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Abstract: In typical catalytic organic transformations, transition metals in catalytically active complexes
are present in their most stable valence states, such as palladium(0) and (II). However, some
dimeric monovalent metal complexes can be stabilized by auxiliary ligands to form diamagnetic
compounds with metal–metal bonding interactions. These diamagnetic compounds can act as
catalysts while retaining their dimeric forms, split homolytically or heterolytically into monomeric
forms, which usually have high activity, or in contrast, become completely deactivated as catalysts.
Recently, many studies using group 10 metal complexes containing nickel and palladium have
demonstrated that under specific conditions, the active forms of these catalyst precursors are not
mononuclear zerovalent complexes, but instead dinuclear monovalent metal complexes. In this
mini-review, we have surveyed the preparation, reactivity, and the catalytic processes of dinuclear
nickel(I) and palladium(I) complexes, focusing on mechanistic insights into the precatalyst activation
systems and the structure and behavior of nickel and palladium intermediates.

Keywords: monovalent nickel; monovalent palladium; dinuclear complexes; catalytic process;
DFT calculations

1. Introduction

Interest in the development of catalytic organic transformations using well-defined palladium and
nickel complexes as active catalysts continues to increase [1–10]. Catalytic transformations using these
catalysts, such as addition, polymerization, allylic substitution, cross coupling, and C–H substitution
reactions, significantly contribute to the production of useful organic chemicals in industry.
Interestingly, several dinuclear Pd(I) and Ni(I) complexes have been reported to demonstrate
notably higher activity as precatalysts compared to typical monomeric zerovalent or divalent metal
complexes [11–16]. Detailed mechanistic studies revealed that dinuclear or mononuclear active
catalysts are generated from the corresponding dinuclear precatalysts to achieve highly efficient and/or
selective catalytic reactions. Although cooperative activation of organic compounds by bimetallic
complexes has been reported in organometallic reactions of cluster compounds [17–20], the mechanism
by which dinickel(I) or dipalladium(I) complexes act in catalytic transformations is poorly understood.
For example, the in situ formation of dinuclear complexes has been reported to lead to the deactivation
of catalytic pathways of highly active mononuclear catalysts. Several other reports proposed that
heterolytic or homolytic cleavage of the metal–metal bond of dinuclear Pd(I) or Ni(I) complexes could
produce active metal species in situ, such as highly unsaturated “mono-ligated metal complexes”.
However, the chemistries of dinuclear Ni(I) and Pd(I) complexes in catalysis have not been classified
and compared with each other, although the chemistry of such nickel and palladium complexes has
been summarized individually [11–16]. Therefore, the survey and comparison of the reactivity and
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catalytic performance of dinuclear nickel(I) and palladium(I) complexes, as well as their generation
processes and structures, should be useful and informative. In this review, the structural features of
dinuclear Pd(I) and Ni(I) complexes are discussed, and their catalytic applications and mechanistic
details are surveyed in order to uncover the key points of their chemistry.

2. Preparation, Structure, and Properties of Dinuclear Nickel(I) and Palladium(I) Complexes

Numerous examples of dinuclear nickel(I) and palladium(I) complexes have been reported in
the past decades [11–16]. Most of these dinuclear complexes have been efficiently synthesized using
several established methods. One of the most accessible routes to these compounds is the treatment
of nickel(II) or palladium(II) complexes with the corresponding zerovalent metal complex in the
presence of bridging bidentate or tridentate ligands (Method A in Chart 1). Other methods to obtain
such dinuclear complexes include 1e reduction of mononuclear divalent complexes (Method B),
the oxidation of zerovalent complexes (Method C), and the oxidative addition to zerovalent complexes
to form unsaturated divalent complexes, which are stabilized by forming a metal–metal bonding
interaction with a second zerovalent complex (Method D). Rare examples of the photoirradiation
of alkylmetal complexes, in which the carbon–metal bond was homolytically broken and smoothly
dimerized from the unstable monomeric metal radical to form a metal–metal bond (Method E),
have also been shown. With multiple routes to access such complexes, the use of dinuclear Pd(I)
or Ni(I) complexes as catalyst precursors is increasingly reported, because these compounds show
remarkable activities with respect to catalytic transformations.
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similar to Mingos’s dimer. 

In the presence of bridging ligands such as monomethylene-bridged bisphosphine, the dinuclear 
Pd(I) complexes 6 were synthesized and characterized decades earlier than the other complexes, 
although only reactions with small molecules were investigated [19,23]. Kurosawa and co-workers 
developed the first example of a series of complexes 3 in which μ:η3-allenyl or propargyl ligands 
bridged the Pd(I)–Pd(I) bond, showing that dipalladium(I) structure was also stabilized by bridging 
π-ligands. This bond was stable even when smaller phosphine ligands were used instead of P(tBu)3 [24]. 
The complexes were formed by the reaction of Pd(II) allenyl or propargyl complexes with a Pd(0) 
source. Murahashi and Kurosawa et al. reported a good starting complex for the preparation of 
various cationic dinuclear Pd(I) complexes via ligand exchange reaction, [Pd2(NCCH3)6]2+ (2) [25]. For 
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Chart 1. Various methods (Methods A–E) to access dinuclear monovalent complexes of Ni and Pd.

In Figure 1, representative examples of dinuclear palladium(I) complexes are shown. In 1996,
Mingos et al. reported the first example of catalytically active monovalent dipalladium complexes,
1a. The structure of these complexes was determined by X-ray crystallography, which showed the
existence of a Pd(I)–Pd(I) bonding interaction with bridging halogen ligands [21]. The stability
of the dinuclear Pd(I) framework in the presence of only halide bridging ligands was discussed
recently by Schoenebeck et al. [22]. When tricyclohexylphosphine was used as the ancillary
ligand, the halide-bridged dimer did not form. Instead, the use of bis(t-butyl)isopropylphosphine,
whose steric bulk is intermediate between that of P(t-Bu)3 and PCy3, yielded the stable dimeric
complex 1c, which was similar to Mingos’s dimer.

