Tgl1, Tgl3, 
Tgl4, Tgl5, Yeh1 and Yeh2 [16, 50, 51]; (3) decreasing the 
enzymatic activities of acyltransferases that accelerate the 
incorporation of acyl-CoA esters of unsaturated fatty acids 
into TAG and EE; among these acyltransferases are Dga1, 
Lro1, Are1 and Are2 [16, 50, 51]; and (4) decreasing the 
activities of peroxisomal enzymes Fox1, Fox2 and Fox3, 
all of which are involved in degradative β-oxidation of 
acyl-CoA esters of unsaturated fatty acids [16, 50, 51]. It 

needs to be emphasized that a small molecule eliciting any 
of these methods for increasing the fatty acid desaturation 
index of membrane lipids is expected to cause a buildup 
of unsaturated lipids in the membrane bilayers of ER, 
mitochondria and PM. As it has been mentioned in the 
first section of this review, the excessive accumulation of 
POA-containing lipids in the membrane bilayers of ER, 
mitochondria and PM can commit yeast to liponecrotic 
PCD; POA is a 16-carbon MUFA [25, 33-35]. It is 
therefore conceivable that pharmaceuticals causing an 
increase in the fatty acid desaturation index of membrane 
lipids can trigger liponecrotic cell death of fermenting 
yeast. As discussed above, due to the similarities of 
lipogenic processes taking place in rapidly proliferating 
fermenting yeast and in cancer cells, it is plausible that 
such pharmaceuticals may also have robust anti-tumor 
effects.

Of note, our recent studies have convincingly 
demonstrated the applicability of yeast as a model 
organism for the discovery of selective anti-tumor small 
molecules targeting a certain aspect of tumorigenesis. 
Specifically, our high-throughput chemical genetic screen 
for pharmaceuticals that can extend yeast longevity has 
identified lithocholic acid (LCA), the most hydrophobic 
bile acid, as one of them [25]. We have uncovered the 
molecular and cellular mechanisms through which LCA 
increases the lifespan of chronologically aging yeast 
[33, 45, 55, 238-241]. It appears that LCA is not only a 
longevity-extending molecule in yeast but also a potent 
anti-tumor agent in human cells. Indeed, at concentrations 
that are not cytotoxic to non-cancerous cells, LCA can 
selectively kill cultured human breast, prostate and 
neuroblastoma cancer cells [26, 238, 242]. Of note, 
cancer is considered a disease of aging [7, 243-246]. This 
assertion is based on the following findings: (1) age in 
the major risk factor for developing cancer; (2) genetic, 
dietary and pharmacological interventions that delay aging 
in animal models reduce the incidence of cancer; and 
(3) some of the evolutionarily conserved pathways and 
mechanisms underlying cancer and aging are common to 
these two inherently complex biological phenomena [7, 
243, 247-251].

We therefore propose here to use a high-throughput 
screen for small molecules that can activate liponecrotic 
PCD of fermenting yeast by increasing the fatty acid 
desaturation index of membrane lipids. This screen 
is depicted schematically in Figure 8. It is based on 
employing a microplate assay for measuring the viability 
of yeast cells via monitoring the optical density of a 
yeast culture at 600 nm (OD600). In the proposed screen, 
fast proliferating yeast cells cultured in a nutrient- and 
glucose-rich medium and progressing through the 
exponential growth phase are initially incubated for 2 h in 
master microplates. Yeast cultures in individual wells of 
these master microplates are supplemented with various 
small molecules from a compound library. Wells in one 
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set of master microplates do not contain POA, whereas 
wells in another set of such microplates contain 50 µM 
POA. At this concentration, exogenously added POA 
kills not more than 20% of the total number of cells in a 
yeast culture [34, 35]. After 2 h of incubation in master 
microplates, a small aliquot of each culture is diluted 
1:200 in an individual well of a replica microplate. Wells 
in all replica microplates contain only a growth medium 
rich in nutrients and glucose. After 16 h of incubation, 
the OD600 of a cell culture in each well of the replica 
microplates is measured. This incubation time is optimal 
for the value of OD600 to correlate with the number of 
viable cells in a well of the replica microplate (Figure 8) 
[25]. The small molecules from a compound library that 
cause the highest extent of decrease in the value of the 
OD600 of a cell culture are chosen as ″lead″ compounds. 
These compounds are then used for ″cherry-picking″ of 
″lead″ compounds capable of activating liponecrotic PCD 
of yeast by increasing the fatty acid desaturation index of 
membrane lipids.

