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Introduction: Anatomic injury, physiological derangement, age,

injury mechanism and pre-injury comorbidity are well-founded pre-

dictors of trauma outcome. Statistical prediction models may have

poorer discrimination, calibration and accuracy when applied in

new locations. We aimed to compare the TRISS, TARN and NOR-

MIT survival prediction models in a Norwegian trauma population.

Methods: Consecutive patients admitted to Oslo University

Hospital Ullev�al within 24 h after injury, with Injury Severity

Score ≥ 10, proximal penetrating injuries, or received by trauma

team, were studied. Original NORMIT coefficients were updated

in a derivation dataset (NORMIT 2; n = 5923; 2005–2009). TRISS,
TARN and NORMIT prediction models were evaluated in the vali-

dation dataset (n = 6348; 2010–2013) using two different AIS edi-

tions for injury coding. Exclusion due to missing data was 0.26%.

Outcome was 30-day mortality. Validation included AUROC,

scaled Brier statistics, and calibration plots.

Results: The NORMIT models had significantly better discrimina-

tion, calibration, and overall fit than the TRISS 09, TARN 09 and

TARN 12 models. The updated NORMIT 2 had higher numerical

values of AUROC and scaled Brier than the original NORMIT, but

with overlapping 95%CI. Overlapping 95%CI for AUROCs and Dis-

crimination slopes indicated that the TARN and TRISS models per-

formed similarly. Calibration plots showed tight and consistent

predictions over all Ps strata for NORMIT 2 run on AIS’98 coded

data, and only little deterioration when AIS’08 data was substituted.

Conclusions: In a Norwegian trauma population, the updated

Norwegian survival prediction model in trauma (NORMIT 2) per-

formed better than well-established British and US alternatives.

External validation of these three models in other Nordic popula-

tions is warranted.

Editorial comment

Prognostic scoring systems are established in trauma care worldwide. In this retrospective study

of a large regional cohort of trauma patients from the Oslo area in Norway, a locally developed

score (NORMIT) was found to perform better than traditional scoring methods.
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During the past decade, mortality rates follow-

ing major trauma have steadily declined in

patients admitted to our institution.1,2 However,

comparison of crude mortality rates without

adjusting for patient risk profiles is of limited

value.3 Robust statistical prediction models are

needed to benchmark treatment performance, as

suboptimal or inappropriately applied models

may yield misleading estimations.

Outcome following injury results from many

factors. A statistical prediction model of good

quality and with high face validity includes all

important variables that significantly affect sur-

vival, well defined and appropriately modelled.

The prediction model must fit the data well,

must display good discrimination between sur-

vivors and non-survivors, and show adequate

calibration over the whole spectrum of survival

predictions. The aim is that such risk models

should adjust for all sources of variation that are

institution independent, so the residual effect

represents deviations in the quality of care com-

pared to the average care in the trauma system

and population where the model was derived.

Relatively few studies have evaluated the per-

formance of multiple prediction models in the

same trauma population.4

Quality of care assessment in trauma has tra-

ditionally used a methodology that determined

the statistical significance of the difference between

observed and predicted outcomes for a specific

hospital.5 A problem with this methodology is

that the predictive power (discrimination, cali-

bration and accuracy) of the model used to

assign the risk score for each trauma victim may

be low in the new location. This can result in

erroneous conclusions on performance.6 Impor-

tantly, increasing the number of patients in the

study population will not increase the accuracy.

The magnitude of the difference in performance

between institutions is quantified by the W

statistic,7 which expresses the difference

between predicted and observed survival rates

per 100 patients. A further development is the

Ws statistic,8 which is standardized with respect

to injury severity case mix.

Several prediction models for survival after

trauma exist.9–13 The TRISS model (Trauma

Score Injury Severity Score) was developed in

19879 and has been in worldwide use since. The

TRISS coefficients were last updated in 2010.12

The UK Trauma Audit and Research Network

(TARN) database was the foundation for the

national UK trauma prediction model. The

TARN Ps04 model, derived from a huge dataset,

was launched in 200610 after studies had

revealed that TRISS performed unsatisfactorily

in the UK trauma system. Specifically, TRISS

exclusion rates were high due to patients with

missing physiological variables.10 The TARN

model has since been regularly updated.14,15

In view of the spectrum of injury mechanisms

with particularly few penetrating injuries and

the widespread advanced pre-hospital physi-

cian-manned Emergency Medical Systems

(EMS) in the Nordic countries, we introduced

the Norwegian prediction Model in Trauma

(NORMIT) in 2014,16 derived from injury data

obtained August 2000 through July 2006. NOR-

MIT addressed several weaknesses we had

experienced with the TRISS and TARN models.

The aim of the present study was (1) to gener-

ate an updated version of the NORMIT model

(NORMIT 2) based on injury data from January

2005 through December 2009, and (2) to per-

form temporal validation of the NORMIT 2

model and external validation of several edi-

tions of the US and UK trauma survival predic-

tion models, in a dataset from January 2010

through December 2013. Each model was evalu-

ated using data coded with two different edi-

tions of the prevailing injury scoring system.

