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Abstract

Background: Transcripts, which have been subject to Post-transcriptional exon shuffling (PTES), have an exon order
inconsistent with the underlying genomic sequence. These have been identified in a wide variety of tissues and cell
types from many eukaryotes, and are now known to be mostly circular, cytoplasmic, and non-coding. Although
there is no uniformly ascribed function, several have been shown to be involved in gene regulation. Accurate
identification of these transcripts can, however, be difficult due to artefacts from a wide variety of sources.

Results: Here, we present a computational method, PTESFinder, to identify these transcripts from high throughput
RNAseq data. Uniquely, it systematically excludes potential artefacts emanating from pseudogenes, segmental
duplications, and template switching, and outputs both PTES and canonical exon junction counts to facilitate
comparative analyses. In comparison with four existing methods, PTESFinder achieves highest specificity and
comparable sensitivity at a variety of read depths. PTESFinder also identifies between 13 % and 41.6 % more
structures, compared to publicly available methods recently used to identify human circular RNAs.

Conclusions: With high sensitivity and specificity, user-adjustable filters that target known sources of false positives,
and tailored output to facilitate comparison of transcript levels, PTESFinder will facilitate the discovery and analysis

of these poorly understood transcripts.
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Background

Recently, there has been an increased interest in a novel
class of transcripts where the exon order differs from that
found in the genome [1-4]. Once considered cloning arte-
facts [5] or products of aberrant splicing [6], it is now
established that the majority of these molecules represent
circular RNA species (circcRNAs) [2—4, 7], although some
linear transcripts have been reported [1, 8, 9]. Thousands
of these novel transcripts have now been identified in a
variety of eukaryotic cells [3, 10], many are conserved
across species [2, 11], suggesting functional relevance, and
two (from CDRI and SRY) have been shown to harbour
numerous miRNA binding sites and act as miRNA
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sponges to modulate gene expression [4, 12]. Recent re-
ports also implicate circRNAs in synaptic development
[11] and some have expression patterns that correlate with
diseases [13—15] and may act as biomarkers for ageing
[16]. Despite these reports, the function of the vast major-
ity of these transcripts has not been established.

The defining feature of these transcripts at the se-
quence level is the presence of a splice junction with
exons in an order inconsistent with their position in
the genome. As this feature alone does not enable in-
ference of structure or mechanistic origins, we use
the term Post-Transcriptional Exon Shuffled (PTES)
transcripts to collectively describe this population of
RNA molecules [1]. Recent reports have shown that
the vast majority of these transcripts emanate from
known genes [2, 17, 18], utilise known splice junc-
tions, and that their biogenesis competes with splicing
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of canonical transcripts [19]. Transcripts arising from
PTES specifically exclude chimeric RNAs without
known splice junctions, and a class of circular RNAs
comprised of spliced introns, ciRNAs [7, 20].

Many computational methods for identifying chimeric
RNA molecules from high-throughput RNA sequence
data have been described. The majority of these are de-
signed to detect heterotypic trans-splicing and fused
genes, so are not suitable for PTES detection [21-27], or
require post processing steps to analyse reads supporting
different types of splicing events [28, 29]. Recently, how-
ever, a number of programs for PTES discovery have been
described and used primarily for circRNA characterisation
[2—4, 16, 17, 30—32]. Most analyse reads which fail to fully
align to a reference sequence, and split these into two or
more segments which are then independently aligned to
define rearrangements. Some make use of gene annotation
to guide discovery [3, 32], while others adopt an unbiased
genome-wide approach to capture structures which do
not utilise known splice junctions or are non-genic [4, 16,
17, 30, 31]. In addition, the occurrence of PTES can be in-
ferred when two paired end reads map to the transcrip-
tome in a configuration that is not consistent with a linear
transcript [3, 16, 30, 32].