The high-throughput screen outlined in Figure 8 
can be conducted using the following yeast strains: (1) a 
wild-type strain, which exhibits ″normal″ concentrations 
and activities of Ole1, Tgl1, Tgl3, Tgl4, Tgl5, Yeh1, Yeh2, 
Dga1, Lro1, Are1 and Are2; as outlined above, activities 
of all these enzymes play essential roles in defining the 
intracellular concentrations of acyl-CoA esters of MUFA 

(Figure 7); (2) a yeast strain constitutively overexpressing 
the delta-9 fatty acid desaturase Ole1, which catalyzes 
the formation of acyl-CoA esters of MUFA (Figure 7); as 
mentioned above, this mutant strain exhibits an increased 
fatty acid desaturation index of all membrane lipid classes 
because it accumulates MUFA at high concentrations 
[234, 235]; and (3) a yeast strain concurrently lacking 
acyltransferases Lro1, Dga1, Are1 and Are2; as outlined 
earlier in the text, this strain is unable to incorporate 
acyl-CoA esters of MUFA into TAG (Figure 7) and, thus, 
amasses MUFA-containing membrane lipids at high 
concentrations [237]. It is possible that the above high-
throughput screen may reveal small molecules causing 
a substantial decrease in the OD600 of a cell culture not 
only for the yeast strain overexpressing Ole1, but also 
for the yeast strain concurrently lacking acyltransferases 
Lro1, Dga1, Are1 and Are2. Moreover, among such small 
molecules there may be those that do not decrease (or 
decrease only slightly) the OD600 of a cell culture for a 
wild-type strain of yeast. These small molecules are 
expected to exhibit a combination of the following two 
features: (1) they may cause rapid loss of cell viability 
only in yeast strain exhibiting increased concentrations 
of acyl-CoA esters of POA (and of other MUFA) and 
elevated concentrations of POA-containing (and of 
other MUFA-containing) membrane lipids; and (2) they 
may selectively kill only lipogenic cancer cells without 

Figure 8: A microplate assay for measuring the viability of yeast cells by monitoring the optical density of a yeast 
culture at 600 nm (OD600). This high-throughput assay can be used to screen compound libraries for small molecules that activate 
palmitoleic acid (POA)-induced liponecrotic cell death of fermenting yeast. Fast growing yeast cells are first incubated for 2 h in master 
microplates containing growth medium and various small molecules, with or without POA. A small aliquot of each culture is then diluted 
in an individual well of a replica microplate supplemented with growth medium only. The replica microplate is incubated for 16 h, and the 
OD600 of a cell culture in each well is measured. For a cell culture in the replica microplate incubated for 16 h after cell transfer from the 
master microplate, the value of OD600 is directly proportional to the number of viable cells in a well of the replica microplate. See text for 
more details. Abbreviation: PCD, programmed cell death.
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impairing functionality and viability of non-cancerous 
cells. The small molecules exhibiting a combination of 
these two features have potential to be selective anti-tumor 
therapeutic agents that cause liponecrotic death of cancer 
cells, while sparing non-cancerous cells.

A compound library which can be used for the 
high-throughput screen outlined in Figure 8 may include 
many small molecules that are currently known to act as 
follows: (1) to be target-specific activators of Ole1, Tgl1, 
Tgl3, Tgl4, Tgl5, Yeh1, Yeh2, Dga1, Lro1, Are1 or Are2 in 
fermenting yeast; and/or (2) to be target-specific inhibitors 
of Dga1, Are1, Are2, Fox1, Fox2 or Fox3 in fermenting 
yeast. These target-specific small molecules have been 
revealed in numerous studies on yeast chemogenomic 
profiling that have been conducted with the help of 
haploinsufficiency profiling, homozygous deletion 
profiling and multicopy gene suppression profiling assays 
in a high-throughput, genome-wide format [27-29, 31, 
252-256].

CONCLUSIONS

Lipogenesis is a characteristic rewiring of lipid 
metabolism in cells of various cancers. It consists in 
channeling the excess metabolites made during aerobic 
glycolysis into the de novo synthesis of membrane 
lipids in large quantities. Lipogenesis is one of the key 
tumorigenic features of cancer cell metabolism, and 
it is known to play causal roles in certain aspects of 
cancer initiation, promotion and progression. Recent 
evidence indicates that lipogenesis is common to 
cancer cells and rapidly proliferating cells of the yeast 
S. cerevisiae, perhaps because several key processes 
underlying lipogenesis in these cell types have similar 
relative rates, exhibit comparable regulation patterns 
and depend on orthologous proteins. The presently used 
strategy for the discovery of potential anti-tumor small 
molecules consists of uncovering pharmaceuticals that 
inhibit lipogenesis in cancer cells. Emergent evidence 
suggests that chemical compounds capable of increasing 
the fatty acid desaturation index of membrane lipids 
can elicit liponecrotic cell death of both cancer cells 
and fermenting yeast. This creates an opportunity to 
use rapidly proliferating yeast as a model organism for 
a high-throughput screen aimed at the identification of 
such compounds. The chemical genetic screen proposed 
here has the potential to develop selective anti-tumor 
pharmaceuticals that cause liponecrotic death of cancer 
cells but do not affect functionality and viability of non-
cancerous cells. 
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