We aimed to adhere to the TRIPOD Guidelines

in our reporting.17

Patients and methods

Population and study participants

Oslo University Hospital Ullev�al (OUH-U) is the

major trauma hospital for more than 660,000 cit-

izens and the trauma referral centre for 2.8 mil-

lion people. Currently, approximately 1850

patients are enrolled in the hospital based

trauma registry (OUH-TR) each year, including

nearly 270 children < 16 years old. Over the

study inclusion period, the yearly number of

patients registered in the database increased

from 1028 in 2005 to 1784 in 2013. Nearly 40%

of the trauma victims had severe injury, i.e., ISS

≥ 16.7 On average, 90% suffered from blunt

injury and 10% from penetrating injury.
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This retrospective, non-interventional trial

was based on anonymized registry data only.

The Oslo University Hospital Data Protection

Officer, in this matter representing the Regional

Committee for Medical and Health Research

Ethics and the Norwegian Data Protection

Authority, therefore considered the study

exempt from patient consent requirements (H.

Thorstensen, 26 March 2014).

Inclusion and exclusion criteria

We studied the OUH-TR population from 1 Jan-

uary 2005 to 31 December 2013. Eligible16 were

all patients received at OUH-U with trauma team

activation (TTA), except those suffering from

medical conditions or injuries unsuited for

Abbreviated Injury Scale (AIS) scoring (i.e.,

drowning, hypothermia, asphyxia, spontaneous

subarachnoid haemorrhage, or cardiac arrest,

entered in OUH-TR because of TTA). Included

were also all patients with documented anatomi-

cal injury ISS ≥ 10 according to the Abbreviated

Injury Scale 1990, Update 1998 (AIS’98),18 and/

or with head injuries scored as AIS ≥ 3, and/or

with penetrating injuries towards the head,

neck, torso, and/or proximal to elbow or knee

irrespective of ISS. Patients with an isolated sin-

gle extremity fracture were excluded unless the

trauma team was activated. All patients declared

dead on arrival (DOA) according to the Utstein

template definition19 were included.

Coding, data extraction and outcome

assessment

Anatomical injury was classified according to

AIS’98, and from year 2009 also according to

AIS edition 2005, Update 2008 (AIS’08).20

Injury Severity Score (ISS)21 and New Injury

Severity Score (NISS)22 were calculated for data

derived with both AIS coding editions.

Physiological derangement on arrival was clas-

sified according to the Triage Revised Trauma

Score (T-RTS).16,23 The T-RTS range (0–12) is

defined as the sum of the clinical category values

of Glasgow Coma Scale (GCS) score, Systolic

Blood Pressure (SBP), and Respiratory Rate (RR)

(Table 1). Such scoring of physiological data into

clinical categories, based on information from text

in addition to numerical raw data, substantially

reduces the number of patient exclusions due to

missing data.16 For patients arriving at OUH-U

intubated and in general anaesthesia, GCS and

RR were scored based on values documented

immediately prior to intubation. In cases of miss-

ing T-RTS data elements, all available information

in the patient records was used to estimate pre-

intubation RTS clinical category. To avoid positive

performance biasing, the value closest to normal

was chosen when doubt existed. Normal values

were used as final default.16

Outcome was defined as survival or death

30 days after injury, independent of whether the

patient at that point was admitted or discharged

from hospital. Survival was verified from the

Norwegian Population Registry. Foreign citizens

repatriated alive to their home country earlier

than 30 days after injury (37 patients, 0.3% of

the total material) were defined as survivors.

Data were coded and extracted from OUH-TR

by registrars who were certified nurse anaes-

thetists with trauma team experience, formally

trained in injury coding according to AIS’98 and

AIS’08. Before data extraction, all data elements

were thoroughly screened for inconsistencies

and non-logical values, in compliance with the

OUH-TR data validation protocol.

Table 1 Clinical categories for the Revised Trauma Score (RTS) elements constituting the Triage-RTS (T-RTS).

RTS category scale Respiratory rate Systolic blood pressure GCS score

4 10–29 (normal) > 89 (good radial pulse) 13–15

3 > 29 (fast) 76–89 (weak radial pulse) 9–12

2 6–9 (slow) 50–75 (femoral pulse) 6–8

1 1–5 (gasp) 1–4 (only carotid pulse) 4–5

0 0 (no respiration) 0 (no carotid pulse) 3

Clinical categories for the RTS elements, from Pillgram-Larsen J, Initial treatment of the severely injured at Ullev�al hospital, May 1999. Triage

RTS (T-RTS) is defined as the sum of a patient’s three RTS clinical category values and thus ranges 0–12.
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Comparison of prediction models

The NORMIT model was developed based on

injury data from OUH-U in the period 1 August

2000 through 31 July 2006.16 First, the original

NORMIT model coefficients16 were updated in

the derivation dataset (n = 5923), comprising the

patients admitted 1 January 2005 through 31

December 2009. The new NORMIT 2 coeffi-

cients were derived with injury data coded with

AIS’98. The three prediction models of study

were then evaluated in the validation dataset

(n = 6348), comprising patients admitted 1 Jan-

uary 2010 through 31 December 2013.