The identification of PTES exon junctions within
RNAseq data is, however, confounded by known arte-
facts. False positives can arise from template switching
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during cDNA synthesis [1, 5, 9, 33, 34], from genes with
duplicated exons [35], from transcription read-through
between genes in close proximity due to weak termin-
ation signals [36, 37], and from closely related genes
within duplicons or tandem arrays [4]. Although experi-
mental enrichment has been combined with informatic
approaches to define bona-fide circRNAs [2—4], many
classes of false positive structures are not directly ex-
cluded by existing identification methods. For example,
reads defining 7 of the 20 most abundant human cir-
cRNAs reported by Memczak et al. [14] map with high
sequence identity to the reference sequence and include
4 which are indistinguishable from linear RefSeq entries
(Fig. 1). Furthermore, a recent experimental analysis of
previously identified PTES trancripts concluded that
many are template switching artefacts [38], and template
switching predominantly leads to rearragements where
the breaks do not occur at splice junctions [5].

Here we present a method, PTESFinder, that identifies
putative PTES structures by mapping RNAseq reads to
sequence models generated using existing transcript an-
notation. It then applies a series of mapping and align-
ment filters to systematically remove known classes of
false positives. It does not make use of paired end (PE)
mapping information as the lack of intervening sequence
precludes such filtering and may affect specificity. We
first describe the implementation of this method, and
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Fig. 1 Examples of Intragenic False Positives. Schematic diagrams showing inferred structure and key sequence relationships for 4 of the 20 most
abundant circRNAs reported in [3]. In each case, the inferred structure shares 100 % identity to a linear transcript spanning the defining exon-exon junction.
Within the top 20, hsa_circ_002174, 002165 and 002164 show similar patterns of identity to multiple genomic locations. Blue — Inferred Donor Exon,
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then investigate the effects of different filtering criteria.
The program requires certain user adjustable parame-
ters; we therefore also explore systematically the choice
of these parameters. Finally, through analysis of real and
simulated data, we compare PTESFinder to other pub-
licly available methods [4, 16, 30, 31] which have been
used to identify circRNA transcripts in both cell lines
and tissues.

Implementation

Pipeline for PTES discovery

PTESFinder requires as input files; RNAseq data in
FASTQ format [39], genomic reference in FASTA for-
mat, and an annotated transcriptome reference in BED
format [40]. The pipeline is split into three phases
(Fig. 2): A discovery phase to identify putative PTES
structures within RNAseq data and define PTES tran-
script models, an evaluation phase to assess these PTES
models, and a filtering phase to exclude potential false
positives.
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Discovery phase

Short sequences from both ends of each FASTQ read
(anchors, default length: 20 bp) are aligned to the tran-
scriptome reference using Bowtie [41] with tolerance for
a single mismatch. Pairs of anchors from the same read
that map to the same gene and in the same orientation,
but which map in inverted order with respect to their
order in the sequencing read, are then identified. This
excludes reads emanating from fused genes and sense-
antisense template switching artefacts. Retained anchor
pairs are then used to determine the exon junctions
which define putative PTES events and create sequence
models (constructs) of the inferred products. These con-
structs are generated by concatenating the last 65 bp of
the 5’ exon and the first 65 bp of the 3" exon. The seg-
ment size of 65 is used by default, with the full exon se-
quence used if an exon is smaller than 65 bp. This
parameter is adjustable to accommodate various RNA-
seq read lengths, and we recommend that it be at least
10 bp shorter than the read length to ensure that only
reads mapping across PTES defining junctions are
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Fig. 2 Overview of PTES Discovery Pipeline. The workflow includes three major phases: Discovery phase, Evaluation phase and Filtering phase.
Putative PTES structures discovered using 20 bp anchor reads are evaluated by aligning full FASTQ reads to the models. The filtering phase
includes stringent criteria designed to systematically exclude all known classes of false positive structures
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processed in subsequent filtering steps (although as de-
scribed below these filters would eliminate such reads).

Evaluation phase

All the original reads are then re-mapped to PTES con-
structs generated in the discovery phase. This serves two
purposes. First, as RNAseq reads can be short, this en-
ables reads with putative PTES exon junctions close to
their termini to be accurately mapped. Second, it enables
read mapping scores obtained using the PTES constructs
to be directly compared to scores obtained from gen-
omic and transcriptomic alignments for filtering pur-
poses (see below). Optionally, evaluation can also be
‘guided’ by supplying constructs of previously discovered
PTES structures, effectively bypassing the discovery
phase.