In the presence of bridging ligands such as monomethylene-bridged bisphosphine, the dinuclear
Pd(I) complexes 6 were synthesized and characterized decades earlier than the other complexes,
although only reactions with small molecules were investigated [19,23]. Kurosawa and co-workers
developed the first example of a series of complexes 3 in which µ:η3-allenyl or propargyl ligands
bridged the Pd(I)–Pd(I) bond, showing that dipalladium(I) structure was also stabilized by bridging
π-ligands. This bond was stable even when smaller phosphine ligands were used instead of P(tBu)3 [24].
The complexes were formed by the reaction of Pd(II) allenyl or propargyl complexes with a Pd(0)
source. Murahashi and Kurosawa et al. reported a good starting complex for the preparation of
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various cationic dinuclear Pd(I) complexes via ligand exchange reaction, [Pd2(NCCH3)6]2+ (2) [25].
For example, this complex was used as a precursor for the bis-dmpm bridged dipalladium(I) dication,
[Pd2(dmpm)2(NCCH3)2]2+, where dmpm is bis(dimethylphosphino)methane.Molecules 2018, 23, 140 3 of 21 
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Vilar et al. successfully developed dipalladium(I) complex 4 using a bulky biphenylphosphine
ligand, bis(tert-butyl)biphenylphosphine [26]. The complex was obtained by coupling of the Pd(0)
phosphine complex with a Pd(II) halide. Complex 4 mediated the Buchwald–Hartwig amination of
aryl halides efficiently at room temperature. Barder reported the similar dipalladium(I) complex 5.
This complex was obtained by the reduction of palladium(II) dicyclohexyl(biaryl)phosphine complex
with silver tetrafluoroborate salt, leading to the coordination of the µ:η2:η2-aryl moiety of the
biarylphosphine ligand as a bridge between the two unsaturated metals [27]. The existence of
2′,6′-dimethoxy groups on the biaryl substituent was essential to stabilize the dimeric structure.
Therefore, the Pd-π interaction strongly stabilized the dipalladium framework.

In 2004, Milstein et al. found that treatment of (2-methylallyl)PdCl2 with dmobp (dmobp =
di-tert-butyl[(2,6-dimethoxyphenyl)methyl]phosphine) in the presence of NaOH yielded the
π-allyl-bridged dipalladium(I) complex 7a [28]. Denmark and Baird later reported the analogous
complex 7b, which used tri-tert-butylphosphine instead of the benzylphosphine. This complex has
high catalytic activity toward Hiyama cross-coupling reactions of aryl halides with heterocyclic
silanolates [29]. Bulky N-heterocyclic carbenes (NHCs) can also be used to stabilize the dinuclear Pd(I)
system. Barcells and Hazari et al. synthesized the IPr-supported µ-π-allyl Pd(I) dimers 7c, which are
rare examples with 1-substituted µ-allyl ligands, by the reaction of Nolan’s IPrPd(II)Cl(π-allyl) complex
with K2CO3 in the presence of ethanol [30]. Bis-µ-allyl dipalladium(I) complexes 8 were also prepared
by reacting mononuclear bis-π-allyl palladium(II) with free ligand, or by the reaction of µ-allyl
palladium(II) chloride with free ligand and the sequential addition of an allyl Grignard reagent.
Interestingly, CO2 was inserted into the palladium–carbon bond of 8 as an electrophile to form
bridging carboxylate complexes, which led to further catalytic processes as described below [12,31].
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Pfaltz et al. achieved isolation of an intermediary dipalladium(I) complex 9 using a chelating
NP ligand for catalytic nucleophilic substitution of allylbenzoate with malonate [32]. Ozerov et al.
successfully synthesized the bridging-ligand-free dipalladium(I) complexes 10 using monoanionic
tridentate PNP pincer-type ligands. This was the representative example of a complex without bridging
ligands that clearly showed the existence of a Pd(I)-Pd(I) bonding interaction [33] other than Murahashi
and Kurosawa’s complex, [Pd2(NCCH3)6]2+ (2).

Compared to the analogous palladium chemistry, dinuclear nickel(I) complexes and their catalytic
applications have been poorly explored. This may be due to the greater stability of ‘monomeric’
monovalent nickel complexes compared to the corresponding palladium(I) complexes. Many examples
of monomeric nickel(I) complexes have been reported [34], such as those relevant to the oxygen
activation system in bioinorganic chemistry [35]. Additionally, a great difference between the number
of studies of the catalytic applications of palladium and nickel can be observed.

Initial progress in the chemistry of dinuclear nickel(I) complexes has been promoted by the great
interest in unusual interactions of conjugated π-ligands with the dinickel framework, as discussed
below [34]. Preparative methods to access the dinickel(I) complexes are quite similar to those of
the palladium complexes, as might be expected. Dinickel(I) complexes can be prepared by simply
mixing unsaturated monovalent and divalent nickel complexes (Method A), by 1e-oxidation of nickel(0)
complexes (Method B), and by oxidative addition on Ni(0) in which the unsaturated adduct is stabilized
by forming a metal–metal bonding interaction with a second Ni(0) complex (Method D). Additionally,
in these processes, bridging ligands and/or a coordinatively unsaturated site in one of the metal
centers lead to the facile formation of the dimeric structures, similar to procedures using bridging aryl,
allyl, and cyclopentadienyl groups in palladium chemistry. In Figure 2, representative examples of
dinuclear Ni(I) complexes are shown.
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et al. [40]. This complex has a 30e unsaturated nature and is kinetically stabilized by the bulky IPr 

Figure 2. Representative examples of dinuclear Ni(I) complexes. In parenthesis, the synthetic methods
A–E are shown.

In the earliest stage of the development of such complexes, Ni(I) hydride dimers stabilized by
bulky chelating bisphosphines (11) were reported by Wilke and Jonas [36]. Those complexes were
prepared by the reaction of NiCl2 (bisphosphine) with NaBMe3H, and then obtained via an alternative
synthesis from the complex Ni(0) (bisphosphine) (benzene) and H2 gas at low temperature [37].
These complexes were thermally quite stable in the solid state and did not decompose to the monomeric
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form. However, [Ni(dippe)]2(µ-H)2, (dippe = 1,2-bis(diisopropylphosphino)ethane) reacts readily
with cyclohexene sulfide to form sulfur-bridged dimers accompanied by the liberation of H2 gas [38],
strongly indicating the potential of such Ni(I) hydride dimers as catalyst precursors. Bidentate nitrogen
ligands with bulky substituents were also effective as auxiliary ligands in dinuclear Ni(I) complexes.
Chirik et al. prepared diamine-supported dinickel(I) hydride complex 12, which can efficiently mediate
the catalytic hydrosilylation of terminal alkenes [39].