Each model was assessed with its most recently

updated regression coefficients from where the

model was derived. Table 2 lists the evaluated

survival prediction models, their derivation data-

sets, and the AIS editions (‘98 or ‘08) used during

derivation. Trauma databases worldwide cur-

rently vary regarding which AIS edition is

employed. Therefore, to ‘stress’ the prediction

models, the performance of each model was eval-

uated both with injury data coded according to

the AIS edition the model was originally derived

with, and with the other AIS edition.

Statistical methods

Prediction model performance is routinely eval-

uated by measures of discrimination, calibration

and overall accuracy.

Discrimination between survivors and non-sur-

vivors in each model was evaluated by

calculation of the area under the receiver operat-

ing characteristic curve (AUROC). AUROC is

mathematically equivalent to the c statistic,

which denotes the proportion of all possible

pairs of patients drawn from the population,

one a survivor and one a non-survivor, where

the patient who survived had the higher Ps.

AUROC with 95% confidence intervals (95%

CI) for all models were compared, and non-

overlapping 95% CIs were considered a signifi-

cant difference in discrimination ability. We

calculated the discrimination slope with 95% CI

for each model, i.e., the absolute difference

between the mean predicted probability of sur-

vival (Ps) for survivors and for non-survivors.24

We also calculated the median Ps with 95% CI

for survivors and for non-survivors, as the dis-

tributions of Ps values were highly skewed.

Calibration was assessed through calibration

plots, which show the fraction of patients who

actually survived for each decile of predicted

survival.24,25

Overall model performance was evaluated with

the scaled Brier score.26 This is a quadratic scor-

ing rule, and it is analogous to R2.24,27,28 First,

the differences between each patient’s predicted

probability of survival (Ps) and that patient’s

observed outcome (D; survival = 1, non-

survival = 0) are squared. The mean of these

squared differences in the entire population is

divided by the mean squared difference

between observed outcome and predicted out-

come for a totally uninformed model, i.e., a

model where the outcome for all individuals is

Table 2 Trauma survival prediction models evaluated.

Prediction model Parent model Updated coefficients Derivation dataset Derivation Injury coding system

NORMIT 2 NORMIT* Yes† OUH–TR

2005–2009

AIS Edition 1990

Update 98

TRISS 09 TRISS‡ Yes§ US NTDB

2002–2006

AIS Edition 1990

Update 98

TARN 12 TARN

Ps 04¶

Yes** UK TARN

2005–2010

AIS Edition 2005

Update 08

TARN 09 TARN

Ps 04¶

Yes†† UK TARN

2002–2008

AIS Edition 2005

Update 08

NORMIT, Norwegian prediction Model in Trauma; NORMIT 2, update in present study; TRISS, Trauma Score Injury Severity Score; TRISS 09,

updated 2009; TARN, UK Trauma Audit and Research Network prediction model; TARN 12, updated 2012; TARN 09, updated 2009; TARN

Ps04, original model; OUH–TR, Oslo University Hospital Trauma Registry; US NTDB, US National Trauma Data Bank; AIS, Abbreviated Injury

Score; *Reference 16, †Present study, ‡Reference 7, §Reference 12, ¶ Reference 10, **Reference 15, ††Reference 14.
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predicted to be equal to the average outcome in

that population ð�pÞ:

sBrier ¼ 1�
1
n
�Pn

i¼1ðDi � PsiÞ2
1
n
�Pn

i¼1ðDi � �pÞ2

The scaled Brier score is independent of the

prevalence of the outcome in the popula-

tion.24,27,29

Assessment of importance of the individual

predictor variables in the NORMIT 2 model was

performed as variance-based sensitivity analysis.

Importance indices were constructed from

observed combinations of factor values, since

predictor variables were generally correlated.

Data analysis was undertaken using JMP

11.2.1 (SAS Institute, Cary, NC, USA). AUROCs

were calculated with the ROC-Curve & partial

Area Under the Curve Analysis JMP add-in mod-

ule created by Sebastian Hoffmeister (https://

community.jmp.com/docs/DOC-7500). Bootstrap

95% CIs (1000 repetitions) were reported for

AUROCs. The significance level was set to 0.05.

Results

Of the 12,303 trauma patients included in the

OUH-TR during the study period, 32 patients

(11 in the derivation dataset and 21 in the vali-

dation dataset; 8 non-survivors) were excluded

due to lack of complete registrations for valida-

tion of all prediction models. The final study

population, with complete information on all

prognostic and calculated variables of interest,

formed the derivation (n = 5923) and validation

(n = 6348) datasets. For population characteris-

tics, see Table 3a and b.