Filtering phase

To eliminate potential false positives originating from
the genome under investigation, all the original reads
are mapped to both genomic and transcriptomic ref-
erences. The number of edits required for alignment
(NM field in SAM format [42]), and the number of
perfectly aligned base pairs, are used to remove reads
which align as well or better to either of these refer-
ence sequences than to the PTES constructs. To re-
duce template switching artefacts, which have
heterogeneous junction points within short regions of
often imperfect sequence homology [5], reads which
do not align perfectly to the exon junctions which de-
fine PTES are also removed using junctional filters.
First, a user adjustable minimum junction span
(JSpan) parameter is applied to ensure that there are
no mismatches or indels within ‘n’ nucleotides either
side of the junction position, where n is an even inte-
ger. Second, to eliminate reads with regions of low
quality alignment, a user adjustable segment percent
identity (PID) parameter is also applied independently
to the segments on either side of the PTES junction,
such that for a read to be retained both must meet
or exceed the specified PID when aligned to the
PTES construct. These user adjustable filters rely on
alignment summaries provided by the NM field, MD
field and Cigar in the SAM files [42]. The output in-
cludes the coordinates of the exon end involved in
the junctions, a descriptor of the PTES (see Add-
itional file 1 for details) and the number of reads sup-
porting the structure. This is presented in BED
format [40]. A second file contains additional infor-
mation, read counts of all canonical exon junctions
from transcripts where a PTES structure has been
identified, to facilitate comparison with PTES counts.
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Assessment of pipeline and comparisons to other
methods

RNAseq data from Jeck et al. [2] were analysed at
various combinations of JSpan and PID (JSpan range:
4-14; PID range: 60—100 %). All analyses were per-
formed with and without genomic and transcrip-
tomic filters applied to enable reads discarded by
each filtering criterion to be identified. The numbers
of PTES structures identified and supporting reads
were also recorded. To assess sensitivity and specifi-
city, simulated datasets were generated using all
published PTES structures within circbase.org [43].
For each dataset, 5000 PTES junctions were ran-
domly selected along with 5000 canonical junctions,
and constructs were generated for each junction by
concatenating the full sequence of both exons in-
volved in each case. 100 bp simulated reads with
random start positions within each construct were
then generated. Scripts published by Memczak et al.
[14] (default parameter values), CIRI v. 1.2 [30] (de-
fault parameter values), circRNA_finder [16] (default
parameter values), and MapSplice v. 2.1.5 [31] used
in [2] (parameters: —-fusion —non-canonical -pl6),
were compared to PTESFinder by analysing leuko-
cytes cell line RNAseq data (described in [3, 4]), fi-
broblasts RNAseq data (described in [2]), and
simulated data. For each simulation, transcripts cor-
rectly identified by each method were determined by
comparing genomic coordinates of identified tran-
scripts with the genomic coordinates of transcripts
expected to be recovered from within each dataset.
The numbers of correctly identified PTES transcripts
(true positives — TP), incorrectly identified PTES
transcripts (false positives — FP), PTES transcripts
incorrectly excluded (false negatives — FN), and ca-
nonical junctions correctly excluded (true negatives
— TN), were used to estimate sensitivity: TP / (TP +
EN), specificity: TN / (TN + FP), and false discovery
rate (FDR): FP / (TP + FP).

Results and discussion

PTESFinder uses established RNAseq tools (Bowtie
[41], Bowtie2 [44] and Bedtools [45]) to identify puta-
tive PTES structures, and then systematically excludes
known classes of false positive structures by applying
genomic, transcriptomic and junctional (JSpan & PID)
filters (see methods). As an initial assessment of
PTESFinder function, RNAseq data from human
fibroblast total RNA which has previously been mined
for circRNAs (sample SRR44975A in [2]), were ana-
lysed both with and without the application of the
genomic and transcriptomic alignment filters. Reads
recovered during analysis, together with alignment
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edit distances of reads identified by each filter applied
seperately, are shown in Fig. 3a.