In 2005, the preparation of chloride-bridged dinickel(I) complex 13a bearing IPr, where IPr
is one of the bulky NHCs, 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene, was reported by
Sigman et al. [40]. This complex has a 30e unsaturated nature and is kinetically stabilized by the
bulky IPr ligand. Subsequently, analogous dinuclear nickel(I) complexes with other bridging ligands,
such as µ-arylimido and alkylene ligands, were produced by Hillhouse et al. through the reaction of
Sigman’s dimer with arylazide and diazocarbene reagents [41,42]. These researchers also synthesized
the dibromide analogue 13b [43].

Hazari et al. synthesized a series of dinuclear nickel(I) complexes 14 bearing bridging
cyclopentadienyl and indenyl ligands, and compared their reactivity and stability to their palladium
analogues [44]. According to this report, decomposition via heterolytic cleavage of the monovalent
metal–metal bond to form a pair of zerovalent and divalent metal complexes is unfavorable for
dinuclear nickel(I), but likely occurs for dinuclear palladium(I). Moreover, the metal–metal bonds
in nickel(I) dimers are more resistant to splitting into monomeric complexes than those of the
palladium analogues.

Recently, Matsubara et al. serendipitously found that the reaction of aryl chloride with equal
amounts of IPr and Ni (0)(cod)2 efficiently formed the dinuclear nickel(I) µ-σ-aryl complex 15 bearing
the IPr ligand, rather than the monomeric oxidative adduct [45]. This dinickel(I) complex can
also be prepared by the reaction of Sigman’s dimer with 1 equiv. of arylmagnesium chloride via
transmetallation. Subsequent reaction with aryl chloride gave the biaryl and regenerated Sigman’s
dimer, probably as a result of oxidative addition of aryl chloride and reductive elimination of the biaryl.
Therefore, these complexes could potentially be active as catalysts in the Kumada–Tamao–Corriu
coupling of aryl halides. Ghadwai et al. attempted to prepare the bromide analogue. However, similar
treatment using bromoarenes with Ni(cod)2 and IPr provided the 2-arylated imidazolium salt rather
than the dinuclear compound, probably due to the lower stability of the bromide analogue [46].

Thiolate is an effective bridging ligand that binds more strongly to metal centers than halide
ligands. Tatsumi et al. reported that substitution of the bridging halide ligands with sulfide anions
resulted in efficient formation of the corresponding µ-sulfide Ni(I) dimer 16a [47]. Olechnowicz et al.
also synthesized the NHC analogue 16b, in which the bridging thiolate was µ–SH, from Sigman’s
dimer [48]. Interestingly, this complex was also obtained from the heterolytic cleavage of H2 in the
presence of the sulfido-bridged Ni(II) dimer [Ni(IPr)(µ-S)]2 [49]. In addition to the H–H bond, the H–B
bond of pinacolborane was also heterolytically cleaved on the dinuclear nickel centers.

Zargarian et al. reported that the decomposition of a divalent nickel complex after anion exchange
with a non-coordinating anion such as tetraphenylborate provided the dimeric nickel(I) complex 17a in
which two nickel centers were bridged by a µ-phosphide ligand [50]. Interestingly, one of the phenyl
groups bound to borane also bridged the two nickel centers. Similar µ-phenyl bridging coordination
was achieved more simply by Johnson et al. [51]. One of the halide ligands on a monovalent nickel
complex was exchanged for tetraphenylborate to form an unsaturated nickel(I) center, which combined
with another nickel(I) complex to yield dinuclear nickel(I) complex 17b, which features µ-phenyl
bridging coordination by tetraphenylborate.

Agapie et al. reported an interesting finding for the well-defined dinuclear nickel(I) complex 18,
which is stabilized by a terphenylene-bridged diphosphine ligand that reacts with biphenyldimagnesium
halide to form a transmetalated µ-biphenylene complex. This complex coupled a pair of biphenylene
molecules on the two metal centers to form a bridging C–C bond to give tetraphenylene [52].
The complex also formed a fluorene molecule from biphenylene and dichloromethane. Johnson et al.
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reported that treatment of biphenylene with a monomeric Ni (0) complex resulted in the oxidative
addition of biphenylene to form dinuclear bis(biphenyl) complex 19 containing a Ni(III)–Ni(I) bond [53].
Subsequent reductive coupling of the C–C bond provided a dinuclear tetraphenylene nickel(I)
complex, which produced tetraphenylene catalytically in the presence of biphenylene upon heating,
accompanied by regeneration of the dinuclear bis(biphenyl) complex. These results indicated that
the unsaturated dinickel(I) system can also be effective for catalytic reactions involving concerted
activation of substrates by a pair of active metal centers.

π-Coordination bridging by a benzene ring can also stabilize the dinickel(I) framework, as seen in
palladium complex 5. Jones et al. reported that a chelating three-atom-centered guanidinate ligand
bearing a bulky DIP substituent (DIP = 2,6-diisopropylphenyl) coordinated to the Ni(I) center in an η1

fashion through the nitrogen atom, while one of the aromatic DIP substituents bridged the two Ni(I)
centers to stabilize the Ni(I) dimer 20 [54].

In 2014, Uyeda et al. developed redox-active naphthyridine diimine-supported dinickel
complexes [55]. Dinuclear Ni(I) complex 21 was formed upon comproportionation of Ni(cod)2 and
NiBr2 in the presence of the naphthyridine diamine ligand. Notably, because of its relatively weak
ligand field, the dinuclear Ni(I) complex was paramagnetic, S = 1, in contrast to the diamagnetic
phosphine and NHC complexes. Moreover, oxidation and reduction were both found to be possible
during electrochemical analysis, and reaction with oxidizing and reducing agents allowed the
formation of a series of complexes in different 5e states. The authors also reported several catalytic
reactions using the dinickel complex bearing naphthyridine diimine, which retained its dinuclear
framework during catalysis [56].