In the validation dataset (Table 3b), 71% were

males, 90% had blunt injury, 36% had severe

injury defined as ISS ≥ 16,7 and 95.5% survived

to 30 days post-injury. Sixty-four per cent of the

patients were primary admissions to OUH-U,

and 12% were intubated and in general anaes-

thesia prior to arrival.

Updated NORMIT 2 coefficients

The derivation dataset (Table 3a) was utilized to

generate updated coefficients for the predictors

in the original NORMIT model: NISS, T-RTS,

age represented as an upward-slanting cubic

function, pre-injury ASA-PS (American Associa-

tion of Anesthesiologists Physical Status classifi-

cation system) score indicating comorbidity on a

four-level ordinal scale (there were no pre-

injury ASA5 or ASA6 patients), and an interac-

tion between NISS and pre-injury ASA-PS. All

predictors in the model were highly significant

(P < 0.001). The estimated relative importance of

the individual predictor variables in NORMIT 2

were: T-RTS 0.398, NISS 0.306, pre-injury ASA-

PS score 0.262, and age 0.157. The NORMIT 2

model, i.e., with the updated coefficients, is

shown in Fig. 1.

Model performance

Table 4 summarizes performance measures for

the studied trauma survival prediction models.

Judged by non-overlapping 95% CIs, the NOR-

MIT and NORMIT 2 models showed better

discrimination between survivors and non-sur-

vivors than the TRISS and TARN models, both

as measured by AUROC and by Discrimination

slopes. The NORMIT models also showed best

overall fit measured by higher scaled Brier

scores.

NORMIT 2 had higher numerical values of

AUROC and scaled Brier score than the original

NORMIT model, though AUROC 95% CIs over-

lapped. ‘Stressing’ NORMIT 2 by using injury

data coded with AIS’08 did not result in poorer

performance; the scaled Brier score actually

increased.

Overlapping 95% CIs for both AUROCs and

Discrimination slopes indicated that the perfor-

mance of the TARN and TRISS models were not

significantly different. However, scaled Brier

scores indicated that TRISS 09, especially run

on AIS’08 injury data, had better overall fit than

TARN 12 and TARN 09.

Visual inspection of calibration plots (Fig. 2)

showed tight and consistent predictions over all

Ps strata for NORMIT 2 run on AIS’98 data. Use

of AIS’08 data resulted in only slightly larger

deviations between predicted and observed sur-

vival. TARN 12 run on AIS’08 data (for which it

was derived) showed poorer calibration, espe-

cially in Ps bands 0.2–0.4, and overall was pes-

simistically biased. TRISS 09 run on AIS’08
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Table 3 Population characteristics. (a) Derivation dataset; (b) Validation dataset.

Total N N Dead % Mortality OR 95% CI for OR P

(a) Derivation dataset

Overall 5923 368 6.21

Injury Mechanism

Blunt 5403 342 6.33

Penetrating 520 26 5.00 0.779 0.517–1.173 0.25

Age

< 55 years 4582 183 3.99

≥ 55 years 1341 185 13.80 3.847 3.105–4.767 **

Gender

Male 4309 248 5.76

Female 1614 120 7.43 1.315 1.049–1.649 < 0.02

ASA-PS score

ASA 1 4305 178 4.13

ASA 2 1017 70 6.88 1.714 1.281–2.269 **

ASA 3 535 87 16.26 4.503 3.411–5.907 **

ASA 4 66 33 50.00 23.19 13.96–38.52 **

Intubated

Not intubated 4238 76 1.79

Intubated in ER 697 92 13.20 8.328 6.08–11.44 **

Arrived intubated 988 200 20.24 13.90 10.61–18.39 **

RR RTS Category

4 5549 253 4.56

3 203 22 10.84 2.544 1.565–3.946 *

2 71 14 19.72 5.141 2.722–9.087 **

1 32 15 46.88 18.47 9.015–37.47 **

0 68 64 94.12 334.9 136.99–1108 **

SBP RTS Category

4 5567 251 4.51

3 153 15 9.80 2.302 1.279–3.854 *

2 137 43 31.39 9.688 6.558–14.12 **

1 21 18 85.71 127.1 42.67–544.9 **

0 45 41 91.11 217.1 86.83–726.6 **

GCS RTS Category

4 4648 78 1.68

3 438 33 7.53 4.774 3.101–7.196 **

2 384 61 15.89 11.06 7.75–15.74 **

1 168 49 29.17 24.13 16.1–35.95 **

0 285 147 51.58 62.41 45.37–86.54 **

ISS

1–8 2025 7 0.35

9–15 1418 31 2.19 6.443 3.000–15.97 **

16–24 1156 45 3.89 11.68 5.603–28.43 **

25–34 884 154 17.42 60.82 30.61–143.9 **

35–49 302 72 23.84 90.25 44.00–217.8 **

50–75 138 59 42.75 215.3 101.6–531.3 **

NISS

1–8 1935 7 0.36

9–15 924 19 2.06 5.782 2.531–14.8 **

16–24 954 19 1.99 5.60 2.45–14.37 **
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Table 3 (Continued)