Filters target overlapping populations of reads but none
is redundant

From a total of over 200 million reads analysed, approxi-
mately 0.17 % (359837) have shuffled coordinates with
respect to exon position (Fig. 3¢ and Additional file 2:
Table S1). However, of these only 44620 (~12.5 %) map
to PTES sequence constructs generated during the dis-
covery phase, indicating that most of the reads with
rearranged anchor pairs do not map to single genes and/
or known exon junctions. Approximately 85 % (37854)
of the reads which map to PTES constructs are subse-
quently removed by the genomic, transcriptomic and
junctional (JSpan and PID) filters, with the majority be-
ing identified by more than one filter. For instance, over
98 % of reads excluded by the genomic filter are also ex-
cluded by the transcriptomic filter, and 60 % (22692) of
all filtered reads are identified by all three. Most of these

have high edit distances (>10) indicative of low quality
alignment. Despite this, the genomic, transcriptomic and
junctional filters (at lowest stringency) uniquely exclude
~0.25 % (110), ~3.2 %% (1421) and 15.8 % (7036) of
reads mapping to PTES models respectively (Fig. 3a), in-
dicating that none is wholly redundant.

The subset of reads identified specifically by the
junctional and transcriptomic filters are defined by
low edit distances of between 1 and 10 (Fig. 3a), al-
though a small number of reads excluded by the tran-
scriptome filter (228) map perfectly to putative PTES
constructs with NM =0 (inset). Fig. 3a also reveals a
bimodal distribution of mapping qualities for reads
excluded by all three filters with peaks at NM =16
and NM = 24. Upon manual analysis, most of the ex-
cluded reads with NM =16 were found to support a
false positive structure from 58 s rRNA
(NR_003285.1.1). Comparable rRNA derived struc-
tures have been identified previously and filtered
manually [4]. In Fig. 3b, reads supporting this
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structure have been removed to show the underlying
distribution of mapping quality scores.

Reads excluded by specific filters have different origins
To investigate the activity of specific filters further, the
mapping co-ordinates of reads removed by the genomic
filter were first compared to the co-ordinates of anno-
tated pseudogenes and segmental duplications. This
established that ~74 % of reads excluded by the genomic
filter had superior alignments to segmental duplications,
and ~12 % had superior alignments to pseudogenes. The
417 reads identified by the genomic filter but not by the
transcriptomic filter were also found to be enriched for
reads derived from segmental duplications and pseudo-
genes (e.g. Additional file 3: Figure S1A).

We next used BLAT [46] to manually investigate the
228 reads excluded specifically by the transcriptome fil-
ter which mapped perfectly to putative PTES constructs
(NM =0, Fig. 3b). These support 7 putative PTES struc-
tures from 4 genes (Inset, Fig. 3a). However, BLAT ana-
lysis established that they all also mapped contiguously
with ~100 % identity to the transcriptome due to high
sequence identity between neighbouring exons. For ex-
ample, 126 reads which support a putative single exon
PTES structure (exon 10 of HNRNPHI circularized)
map with ~100 % identity to exons 10 and 11 of the ca-
nonical HNRNPH]I transcript (Additional file 3: Figure
S1B) due to high sequence identity between these neigh-
bouring exons. As a result, these reads cannot be taken
as supporting evidence for PTES. It is noteworthy that
such structures will pass any qualitative filter criterion
requiring only unambiguous mapping to PTES con-
structs, illustrating the value of the transcriptome filter.

Finally, manual analysis of a subset of the 7036 reads
identified only by the junctional filters established that
these support structures with distinct patterns of sub-
optimal mapping, such as low alignment quality specific
to only one of the two exons in the structure (e.g. Add-
itional file 3: Figure S1C top 2 panels), and low sequence
identity specifically at the junction (e.g. Additional file 3:
Figure S1C lower 2 panels), the latter being consistent
with the expected pattern of alignment for template
switching artefacts [5].

As one further assessment of the filters, we analysed
RNAseq data derived from fibroblast RNA which had
been pre-digested with RNase R. This selectively
removes linear RNAs, and enriches for circRNAs [7, 47],
and has been shown to significanty increase the recovery
of PTES reads. However, we would anticipate that this
would also selectively remove false positives derived
from pseudogenes and segmental duplications which
mimic PTES structures, without necessarily reducing re-
verse transcription artefacts such as template switching.
Only ~12 % of reads from the RNAseR digested sample
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which map to PTES sequence constructs are identified
by the genomic and transcriptomic filters (Additional
file 2: Table S1), compared to 69 % in the undigested
sample. Furthermore, only 17 % of these map to seg-
mental duplications, compared to 74 % in the undigested
sample. In contrast, the proportion of reads excluded by
the junctional filters is considerably higher after RNAseR
digestion, consistent with expectation.