3. Catalytic Applications

Many reports of catalytic processes mediated by dinuclear palladium(I) complexes used as
catalyst precursors have been published. Notably, almost all of these studies reported remarkably high
efficiencies for the catalytic reactions, which included Suzuki–Miyaura coupling [28], Sonogashira
coupling [57], Hiyama coupling [29], Buchwald–Hartwig amination [26], Kumada–Corriu and Negishi
coupling [58] (Scheme 1), and others [59–61], suggesting that dinuclear Pd(I) complexes can generate
species with unusually high activity as key intermediates. However, in all but a few examples,
it was unclear how these reactions proceeded from the dinuclear Pd(I) complexes. Additionally,
there are several examples of catalytic transformations of organic compounds mediated by dinuclear
nickel(I) complexes among the huge number of reported catalytic reactions using nickel complexes.
The mechanism of these catalytic reactions has been studied in detail. This section focuses on the roles
of Pd and Ni bimetallic complexes in catalysis. Several factors, such as the choice of bridging and/or
auxiliary ligands, the type of reaction, and the metal center, critically affected these roles. Some of the
transformations were activated via the formation of mononuclear mono-ligated, unsaturated metal
complexes after disproportionation. In such complexes, re-formation of the dinuclear complex
by comproportionation deactivated the complexes, or served to stabilize active form. In other
transformations, the intact dinuclear complex activated the substrates efficiently.

3.1. Catalysis Using Palladium Complexes

Several possible mechanisms for catalytic transformation by dinuclear palladium(I)
complexes have been proposed: (1) Activation of substrates by the intact bimetallic complex;
(2) disproportionation of the complex into Pd(0) and Pd(II), which are involved in the catalytic
cycle; and (3) homolytic splitting of the complex into two Pd(I) molecules, which are smoothly
reduced to Pd(0) or oxidized to Pd(II) (Scheme 2). In the case of (2), an equilibrium between
the regenerated dinuclear complex, which exists as a deactivated intermediate, and the active
mononuclear complex may sometimes occur [62]. The most probable mechanism is the formation of
highly active mono-ligated Pd(0) complexes from the corresponding dimer via mechanism (2) or (3).
When monomeric complexes bearing more than two auxiliary ligands are used as catalyst precursors,
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liberation of these ligands requires harsh conditions. On the other hand, the Pd(I)–Pd(I) bond in
dinuclear complexes can be broken quite easily to form the active mono-ligated complex without
breaking the stronger metal–ligand bonds. This is probably the mechanism by which dinuclear Pd(I)
complexes are active in these catalytic systems. The activation of substrates by unsaturated Pd(I)
dimers that do not undergo splitting into mononuclear complexes is rare in palladium chemistry.
However, concerted bimetallic activation of the substrates by two adjacent metal centers could possibly
induce highly active and/or selective transformations in catalysis. Therefore, new reactions can be
developed by designing bimetallic activation processes.
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Scheme 2. Three possible activation pathways for dinuclear Pd(I) complexes in catalysis: (1) activation
of substrates by an intact dimer; (2) disproportionation of a dimer into Pd(0) and Pd(II); and (3) splitting
of the dimer into two molecules of Pd(I).

3.1.1. Monomeric Palladium Catalysts from Dinuclear Complexes

In 2002, Hartwig et al. reported the achievement of efficient cross-coupling reactions, the
Suzuki–Miyaura coupling and the Buchwald–Hartwig amination, of aryl chlorides at room temperature
using the dinuclear palladium(I) complex [Pd(PtBu3)]2(µ-X)2 (X = Cl, Br) (1b) [63]. The oxidative
addition of aryl chloride was revealed to be the rate-determining step, and the addition of PtBu3 to a
palladium(0) precursor showed similar activity toward the cross-coupling reactions. Therefore, it was
proposed that disproportionation of the dinuclear Pd(I) complex gave the active mononuclear Pd(0)
intermediate [Pd(0)(PtBu3)], which also could be formed by the reaction of the palladium(0) precursor
and PtBu3.
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Barder showed that Suzuki–Miyaura coupling of aryl chloride could be accomplished using
cationic palladium(I) dimer 5 bearing a biarylphosphine ligand, in which the π-electrons of the
dimethoxy-substituted aryl moieties stabilize the unsaturated palladium centers [27]. Because the
dimer complex did not activate aryl chloride at low temperature, it was proposed that formation
of active monomeric complex at a temperature above 60 ◦C may be necessary (Scheme 3).
Disproportionation of the bimetallic Pd(I) complex gives not only Pd(0) but also Pd(II) complexes,
which could be easily reduced to Pd(0) by transmetallation with arylboronic acid to form biphenyl as
a by-product.
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The Pd(I) dimer [Pd(IPr)]2(µ-Cl)(µ-π-allyl) (7c) was detected and determined to be a reaction
intermediate in the Suzuki–Miyaura coupling of aryl chloride in the presence of [Pd(II)(IPr)(π-allyl)Cl]
and a base by Balcells and Hazari et al. [30]. The dimer complex 7c can easily disproportionate
into the monomeric complexes IPr-Pd(0) and Pd(II) π-allyl to initiate the catalytic process;
moreover, addition of an equivalent of [Pd(II)(IPr)(π-allyl)Cl] was found to deactivate the process.
Therefore, a comproportionation process producing an equilibrium between the Pd(I) π–allyl dimer
and the mononuclear complexes was also identified, demonstrating that the Pd(I) dimer 7c forms as
an off-cycle product. Several studies identifying a dinuclear Pd(I) complex as the resting state outside
of the catalytic cycle have also been reported [64–67].