Total N N Dead % Mortality OR 95% CI for OR P

25–34 1117 51 4.57 13.18 6.373–31.93 **

35–49 485 64 13.20 41.87 20.4–101.0 **

50–75 508 208 40.94 191.0 96.05–452.19 **

(b) Validation dataset

Overall 6348 287 4.52

Injury Mechanism

Blunt 5738 260 4.53

Penetrating 610 27 4.43 0.976 0.651–1.464 0.91

Age

< 55 years 4770 118 2.47

≥ 55 years 1578 169 10.71 4.729 3.71–6.027 **

Gender

Male 4499 210 4.67

Female 1849 77 4.16 0.887 0.68–1.159 0.38

ASA-PS score

ASA 1 4163 114 2.74

ASA 2 1344 45 3.35 1.230 0.859–1.734 0.25

ASA 3 766 92 12.01 4.848 3.635–6.452 **

ASA 4 75 36 48.00 32.79 20.05–53.57 **

Intubated

Not intubated 5018 67 1.34

Intubated in ER 576 63 10.94 9.075 6.35–12.96 **

Arrived intubated 754 157 20.82 19.43 14.49–26.34 **

RR RTS Category

4 5889 180 3.06

3 312 23 7.37 2.524 1.571–3.877 **

2 65 22 33.85 16.23 9.358–27.42 **

1 19 9 47.37 28.55 11.21–71.66 **

0 63 53 84.13 168.10 87.86–355.7 **

SBP RTS Category

4 6007 184 3.06

3 158 20 12.66 4.586 2.73–7.332 **

2 130 36 27.69 12.12 7.951–18.14 **

1 17 12 70.59 75.95 27.86–240.7 **

0 36 35 97.22 1107.6 237.5–19,725 **

GCS RTS Category

4 5387 57 1.06

3 338 36 10.65 11.15 7.176–17.11 **

2 257 36 14.01 15.23 9.756–23.51 **

1 124 31 25.00 31.17 19.07–50.27 **

0 242 127 52.48 103.3 72.23–149.4 **

ISS

1–8 2602 8 0.31

9–15 1462 17 1.16 3.815 1.692–9.369 **

16–24 1083 35 3.23 10.83 5.271–25.19 **

25–34 814 131 16.09 62.19 32.36–138.9 **

35–49 277 47 16.97 66.26 32.69–153.0 **

50–75 110 49 44.55 260.5 124.7–616.1 **
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data (for which it was derived) showed better

calibration than TARN 12, but with high vari-

ability between Ps bands.

Discussion

This study performed in the same dataset an

external validation of the TRISS and TARN mod-

els with their most recent regression coefficients

and a temporal validation of the NORMIT 2

model. Temporal validation represents a prospec-

tive evaluation of a model, is independent of the

original data, and may thus be considered an

external validation in time.30 In this Norwegian

population, the NORMIT 2 survival prediction

model had significantly better discrimination,

calibration, and overall fit than the TRISS and

TARN models. NORMIT 2 may therefore supple-

ment the long-standing TRISS model when

trauma care is evaluated within the Nordic coun-

tries. The face validity of NORMIT 2 is high, as

its predictors are few and intuitive: Anatomical

injury (NISS), physiological derangement on

arrival (T-RTS), age, and a four-level comorbidity

scale (pre-injury ASA-PS score).

Validation measures of model performance

Discrimination is the ability of a prediction model

to separate subjects with and without the out-

come of study.29 A much used measure is the

area under the receiver operating characteristic

curve (AUROC), which describes how well the

model rank-orders survivors and non-survi-

vors.31 Both original NORMIT and NORMIT 2

had significantly higher AUROCs than the Bri-

tish and US models.

Importantly, the AUROC, or c statistic, is not a

function of the actual magnitude of the predicted

probabilities,32 since in its calculation any patient

pair where the survivor has a higher Ps than the

non-survivor is considered a ‘concordant pair’.

Improving a model so that it assigns survivors

somewhat higher Ps’s and non-survivors some-

what lower Ps’s will not improve the AUROC

unless the correct Ps calculations result in a higher

proportion of concordant pairs. AUROCmay there-

fore be less sensitive than measures based on like-

lihood ratio tests or other global measures of fit32

and will not necessarily detect small differences in

discriminative ability between two models.

Table 3 (Continued)

Total N N Dead % Mortality OR 95% CI for OR P

NISS

1–8 2505 8 0.32

9–15 1019 13 1.28 4.033 1.695–10.22 **

16–24 932 17 1.82 5.799 2.57–14.25 **

25–34 966 33 3.42 11.04 5.342–25.77 **

35–49 443 35 7.90 26.78 12.98–62.48 **

50–75 483 181 37.47 187.1 97.43–417.6 **

ASA-PS, American Association of Anestehsiologists’ Physical status Score; RTS, Revised trauma score; RR, respiratory rate; SBP, Systolic

blood pressure; GCS, Glascow Coma Scale score; ISS, Injury Severity Score; NISS, New Injury Severity Score; 95% CI, 95% confidence interval;

Fisher’s Exact test. **< 0.0005, *< 0.01.