PID Has greater impact than JSpan

To investigate the impact of varying the user defined
JSpan and PID parameters which comprise the junctional
filter, the same data was re-analysed using 54 different
combinations of these parameters, both with and without
the genomic and transcriptome filters applied (Fig. 3c).
This established that varying the PID has a greater impact
than varying the JSpan, with 5691 reads filtered with
maximal PID (100 %) and lowest JSpan (4) compared
to only 1235 reads filtered with the maximal JSpan
(14) at lowest PID (60 %). Furthermore, varying the
PID between 60 % and 75 % has little impact at any
JSpan value, but above 75 % there is a linear relation-
ship with the number of reads filtered. As the default
junctional filter parameters failed to identify some
reads excluded by the other filters (110 and 1421,
Fig. 4a), this analysis was repeated using only these
reads to establish the JSpan and PID parameters re-
quired to identify them. Over 99 % of these reads are
excluded with the most stringent junctional filter pa-
rameters (Fig. 4b). Furthermore, the vast majority are
filtered with a PID of 85 %, suggesting this is a lo-
gical setting for this parameter. The JSpan setting
only has a major impact at low PIDs (60-75 %).

Specificity, sensitivity and comparison with other
methods

To assess the sensitivity and specificity of the pipeline
and compare it to other methods, simulated reads were
generated from previously identified PTES and associ-
ated canonical transcripts, and analysed at various read
depths of coverage using default parameters. In addition
to assessing PTESFinder for de novo PTES discovery, the
use of constructs of previously reported structures for
guided discovery was also assessed (see methods), as
were four publicly available methods which have previ-
ously been employed to identify circRNA transcripts:
MapSplice v 2.1.5 [31] used in [2], CIRI v. 1.2 [30],
circRNA_finder [16] and the method used by Memczak
et al. [4].

Results from 100 simulated datasets are presented in
Fig. 5a-c, and illustrate that sensitivity varies consider-
ably with coverage, and between methods. At read
coverage of 2, the sensitivity of PTESFinder is below 0.6.
This can be attributed to PTES junctions occurring
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within the terminal 20 bp of reads, as the low tolerance
for mismatches during anchor mapping will result in
their elimination. However, sensitivity reaches >90 % at
coverage of 10 or higher for both guided and unguided
analyses, with guided PTESFinder being equally or more
sensitive than all other methods at all read depths. Strik-
ingly, the sensitivity of MapSplice is low, remaining
below 0.5 at all read depths. In contrast, specificity is
over 0.97 for all methods at all read depths (Fig. 5b),
although PTESFinder achieves the highest specificities
averaged across all depths (over 0.999) for both de
novo and guided PTES discovery, with all canonical
junction reads being correctly identified as such within
the simulated data. Only the Memczak method has
similar specificity when averaged across all read depths
(Fig. 5¢).

To compare performance using real data we first rea-
nalysed data from Jeck et al. [2] using all 5 methods
(Table 1). To allow direct comparison to PTESFinder,
the number of putative circRNA structures identified
which utilise 2 RefSeq splice sites was recorded for all
other methods (bracketed), as the total numbers include
structures from intergenic and intronic regions of the
genome. For all 4 samples analysed, CIRI consumed
>90Gb of memory, resulting in incomplete analyses. It
was therefore not analysed further. Of the remaining 4
methods, PTESFinder identified on average 15 % more
structures than the Memczak method and ~70 % more
than MapSplice. The latter is consistent with our finding

that MapSplice, which was used in their analysis [2], has
low sensitivity at all depths of sequence coverage
(Fig. 5a). However, circRNA_finder reported the highest
number of putative circRNA transcripts from both ex-
onic and non-exonic regions of the genome, reporting
approximately 31-42 % more structures with RefSeq co-
ordinates than PTESfinder (Table 1).