Pfaltz et al. reported the palladium-catalyzed nucleophilic substitution of allylbenzoate with
malonate, an example of the formation of a dinuclear structure proposed to be an off-cycle product
that stabilized the active mononuclear intermediates [32]. They found a reversible pathway from
the mononuclear Pd(0) and Pd(II) π-allyl complexes to the dinuclear Pd(I) complex 9, in which a
π-allyl moiety bridged the two metal centers. However, further reaction of the dinuclear complex
with malonate did not yield the substitution product, indicating that the dimer is not active in the
catalytic transformation. This dinuclear Pd(I) complex reversibly produced the mononuclear Pd(II)
π-allyl complex in the presence of allylbenzoate (Scheme 4).
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Schoenebeck et al. reported that the initiation process of the Heck reaction did not involve
simple heterolytic dissociation of the dinuclear palladium(I) complex [Pd(PtBu3)]2(µ-Cl)2 to form the
corresponding mono-ligated Pd(0) active catalyst [68]. Instead, formation of the monomeric Pd(I)
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complex [Pd(PtBu3)Cl] by homolytic cleavage of the Pd(I) dimer is more favorable, as it proceeds with a
much lower free energy (∆Gdiss = 24.8 kcal mol−1) than the heterolytic formation of [Pd(0)(PtBu3)] and
[Pd(II)(PtBu3)Cl2] (∆Gdiss = 38.1 kcal mol−1), as estimated by DFT calculations. Additionally, the dimer
complex itself, as well as its decomposition product Pd(0)(PtBu3)2, which was gradually generated
from the dimer in the presence of aryl boronic acid and KF, were revealed to be less active toward
catalysis. Therefore, these authors proposed that the true active catalyst was most likely to be the
mono-ligated or anionic complex, [Pd(0)(PtBu3)] or [Pd(0)(PtBu3)Cl]-, formed by reduction of the
monomeric Pd(I) intermediate [Pd(PtBu3)Cl] (Scheme 5).
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3.1.2. Proposed Mechanisms Involving Dinuclear Palladium Catalysts

The possibility of catalytic processes involving an active dipalladium(I) complex that retains
its dinuclear framework has also been proposed. In 2010, Bera et al. reported that a dinuclear
Pd(I) complex bearing tridentate 1,8-naphthyridine derivative ligands mediated Suzuki–Miyaura cross
coupling of aryl halides [69]. Although 3-bromopyridine was effective for cross coupling, 2-bromopyridine
was not suitable for the coupling reaction, and yielded only the starting material. They therefore proposed
the presence of a metal coordination site adjacent to the active metal center that could be easily bridged by
2-bromopyridine in the oxidative addition process. However, definitive identification of the bimetallic
system in catalysis would require more detailed study.

Subsequently Hazari et al. proposed that an intact dinuclear palladium(I) complex acts as
a bimetallic catalyst in the allylic carboxylation of allylstannane and allylboronate with CO2 [31].
They found that stoichiometric reaction of the bis-µ-π-allyl Pd(I) complex with CO2 afforded a bridged
mono-carboxylate dipalladium(I) complex via facile insertion of CO2 into the palladium-π-allyl
bond. Subsequent addition of allylstannane and allylboronate gave the starting π-allyl complex
accompanied by liberation of allylcarboxylate (Scheme 6). Detailed theoretical calculations also
indicated that the dinuclear framework of the dipalladium(I) catalyst remains intact during the
catalytic allylic carboxylation [70]. However, the addition of weakly coordinating ligands, such
as acetonitrile and 1-octene, accelerated the catalytic reaction. Moreover, the further addition of
these ligands or the addition of other ligands yielded mononuclear Pd(0) complexes and palladium
black [71]. Therefore, another catalytic pathway involving insertion of CO2 into a mononuclear Pd(II)
complex was proposed. In this pathway, coordination of the ligand L’ stabilizes the disproportionated
mononuclear Pd(0) complex in an equilibrium with the dinuclear complex, and the accompanying
formation of the σ-allyl Pd(II) complex enables the insertion of CO2 into the Pd-carbon bond.

The most remarkable process involving dinuclear Pd(I) complexes is a series of halogen exchange
reactions of aryl halides studied by Schoenebeck et al. [72,73]. Interestingly, the reaction was not
catalyzed by mononuclear Pd(II) halide. However, when a dinuclear Pd(I) catalyst was used, the two
bridging halogen ligands of the complex underwent stepwise exchange, as observed using 31P NMR
spectroscopy. A detailed theoretical study revealed that the oxidative addition of aryl iodide occurs
at a single metal center that retains its dinuclear framework. After the site exchange process of the
halogen ligand on the Pd(II) dimer, the semi-stable dipalladium(II) adduct intermediate eliminates
aryl bromide to generate the Pd(I) dimer (Scheme 7). A similar reaction mechanism was proposed for
the halogen exchange reaction of aryl iodide with -SCF3 or SeCF3 [74,75].
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The chemistry of Pd(I) dimer in catalysis has been summarized as follows. The above studies on
catalytic systems mediated by dinuclear Pd(I) complexes revealed that the formation of monomeric
Pd(0) and/or Pd(II) complexes as the true active catalytic species is the key process to initiate most
reactions. Coordinatively unsaturated, mono-ligated palladium complexes of the form Pd(0)L are
proposed to be very active catalysts that enable facile activation of substrates, whereas typical Pd(0)L2

complexes are less active for these reactions. Several pathways to generate the monomeric complexes
can be proposed, namely, the simple disproportionation of the dimer into zerovalent and divalent
complexes, and the reduction or oxidation of Pd(I) complexes produced by homolytic cleavage of
the Pd(I)–Pd(I) bond. Additionally, in situ generated, inactive dinuclear Pd(I) complexes sometimes
stabilize the unstable monomeric active species as resting states, and it is quite rare for intact dinuclear
complexes to act as catalysts. It has also been reported that only one of the metal centers directly
activate the C–X bond of aryl halide in the oxidative addition process.

In many cases, it is very difficult to clarify whether the active compound is a mononuclear or
dinuclear complex. However, theoretical calculations combined with experimental results can suggest
possible pathways. These results reveal the nature of dinuclear Pd(I) complexes and new possible
transformations using these complexes, thus enabling progress in the development of highly efficient
reactions using bimetallic palladium systems in the near future.