Ps =
1 + e–b

1

ASA1:  ( 0.0713  NISS) + 0.6266
ASA2:  ( 0.0565  NISS) – 0.2142
ASA3:  ( 0.0487  NISS) – 0.8971
ASA4:  ( 0.0081  NISS) – 3.8748

+
age + 1

100

3
b = (0.5562  T-RTS)  4.3234 

Fig. 1. The NORMIT 2 trauma survival model equation, i.e., with updated coefficients. Predicted probability of survival for an individual trauma

victim is calculated by inserting the patient’s T-RTS value, age, and NISS value. The adequate NISS expression is selected depending on the

patient’s pre-injury ASA-PS classification. Ps, Probability of survival; T-RTS, Triage Revised Trauma Score; age, years; ASA1, ASA2, ASA3 and ASA4,

individual pre-injury American Society of Anesthesiologists Physical Status Classification System (ASA-PS) categories; NISS, New Injury Severity

Score.
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A majority of trauma patients do not have life-

threatening injuries and are easy to predict as

survivors. Trauma prediction models therefore

often have higher AUROC values than e.g. pre-

dictive laboratory tests. A better indicator of

high discriminating ability may therefore be less

overlap in Ps values between trauma survivors

and non-survivors.24 For all evaluated models,

we found very high mean and median Ps values

among trauma survivors (Table 4 and Fig. S1).

Overall lower Ps values among non-survivors

indicated that the NORMIT models showed bet-

ter discrimination than the TRISS and TARN

models. Discrimination slope analyses substan-

tiated this finding.

Calibration denotes agreement between sur-

vival predictions and observed outcomes over

the full span of probabilities.29 Since the lightly

and the very severely injured patients are easier

to predict as survivors and non-survivors,

respectively, high model performance in the

mid-bands of Ps strata distinguishes a well-cali-

brated prediction model. Visual inspection of

calibration plots from this Norwegian dataset

indicated that NORMIT 2 had better calibration

than the newest TRISS and TARN models,

tested both with AIS’98 and AIS’08 coded data

(Fig. 2).

The original NORMIT model and the TRISS

09 model recently underwent external validation

in a Finnish dataset.33 This study was in agree-

ment with our present findings, i.e., that the

original NORMIT had better discriminative abil-

ity than TRISS 09, but calibration was unsatis-

factory for both models as predictions were too

pessimistic. A possible contribution to this is

that the original NORMIT was derived on a

dataset from the 6-year period starting August

2000. Risk adjusted mortality at OUH-U has

declined markedly from late 2004, primarily due

to a sudden survival improvement in patients

having at least one AIS 5 injury in the head/neck

region.2 Not unexpectedly, we found that NOR-

MIT 2 with its regression coefficients derived

from 2005 to 2009 showed improved calibration

compared to the original NORMIT (Table 4).

Overall model performance was evaluated using

the scaled Brier score, which is analogous to R2.

This measure most markedly differentiated the

various prediction models (Table 4). In the

Table 4 Trauma survival prediction models: performance measures.

Prediction model

and AIS Edition AUROC Scaled Brier score Discrimination slope

Median Ps

Non-Survivors

Median Ps

Survivors

NORMIT 2

AIS’08*

0.979 (0.974–0.985) 0.526 0.523 (0.487–0.560) 0.409 (0.356–0.492) 0.997 (0.997–0.997)

NORMIT 2

AIS’98

0.977 (0.972–0.983) 0.505 0.536 (0.501–0.572) 0.388 (0.329–0.461) 0.996 (0.996–0.997)

NORMIT

AIS’98

0.973 (0.968–0.980) 0.428 0.578 (0.542–0.614) 0.317 (0.263–0.391) 0.998 (0.997–0.998)

TRISS 09

AIS’08*

0.956 (0.948–0.967) 0.383 0.399 (0.362–0.435) 0.601 (0.563–0.711) 0.994 (0.993–0.994)

TRISS 09

AIS’98

0.950 (0.941–0.963) 0.344 0.410 (0.373–0.448) 0.583 (0.509–0.674) 0.992 (0.992–0.993)

TARN 12

AIS’08

0.952 (0.944–0.963) 0.288 0.399 (0.367–0.430) 0.565 (0.536–0.627) 0.992 (0.992–0.992)

TARN 12

AIS’98*

0.947 (0.939–0.958) 0.212 0.407 (0.367–0.439) 0.559 (0.491–0.617) 0.991 (0.990–0.992)

TARN 09

AIS’08

0.952 (0.943–0.962) 0.238 0.443 (0.410–0.475) 0.502 (0.455–0.552) 0.987 (0.987–0.988)

TARN 09

AIS’98*

0.946 (0.937–0.957) 0.119 0.452 (0.420–0.485) 0.469 (0.404–0.539) 0.987 (0.986–0.987)

Numbers in brackets are 95% Confidence intervals (95% CI). The Scaled Brier score is a sum-of-squares R2 statistic. The Discrimination slope is

the difference between the mean values of Ps among survivors and among non-survivors; 95% CI’s assuming unequal variances (Welch t-test).