To investigate the origins of the RefSeq related struc-
tures identified exclusively by circRNA_finder, reads de-
fining these structures from 1 sample (SRR444975) were
re-analysed using PTESFinder (Fig. 6a). Of 9287 reads
re-analysed, approximately 20 % (1840) are defined as
mutilocus or sense-antisense fusions, and a further 19 %
(1775) are eliminated by the junctional, genomic, and
transcriptomic filters indicating likely false positives
(Fig. 6b). The remaining 61 % (5672) are not aligned, in-
dicating that their anchors map suboptimally to RefSeq.
Furthermore, plotting the distribution of the number of
reads supporting each structure identified by circRNA_-
finder only, by PTESFinder only, and by both methods
(Fig. 6c¢), revealed that the vast majority of structures
identified by circRNA_finder alone are supported by a
single read. This is in sharp contrast to structures identi-
fied by both methods, or by PTESFinder alone. While
these single-read structures may include bona fide low
frequency circRNAs, they are also likely to contain false
positives caused by suboptimal mapping, consistent with
the lower specificity of circRNA_finder with our simu-
lated data.
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Table 1 Number of PTES transcripts identified from Human Fibroblast samples using four methods
Method SRR444974 SRR445016 SRR444975 SRR444655
Memczak® |dentified 22663 (17752) 22351 (17231) 3733 (2956) 1667 (873)
Run Time 1993 m 2479 m 2602 m 2061 m
MapSplice® Identified 9701 (7087) 7380 (4891) 2231 (986) 1479 (307)
Run Time 6167 m 16356 m 7412 m 2605 m
PTESFinder Identified 25116 24489 5383 2316
Run Time 1355 m 1963 m 1530 m 1369 m
CircRNA_finder? |dentified 49901 (32856) 54154 (32186) 11069 (7309) 3130 (2131)
Run Time 75m 90 m 80 m 88 m

circRNAs utilizing two RefSeq annotated splice sites in brackets

Runtimes for PTESFinder were also 25-35 % lower
than for the Memczak method, and 50-82 % lower than
for MapSplice (Table 1), but by far the best runtimes
were achieved by circRNA_finder which utilises the
STAR aligner [48]. These were, however, achieved at
higher computing memory cost (~30GB).

We then used PTESFinder to analyse RNAseq reads
previously mined in two further studies [3, 4]. Consistent
with the above, it identified 13 % more distinct struc-
tures from leukocyte and HEK293 data than were re-
ported by Memczak et al. [4] (2217 as opposed to 1950
Fig. 6d), and 41.6 % more structures than reported by
Salzman et al. [3] from leukocyte data (1875 as opposed

to 1324, (data not shown)). As both structures and sup-
porting reads were reported by [4], it was possible to re-
analyse the 898 structures identified exclusively by their
method using PTESFinder. This established that none
correspond to structures which PTESFinder is designed
to identify (Fig. 6e): 503 (56 %) are derived from in-
tronic, and intergenic regions, and of the 1420 reads
supporting the remaining 395 genic structures, 492 were
excluded by PTESFinder due to low map quality (200)
or multiple map locations (292), 89 reads were excluded
by PTESFinder filters, and the remaining 839 possessed
at least 1 exon boundary which did not map to known
splice junctions (Fig. 6f). Again, while some of these

A B

circRNA_finder unaligned

PTESFinder

multi locus

2634 junctional

transcriptomic | 151

|
sense/antisense sm\
genomic 153

(9]

20

15

05

0 1000 2000

D E

PTESFinder Memczak 2013

898

44%

Dlintronic  Clintergenic [Jexonic [lothers

Fig. 6 Comparisons with real RNAseq data & published results. a Approximately 64 % (4675) of PTES transcripts utilising 2 RefSeq (known) splice
sites were identified by both circRNA_finder and PTESFinder from SRR444975 (b) Read exclusion criteria for PTES transcripts identified by
circRNA_finder only, when analysed by PTESFinder (c) Distribution of read numbers supporting PTES transcripts identified by circRNA_finder only,
by PTESFinder only, and by both (raw counts reported by PTESFinder shown) (d) PTESFinder identified over 50 % (1052) of transcripts reported in
Memczak et al. [14]. e The majority of the 898 structures reported by Memczak et al. [14] but not identified by PTESFinder are intronic or
intergenic. f Exclusion criteria for reads presented as evidence for exonic structures in Memczak et al. [14] which were not reported by PTESFinder