3.2. Catalysis Using Nickel Complexes

As noted above, studies on catalytic transformations using dinuclear nickel(I) complexes have
been less reported compared with the corresponding palladium chemistry (Schemes 8 and 9).
The studies that have been performed using nickel(I) complexes indicated the catalytic reactions
were initiated by similar processes: Homolysis or heterolysis of Ni(I)–Ni(I) bonds to form mononuclear
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active catalysts (Scheme 8), and catalysis by intact dinuclear complexes (Scheme 9). When the dinuclear
structures remain intact during catalysis, catalytic transformations using dinuclear nickel(I) complexes
can proceed similarly to those using palladium. On the other hand, the greatest difference in the
chemistry of nickel is that its paramagnetic, monovalent mononuclear complexes are much more stable
than the corresponding palladium complexes. Therefore, homolytic cleavage of the Ni(I)–Ni(I) bond
occurs readily to form the coordinatively unsaturated Ni(I) complexes, which are anticipated to have
high catalytic activity.
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3.2.1. Mononuclear Nickel Catalysts from Dinuclear Complexes

In contrast to the chemistry of palladium, there have been few reports of mononuclear
Ni complexes generated from the corresponding Ni(I) dimers playing a key role in catalysis.
Some catalytic reactions involving dinuclear Ni(I) hydride complexes have been studied, along with
their mechanisms, and mononuclear active nickel catalysts were proposed. Abu-Omar reported
the catalytic dehydrocoupling of organohydrosilanes, and also isolated the mononuclear Ni(II) silyl
complex formed by the reaction of [Ni(dippe)(µ-H)]2 (11) (dippe = 1,2-diisopropylphosphinoethane)
with HSiCl3 [76]. Interestingly, the dinickel hydride complex reacts with chlorobenzene to form a Ni(II)
oxidative addition product, via generation of 2 equiv. of Ni(0) accompanied by evolution of hydrogen
gas. Vicic et al. also performed a stoichiometric reaction using Ni(0) complexes generated from the
same Ni(I) hydride complex (11), involving the oxidative addition of aryl halides, transmetallation
with alkylsilane, and reductive elimination of alkylarene (Scheme 10) [77]. Therefore, Ni(I) hydride
dimers are a good precursor to generate highly active Ni(0) catalysts in situ.
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Chirik et al. reported the use of the α-diimine-chelated nickel(I) hydride dimer 12 as a catalyst
precursor for the efficient catalytic hydrosilylation of terminal aliphatic alkenes in an anti-Markovnikov
manner [39]. Interestingly, in contrast to the electronic structure of the diphosphine analogue, the dimer
was represented as a complex with two Ni(II) centers with two 1e reduced α-diimine ligands.
Therefore, the dimer was proposed to form mononuclear Ni(II) monohydride. DFT calculations
indicated that smooth insertion of the alkene into the Ni–H bond can form monomeric Ni(II) alkyl
complex (Scheme 11).
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Hazari et al. reported the synthesis of dinuclear Ni(I) complexes bearing bridging cyclopentadienyl
and indenyl ligands, [Ni(NHC)]2(µ-Cl)(µ-Cp) (14a) and [Ni(NHC)]2(µ-Cl)(µ-Ind) (14b) (Cp =
cyclopentadienyl and Ind = indenyl) [44]. The dinuclear Cp complex 14a undergoes homolytic
Ni–Ni bond cleavage and exists in an equilibrium between mononuclear Ni(NHC)(η5-Cp) and the
dichloride Sigman’s dimer 13a at room temperature; however, a similar equilibrium was not observed
for the bridging indenyl analogue 14b. This suggests that the Cp ligand stabilizes the mononuclear
Ni(I), but the indenyl ligand does not (Scheme 12). Interestingly, the Cp complexes mediated the
Suzuki–Miyaura cross coupling of 4-chlorotoluene, but the dinuclear indenyl complex did not, strongly
suggesting that only the mononuclear Ni(I) complex has activity toward this catalytic transformation.

Matsubara et al. found that Sigman’s dimer 13a is in equilibrium with the stable mononuclear
Ni(I) complex in the presence of an appropriate ligand, such as phosphine, phosphite, or pyridine
(Scheme 13) [78,79]. They also reported catalytic reactions using these mononuclear complexes
in the presence of an excess amount of the ligands, such as Kumada–Tamao–Corriu cross
coupling, Suzuki–Miyaura cross coupling, and Buchwald–Hartwig amination of aryl halide.
Notably, the mononuclear Ni(I) complexes bearing a bulky NHC were thermally stable even in the
absence of a redox-active ligand.



Molecules 2018, 23, 140 14 of 21

Molecules 2018, 23, 140 12 of 21 

 

Chirik et al. reported the use of the α-diimine-chelated nickel(I) hydride dimer 12 as a catalyst 
precursor for the efficient catalytic hydrosilylation of terminal aliphatic alkenes in an anti-Markovnikov 
manner [39]. Interestingly, in contrast to the electronic structure of the diphosphine analogue, the 
dimer was represented as a complex with two Ni(II) centers with two 1e reduced α-diimine ligands. 
Therefore, the dimer was proposed to form mononuclear Ni(II) monohydride. DFT calculations 
indicated that smooth insertion of the alkene into the Ni–H bond can form monomeric Ni(II) alkyl 
complex (Scheme 11). 

 
Scheme 11. Proposed mechanism for the hydrosilylation of 1-octene with HSi(OEt)3. The α-diimine 
ligands are redox-active, and 1e reduction of the α-diimine forms Ni(II) centers. 

Hazari et al. reported the synthesis of dinuclear Ni(I) complexes bearing bridging cyclopentadienyl 
and indenyl ligands, [Ni(NHC)]2(μ-Cl)(μ-Cp) (14a) and [Ni(NHC)]2(μ-Cl)(μ-Ind) (14b) (Cp = 
cyclopentadienyl and Ind = indenyl) [44]. The dinuclear Cp complex 14a undergoes homolytic Ni–Ni 
bond cleavage and exists in an equilibrium between mononuclear Ni(NHC)(η5-Cp) and the dichloride 
Sigman’s dimer 13a at room temperature; however, a similar equilibrium was not observed for the 
bridging indenyl analogue 14b. This suggests that the Cp ligand stabilizes the mononuclear Ni(I), but 
the indenyl ligand does not (Scheme 12). Interestingly, the Cp complexes mediated the Suzuki–
Miyaura cross coupling of 4-chlorotoluene, but the dinuclear indenyl complex did not, strongly 
suggesting that only the mononuclear Ni(I) complex has activity toward this catalytic transformation. 