*Model ‘stressed’ by using injury data coded with an AIS Edition different from the one that the model was derived with.
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scaled Brier score, every patient contributes

with the squared difference between their out-

come (0 = died, 1 = survived) and predicted

probability of survival (a number between 0.0

and 1.0). Inaccurate models and models where

specific patient groups are systematically mis-

predicted (high Ps but dies, or low Ps but sur-

vives) will have large squared errors for these

patients, and a correspondingly low scaled Brier

score (low ‘R2’) indicating low overall fit.

The updated coefficients in NORMIT 2,

reflecting the improved survival in trauma

patients admitted to OUH-U,2 probably resulted

in more correct Ps values in our validation data-

set. NORMIT 2 was derived within a single

trauma system, with cooperating hospitals and

an extensive EMS system including anaesthesi-

ologist-manned cars and helicopters delivering

advanced emergency care at the site of injury

and during patient transport. Variation in

trauma outcome may have been larger in the

huge derivation populations of the TARN and

TRISS models. This may have resulted in larger

deviations between Ps values and outcomes,

and thus poorer scaled Brier scores when TARN

and TRISS models were applied on our dataset.

Because the expected mortality rate after vari-

ous anatomical injuries has declined, in the AIS

2005 Update 2008 the severity grades of several

injuries have been downscaled relative to that

in the AIS’98 edition. Thus, many patients will

receive lower injury severity score when coded

according to AIS’08, reflecting the lower

expected mortality rate for a given injury due to

improved treatment of trauma patients. More

realistic injury coding probably caused the

improved scaled Brier scores found when the

TRISS and NORMIT models, derived with

AIS’98 data, were ‘stressed’ with AIS’08 data.

The TARN models also showed much better

overall fit with AIS’08 coded data than with

AIS’98 data (Table 4).
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Fig. 2. Calibration plots for the most recent TARN and TRISS models, and the updated NORMIT 2 model with data based on AIS’98 and AIS’08.

Observed survival for patients in each decile of predicted survival is plotted against predicted survival. Larger deviations from the line of unity

denote poorer model calibration. Note pessimistic biasing in the lower Ps strata for TARN 12 and variable predictions for TRISS 09. AIS’08, AIS

edition 2005, Update 2008; AIS’98, AIS edition 1990, Update 1998; TARN 12, update TARN Ps12; TRISS 09, update TRISS 2009. [Colour figure can

be viewed at wileyonlinelibrary.com]
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Model characteristics possibly affecting

performance

Outcome in this study was survival to 30 days

post-injury, irrespective of hospitalization. The

NORMIT models were derived for this WHO-

recommended variable, which is independent of

hospital transfer and discharge practices. In con-

trast, TRISS coefficients were derived from sur-

vival data evaluated at discharge from the

trauma centre, while the TARN models used

survival at discharge from hospital, or at

30 days for patients still hospitalized. Both

strategies generate positive bias. Thus, neither

the TRISS nor TARN models were tuned for the

outcome measure used in the Nordic countries.

Dead on arrival (DOA) patient definition and

whether DOA patients are excluded from analy-

ses are crucial sources of bias. In Norwegian

hospitals, all patients admitted to the ED are

registered as admitted to the hospital. This is

unlike the US system, where trauma patients

treated and dying in the ER may never be

‘admitted’ to the hospital and therefore not

included in any trauma registry. TRISS is based

on such data.12 Exclusion of DOA patients

results in optimistic biasing. Our dataset

included all patients classified as DOA accord-

ing to the Utstein template,19 suiting the NOR-

MIT and TARN models, which had coefficients

derived with DOA patients included.

Injury mechanism is fundamental to TRISS, which

is in fact four distinct prediction models, with sep-

arate full coefficient sets for blunt and penetrating

injury in both adult and paediatric patients. The

original TRISS derivation population, the founda-

tion for the 1990 TRISS coefficients, had more

than three times as many penetrating traumas as

OUH-TR (32.0%7 vs. 9.4%), while the 2009

TRISS revision dataset had a prevalence of pene-

trating trauma (11.9%) more comparable to ours.12

Paediatric penetrating trauma was too infrequent

in the 2009 derivation dataset to obtain stable

coefficients,12 and a formal solution to this prob-

lem has to our knowledge not been published.

Although a survival prediction model is designed

to adjust for case mix, it is unclear whether the dif-

ferences between the US and our dataset could

have affected TRISS model performance. TARN

and NORMIT models are not adjusted for injury

mechanism.