(see text)

circRNA Supporting Reads (Log10)
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3000 4000 5000 6000

Reads circrna_finder both ptesfinder
F

Excluded Reads (exonic circRNAs) Count
excluded by mapping stringency 200
mapping to more than one locus 292
mapping to sense/antisense 0
detected with head-to-tail mapping 928
( Reads failed to map to constructs 839)
( Reads excluded by genomic filter 1)
( Reads excluded by transcriptomic filter 6)
( Reads excluded by junctional filter 82)
Total 1420,
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latter reads will undoubtedly correspond to bona fide
PTES structures (as a number of genic PTES utilising
non-Refseq splice sites have been confirmed experimen-
tally (e.g. [1, 4]), further BLAT analysis established that
13 mapped in a linear fashion to 6 annotated pseudo-
genes (Additional file 4: Table S2).

Approaches to PTES discovery involve a compromise
between the ability to detect all potentially rearranged
transcripts, and the ability to identify artefacts generated
as a result of the sequence and structural complexity of
eukaryotic genomes, and of current library construction
methods. It is now clear that the majority of transcripts
with re-arranged exon order utilize known exon junc-
tions [2, 18] which are processed by the spliceosome [17,
19]. As a result, methods which utilise existing transcript
annotation from the genome under study, such as PTES-
Finder and those employed by [3, 32], benefit from the
reduced noise inherent in this approach and are suited
to quantitative analyses of PTES structures that can be
characterized using existing annotations.

The use of known/experimentally verified splice sites
does reduce the misidentification of template switching
artefacts or unspliced pseudogenes as bona fide PTES
transcripts. However, it does mean that not all rear-
ranged transcripts will be identified. Although a recent
analysis of human data unconstrained by existing anno-
tation suggests that circRNAs which function as miRNA
sponges are rare [17], discovery of transcripts which do
not utilise known splice sites (including any which are
not processed by the spliceosome) requires a genome-
wide approach unconstrained by existing annotations.
Such approaches are, however, inherently more suscep-
tible to artefacts. The analyses presented above illustrate
both the problem of false positive structures, the trade
off between sensitivity and specificity in all methods de-
signed to identify rearranged transcripts, and the utility
of multiple filters designed to target distinct populations
of known artefacts.

Conclusions

A major challenge in PTES identification is to discrimin-
ate between bona fide PTES structures and a wide variety
of false positives with distinct origins. Currently, no
method which has been used for PTES discovery explicitly
excludes all known classes of false positive reads. To that
end, we have developed PTESFinder to identify both linear
and circular PTES transcripts from high throughput RNA-
seq data. Compared to publicly available methods recently
used in circRNA discovery, PTESFinder achieves higher
specificity and sensitivity, and generates output tailored
for downstream comparative analyses of transcript abun-
dance, making it an appropriate tool to investigate these
RNAs within complex mammalian genomes.
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Availability and requirements

e Project name: PTESFinder

e Project home page: http://ptesfinder-
vl.sourceforge.net/

e Operating system(s): Linux

e Programming language: Shell, Java 1.6

e Other requirements: Bowtie 1.1.1 & 2.2.4, BedTools
2.22.0

e License: OSI-Approved Open Source (Artistic Li-
cense 2.0)

e Any restrictions to use by non-academics: None

Additional files

Additional file 1: Distinct PTES structures identified from dataset
mined in Memczak et al. [4]. (XLSX 1443 kb)

Additional file 2: Table S1. Analyses of RNASEQ data from human
fibroblast cells. (PDF 19 kb)

Additional file 3: Figure S1. Example Reads Excluded By Filters.

A) Reads filtered out by genomic filter for mapping better to
pseudogenes & segment duplicated regions B) Reads excluded by the
transcriptomic filter for having 100 % alignment to a canonical splice
between exons 10 and 11 of HNRNPH1 C) Reads excluded by applying
the junctional filters, segment PID and JSpan (see text). (PDF 475 kb)

Additional file 4: Table S2. circRNA transcripts published by Memczak
et al. [4] with 100 % overlap to annotated pseudogenes and excluded by
PTESFinder. (XLSX 12 kb)
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