Matsubara et al. found that Sigman’s dimer 13a is in equilibrium with the stable mononuclear 
Ni(I) complex in the presence of an appropriate ligand, such as phosphine, phosphite, or pyridine 
(Scheme 13) [78,79]. They also reported catalytic reactions using these mononuclear complexes in the 
presence of an excess amount of the ligands, such as Kumada–Tamao–Corriu cross coupling, Suzuki–
Miyaura cross coupling, and Buchwald–Hartwig amination of aryl halide. Notably, the mononuclear 
Ni(I) complexes bearing a bulky NHC were thermally stable even in the absence of a redox-active ligand. 

 
Scheme 12. Thermal equilibrium between the dinuclear Ni(I) Cp complex and the catalytically active 
mononuclear Ni(I) Cp complex. This equilibrium does not occur for the indenyl analogue. 

 
Scheme 13. Equilibrium between dinuclear and mononuclear Ni(I) complexes in the presence of a 
ligand (L). Both complexes are active for cross-coupling reactions. 

Scheme 12. Thermal equilibrium between the dinuclear Ni(I) Cp complex and the catalytically active
mononuclear Ni(I) Cp complex. This equilibrium does not occur for the indenyl analogue.

Molecules 2018, 23, 140 12 of 21 

 

Chirik et al. reported the use of the α-diimine-chelated nickel(I) hydride dimer 12 as a catalyst 
precursor for the efficient catalytic hydrosilylation of terminal aliphatic alkenes in an anti-Markovnikov 
manner [39]. Interestingly, in contrast to the electronic structure of the diphosphine analogue, the 
dimer was represented as a complex with two Ni(II) centers with two 1e reduced α-diimine ligands. 
Therefore, the dimer was proposed to form mononuclear Ni(II) monohydride. DFT calculations 
indicated that smooth insertion of the alkene into the Ni–H bond can form monomeric Ni(II) alkyl 
complex (Scheme 11). 

 
Scheme 11. Proposed mechanism for the hydrosilylation of 1-octene with HSi(OEt)3. The α-diimine 
ligands are redox-active, and 1e reduction of the α-diimine forms Ni(II) centers. 

Hazari et al. reported the synthesis of dinuclear Ni(I) complexes bearing bridging cyclopentadienyl 
and indenyl ligands, [Ni(NHC)]2(μ-Cl)(μ-Cp) (14a) and [Ni(NHC)]2(μ-Cl)(μ-Ind) (14b) (Cp = 
cyclopentadienyl and Ind = indenyl) [44]. The dinuclear Cp complex 14a undergoes homolytic Ni–Ni 
bond cleavage and exists in an equilibrium between mononuclear Ni(NHC)(η5-Cp) and the dichloride 
Sigman’s dimer 13a at room temperature; however, a similar equilibrium was not observed for the 
bridging indenyl analogue 14b. This suggests that the Cp ligand stabilizes the mononuclear Ni(I), but 
the indenyl ligand does not (Scheme 12). Interestingly, the Cp complexes mediated the Suzuki–
Miyaura cross coupling of 4-chlorotoluene, but the dinuclear indenyl complex did not, strongly 
suggesting that only the mononuclear Ni(I) complex has activity toward this catalytic transformation. 

Matsubara et al. found that Sigman’s dimer 13a is in equilibrium with the stable mononuclear 
Ni(I) complex in the presence of an appropriate ligand, such as phosphine, phosphite, or pyridine 
(Scheme 13) [78,79]. They also reported catalytic reactions using these mononuclear complexes in the 
presence of an excess amount of the ligands, such as Kumada–Tamao–Corriu cross coupling, Suzuki–
Miyaura cross coupling, and Buchwald–Hartwig amination of aryl halide. Notably, the mononuclear 
Ni(I) complexes bearing a bulky NHC were thermally stable even in the absence of a redox-active ligand. 

 
Scheme 12. Thermal equilibrium between the dinuclear Ni(I) Cp complex and the catalytically active 
mononuclear Ni(I) Cp complex. This equilibrium does not occur for the indenyl analogue. 

 
Scheme 13. Equilibrium between dinuclear and mononuclear Ni(I) complexes in the presence of a 
ligand (L). Both complexes are active for cross-coupling reactions. 

Scheme 13. Equilibrium between dinuclear and mononuclear Ni(I) complexes in the presence of a
ligand (L). Both complexes are active for cross-coupling reactions.

3.2.2. Proposed Mechanisms Involving Dinuclear Nickel Catalysts

In 2009, Hillhouse et al. reported a dinuclear Ni(I) complex bearing a bridging imide ligand as a
product of the reaction of Sigman’s dimer, [Ni(IPr)(µ-Cl)]2, with mesityl azide (N3Mes). Subsequently,
the coupling reaction of the imide ligand with isonitrile gave isocyanate derivatives accompanied by
the regeneration of the starting Sigman’s dimer (Scheme 14) [41]. This reaction sequence can be applied
to catalytic nitrene transfer reactions of N3Mes and isonitrile. It was unclear whether mononuclear
species were generated or not in this reaction sequence.
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Recently, Matsubara et al. reported that Sigman’s dimer 13a acts as a highly efficient catalyst in
the Kumada–Tamao–Corriu cross coupling of aryl halides [45]. Generally, a Ni(II) oxidative addition
product is obtained from the reaction of a Ni(0) precursor with aryl chloride. However, the reaction of
aryl chloride with Ni(0)(cod)2 in the presence of 1 equiv. of the bulky IPr ligand unexpectedly yielded
the dinuclear Ni(I) adduct 15 rather than mononuclear Ni(II) (Scheme 16). This dinuclear Ni(I) µ-σ-aryl
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complex 15 was also active in the Kumada coupling, and can alternatively be prepared by the reaction
of Sigman’s dimer 13a with phenylmagnesium chloride via transmetallation. Further stoichiometric
reaction of the µ-σ-aryl complex 15 with aryl chloride afforded the biaryl as the cross-coupling product,
accompanied by regeneration of Sigman’s dimer 13a. Therefore, the authors suspected that both
dinuclear Ni(I) complexes were involved in the catalytic cycle. However, because the distribution
of the biaryl products from the dinickel(I) µ-σ-aryl complex in the stoichiometric reaction was not
consistent with that in the catalysis, an alternative pathway involving the oxidative addition of aryl
halide to Sigman’s dimer 13a was proposed (Scheme 15), in which the µ-σ-aryl complex 15 could
act as a precursor in catalysis. DFT calculations indicated that the addition of chlorobenzene to the
dimer occurs without loss of the dinuclear framework, resulting in a semi-stable dinuclear Ni(II)
complex similar to that reported for the palladium analogue [72]. Subsequent transmetallation with
phenylmagnesium chloride forms the biaryl and Sigman’s dimer. Notably, the Ni(II)–Ni(0) complex
with a dative bond from Ni(0) to Ni(II) is temporally formed just before the oxidative addition to one of
the nickel centers to give the Ni(II)–Ni(II) complex. This catalytic reaction afforded no homo-coupling
product, probably because the equilibrium of homolysis into mononuclear intermediates was not
possible, which prevented the intermolecular aryl exchange process. This fact also strongly supports
the existence of the dinuclear system during catalysis.