Anatomical injury is represented by ISS in the

TRISS and TARN models, and by NISS in

NORMIT and NORMIT 2. We have previously

shown that NISS had better predictive power

than ISS in our trauma system.16 The NISS

would be superior to ISS in patients with sev-

eral severe injuries in a single body compart-

ment, e.g., penetrating injuries towards the

torso or both blunt and penetrating head

injury.34–38 In all, 27% of patients in our valida-

tion dataset had head injury with AIS severity

3–6.
Physiological derangement on admission is repre-

sented by clinical categories for GCS, SBP and

RR in both TRISS and NORMIT, but the scores

for the categories are weighted separately in

TRISS whereas their sum is used in the NOR-

MIT models (Table 1). In contrast, the TARN

models use GCS only. The latter strategy could

lead to poorer predictions in e.g. patients in cir-

culatory shock but still with normal or near-nor-

mal GCS.39

Patients with missing physiological values,

e.g. those intubated before admission, were

until recently excluded from TRISS derivation

data. This is clearly suboptimal, since physio-

logical data are not missing at random: In the

derivation dataset for TRISS 09, almost one in

five patients had incomplete RTS scoring, and

those with incomplete information were more

likely to die than the average trauma registry

population.6,12,40,41 Statistical imputation of

missing physiological values was therefore

employed for the derivation of TRISS 09. How-

ever, no official recommendation was given for

how to score actual cases to obtain a probability

of survival when physiological data is missing.

The current TARN model does not include SBP

and RR, and patients with missing GCS values

due to intubation are handled similar to patients

with GCS close to 4–5, regardless of the reason

for intubation. In contrast, NORMIT models use

actual pre-hospital data for T-RTS calculations

in these cases, greatly reducing patient exclu-

sion and not assuming artificially low GCS val-

ues e.g. in patients who are intubated before

helicopter transport due to severe pain.

Age and comorbidity affect trauma survival inde-

pendently,16 but the studied prediction models

differ markedly regarding these factors. TRISS

employs full separate sets of coefficients for
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paediatric patients (< 14 years) and dichoto-

mizes age (< 55 or ≥ 55 years) in adult patients,

thus predicting an identical age-related reduc-

tion in trauma survival in a 56-year-old and an

86-year-old patient. Furthermore, TRISS has no

mechanism to account for patient comorbidity.

TARN 09 and TARN 12 adjust elaborately for

increasing age, with an eight-level categorical

variable additionally used in an interaction

effect with gender. Comorbidity is however

unaccounted for. These factors may have

reduced TRISS’s and TARN’s ability to correctly

predict non-survival in e.g. younger but sicker

patients and resulted in poorer overall model fit.

The recently published TARN Ps14 model uses

a five-level ordinal scale for grouping of 21 cate-

gories of comorbidities represented by a modi-

fied version of the Charlson Comorbidity Index

(mCCI).42 Retrospective scoring of this large

number of comorbidities would be impractical,

maybe impossible, in large datasets. Also, the

mCCI does not differentiate between light and

severe cases of the same disease.

The NORMIT models adjust for increasing age

with a single continuous, slowly upward-slanting

cubic function, while functional limitation caused

by any systemic disease is represented on a four-

level comorbidity scale (ASA-PS). We believe this

strategy gains important predictive power in an

ageing trauma population, with increasing preva-

lence of e.g., cardiovascular and pulmonary dis-

ease and cancer treatment sequelae.

Study limitations

This was a single-institution study, external val-

idation on data from other trauma centres is

warranted. Our findings pertain to trauma pop-

ulations and systems similar to those in the Nor-

dic countries; the evaluated prediction models

could thus perform differently in other settings.

Specifically, our cohort had only 9% penetrating

injury, and very few gunshot and blast injuries.

Trauma data came from a single institution. This

somewhat limits the generalizability of our

study, though it ensured homogenous coding

and a very low rate of missing values. Impor-

tantly, these prognostic models are designed to

be used for institution benchmarking on a pop-

ulation level and should not be employed for

prognostication in individual patients.

Conclusion

In our Norwegian trauma population, the NOR-

MIT 2 survival prediction model with updated

coefficients displayed very good calibration and

significantly better discrimination and overall fit

than the TRISS and TARN prediction models.

Injury spectrum, pre-hospital treatment, patient

inclusion, trauma scoring, and age and comor-

bidity classification all affect the performance of

prediction models used outside their derivation

population. Though TRISS will still be highly

useful for international comparisons, NORMIT 2

may be well suited for evaluation of trauma care

in the Nordic countries. However, external vali-

dation together with the most recent TRISS and

TARN models is warranted.
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Fig. S1. Distribution of predicted probability of

survival (Ps) from the NORMIT 2, TRISS 09 and

TARN 12 trauma survival prediction models,

plotted for survivors and non-survivors at

30 days post-injury.
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