Schoenebeck et al. also reported a theoretical study on the oxidative addition of iodobenzene
to the Ni(I) iodide dimer [Ni(SIPr)]2(µ-I)2, which is analogous to Sigman’s dimer 13a. The results
indicated that this reaction occurred via a pathway similar to Matsubara’s process [80], involving the
efficient catalytic substitution of aryl iodide with Me4NSeCF3 to yield trifluoromethylselenoarene.
Similarly, the biaryl homo-coupling product did not form in this transformation, and no signals were
assigned as mononuclear Ni(I) species in the EPR spectra, suggesting that the existence of side reactions
involving mononuclear Ni(I) species can be ruled out. The authors isolated the diselenide Ni(I) dimer,
[Ni(SIPr)(µ-SeCF3)]2, as a possible intermediate complex. In contrast to the selectivity of mononuclear
Ni(0) catalysts, DFT calculations supported the chemoselectivity of the oxidative addition of aryl
iodide rather than aryl selenide to dinuclear Ni(I) (Scheme 16).
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Scheme 16. Selectivity divergence between Ni(0) and Ni(I)–Ni(I) in the trifluoromethylselenolation of
aryl iodide. The calculated transition states for the oxidative addition of the Ph–X bond to Ni(0) and
Ni(I)–Ni(I) showed different favored substituents X, supporting the chemoselectivity of the catalysis.

In sharp contrast to other dinuclear Ni(I) systems, the dinickel(I) complex reported by Uyeda et al.
(iPrNDI)Ni2Br2 (21) (iPrNDI = 2,6-diisopropylphenyl-substituted naphthyridine diimine) has two
unique features: (1) The positions of the two nickel centers are fixed by the tetradentate π-conjugated
auxiliary ligand; and (2) the NDI ligand is redox-active and has two nickel centers, enabling reversible
oxidation and reduction with intersystem spin crossing [55]. Moreover, using analogous Ni(0)
benzene complex, several catalytic reactions, such as the hydrosilylation and cyclotrimerization
of alkynes, were performed on the dinickel centers without breakage of the dinuclear framework.
Detailed theoretical studies were conducted by Uyeda and Ess et al. to reveal the mechanism of
catalytic alkyne cyclotrimerization (Scheme 17) [81]. Interestingly, oxidative C–C bond coupling of
terminal alkynes occurs on the dinickel centers, and migratory insertion of the third alkyne provides
chemoselective formation of benzene derivatives, while the reaction occurs via another pathway in the
mononuclear catalyst system to provide different product selectivity.

Catalytic reactions using dinuclear nickel(I) complexes are summarized. Although there are very
few examples, both mechanisms involving highly active mononuclear complex and intact dinuclear
complex as key intermediates are proposed in the efficient catalysis, as in the palladium chemistry.
Dinuclear µ-hydride complexes can generate coordinatively unsaturated mononuclear Ni(0) complexes
irreversibly as a result of elimination of hydrogen gas, whereas simple homolytic cleavage of the
Ni–Ni bond occurs in dinuclear complexes bearing other bridging ligands to form monomeric Ni(I)
complexes. Although such mononuclear Ni(I) complexes are proposed as key intermediates in catalysis,
it should be noted that direct observation of the Ni(I) complexes as key intermediates has not been
reported until now. On the other hand, theoretical calculation is a powerful method to propose the
intact dinuclear active complexes involved in the catalytic cycles. Finally, appropriate design of the
bridging ligands, naphthyridine diamine, can form dinuclear Ni complex, which has a robust bimetallic
framework. A series of catalytic transformations with specific chemoselectivity clearly demonstrated
the importance of the chemistry of dinuclear Ni(I) complexes as catalysts.
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4. Conclusion and Perspectives

In this mini-review, the recently reported structures, catalytic applications, and mechanistic details
of dinuclear Pd(I) and Ni(I) complexes are surveyed. As noted in the Introduction, highly efficient
catalytic transformations have been achieved under mild conditions using these complexes as catalyst
precursors. However, these involve several different activation processes, depending on the metal
atoms, ligand structures, and kinds of reactions employed. One of the most interesting points of these
activation processes is that pairs of active metal sites were able to activate substrates in a concerted
fashion while retaining their dinuclear frameworks. For instance, the oxidative addition of aryl halide
to M(I)–M(I) (M = Pd and Ni) generates not the mononuclear M(III) species, but instead the dinuclear
adduct, a M(II)-M(II) complex stabilized by bridging ligands. On the other hand, the in situ “reversible”
formation of dinuclear complexes may contribute to the stabilization of highly active mononuclear
catalysts, which are essential for efficient catalytic transformations. The achievement of a dissociation
equilibrium between semi-stable complexes with weak metal–metal bonds that act as “bimetallic dormant
species” facilitates the formation of highly active mononuclear complexes without using an excess of
ancillary ligands, and moreover, avoids the decomposition of such active complexes.

Although the above chemistry of the dinuclear metal complexes in catalysis has been revealed to
have great promise for the development of various useful organic transformations, it is still only at the
starting line. The concerted activation of substrates and the development of highly efficient and/or
chemoselective catalytic processes show great potential to expand widely in the fields of organic
synthesis and applications.
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