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Abstract: In this work, CoPi and Co(OH)2 nanoparticles were deposited on the surface of Ta3N5

nanorod-arrays to yield a novel broad-spectrum response photocatalytic material for 304 stainless
steel photocatalytic cathodic protection. The Ta3N5 nanorod-arrays were prepared by vapor-phase
hydrothermal (VPH) and nitriding processes and characterized by scanning electron microscopy
(SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and UV-Vis spectroscopy,
respectively, to obtain morphologies, crystal structures, surface compositions, and light response
range. In order to analyze the performance improvement mechanism of CoPi/Co(OH)2 on Ta3N5

nanorod-arrays, the electrochemical behavior of modified and unmodified Ta3N5 was obtained by
measuring the open circuit potential and photocurrent in 3.5 wt% NaCl solution. The results revealed
that the modified Ta3N5 material better protects 304 stainless steel at protection potentials reaching
−0.45 V.
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1. Introduction

Since Fujishima and Honda [1] first reported the photoelectric effect of TiO2 in 1972, photocatalytic
materials have become increasingly important, with diverse applications in several industrial
processes [2–6]. Research has shown that many common photocatalytic materials, such as TiO2 [5,7],
ZnO [8,9], and SnO2 [10], have wide band gaps, which means that they have almost only ultraviolet
light response and have a low utilization rate of sunlight in practical applications. What’s more,
it is difficult for a single photocatalyst to function effectively independently, even for rather simple
processes like decomposition of water. In the same vein, single photocatalyst materials do not function
efficiently in electrochemical protection applications. Photocatalytic activity can often be improved by
regulating crystal surface [11] and surface defects [12], as well as by noble metal deposition [13,14]
or semiconductor combination [15,16], which often result in photocatalytic composite systems with
improved performance. Another approach involves exploration, design, and development of novel
photocatalytic materials.

Some recent studies have focused on developing a new class of photocatalytic materials that
respond readily to a broad range of spectra and can make full use of visible light to achieve
photocatalysis. A material like BiVO4, for instance, with a band gap of 2.4 eV, has a large visible region
response and successfully degrades organics in visible light [17].
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Ta3N5 is a novel photocatalytic material with a broad spectral response range [18–21]. Ta3N5,
prepared by Hara et al. [22], could oxidize water into O2 efficiently, with maximum quantum yields of
10%. Luo et al. [23] reported that in the visible region nano Au/Ta3N5 composite showed a significantly
enhanced photocatalytic activity for hydrogen evolution from water. Zhen et al. [24] reported that
a Ta3N5 nanorod modified with Co(OH)x had a strong absorption in the visible light range up to
620 nm and could achieve high photon-to-current conversion efficiency. The use of catalyst promoters
like Co(OH)x [25,26] and CoPi [27,28] has become an important and promising way to improve
the photocatalytic capability of photocatalysts [29–33]. Such promoters function by restraining the
recombination rate of interfacial photogenerated electron-hole pairs and play a useful role in providing
ready sites for the oxidation half reaction [34].

In the 1990s, Tsujikawa and Yuan [5] first proposed a TiO2 photocatalytic coating technique for
cathodic corrosion protection of carbon steel. Since then, the use of photocatalysts in cathodic protection
has continued to attract attention within the scientific community and different photocatalytic materials
have been investigated for metal corrosion protection efficacy. Sun et al. [35] reported that a C3N4-In2O3

nanocomposite with quasi-shell-core structure provides photoelectrochemical cathodic protection for
the coupled 304 stainless steel (SS) under visible light. Wang et al. [36] observed that Bi2Se3/TiO2

nanocomposites successfully exhibited great photogenerated cathodic protection performance for
304 stainless steel.

However, we have not seen any reports on the use of Ta3N5 materials for photoelectrochemical
cathodic protection of metals. Compared to the previous work on Ta3N5, it is necessary and meaningful
to explore the cathodic protection performance of this material with a broad spectral response range.

In this work, a vapor-phase hydrothermal process and subsequent nitriding treatment were
used to prepare Ta3N5 nanorod-array films, which were subsequently modified by addition of
CoPi/Co(OH)2 and subjected to microstructure characterization. The change of photoelectrochemical
cathodic protection properties of Ta3N5 material before and after modification were compared
using electrochemical methods. This study provides a theoretical basis for the application of novel
photocatalytic materials with broad spectral response ranges in cathodic protection.

2. Experimental Section

2.1. Specimen Preparation and Modification

Vapor-phase hydrothermal (VPH) is a process to grow metal oxides on the corresponding metal
matrix, which has become a very attractive method in recent years [37,38]. It has been used in growth
of ZnO nanotube and nanorod-array films on a zinc foil substrate [37] and growth of rutile nanorod
and titanate nanotubes on a titanium foil substrate [38].

In this work, based on previous methods, one-dimensional Ta2O5 nanorod-arrays were
synthesized on a tantalum foil substrate (10 mm × 15 mm) by the VPH process, and these arrays were
subsequently converted to Ta3N5 nanorod-array films by NH3 nitriding treatment [24].

To obtain the Ta3N5 material modified by CoPi/Co(OH)2, double co-catalysts, CoPi and Co(OH)2,
were deposited as follows: CoPi was loaded on the surface of Ta3N5 nanorod-array films by
photoelectric chemical deposition [28], and then Co(OH)2 was modified by chemical deposition
modification on top of CoPi [24].

2.2. Characterization of Ta3N5

The surface morphologies of the Ta3N5 nanorod-array films were observed and analyzed using
an INSPECT F50 (FEI Co., Hillsboro, OR, USA) field emission scanning electron microscope (SEM),
while the growth thickness of the films was also observed by cross-section morphologies at a working
voltage of 25 kV. The crystalline structures were measured through a X’pert PRO (Panalytical, Almelo,
The Netherlands) X-ray diffractometer (XRD) using Cu Kα radiation at 40 kV, with 2θ ranging from
10◦ to 90◦. In order to identify if CoPi/Co(OH)2 was successfully loaded, the changes of surface
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elemental compositions were analyzed by ESCALAB250 (Thermo VG, Waltham, MA, USA) X-ray
photoelectron spectroscopy (XPS) with Al Kα radiation. The ultraviolet-visible spectra of the Ta3N5

films were collected by a diffuse reflectance V-770 (JASCO, Tokyo, Japan) UV-Vis spectrophotometer in
the wavelength range 200–900 nm.

2.3. Preparation of Ta3N5 Electrode

The Ta3N5 nanorod-array films were fabricated into electrodes before use in photoelectrochemical
performance tests for metal protection. The Ta3N5 electrode and 304 stainless steel electrode were cut
in the same size (10 mm × 15 mm). One side of each sample was exposed to the corrosive solution
and the other sides covered with a resin-paraffin mixture (1:1). The samples were pasted and fixed
to copper wires as electrodes. A 3.5 wt% NaCl solution was used as electrolyte solution in order to
simulate the seawater environment.

2.4. Characterization of Photoelectrochemical Performance

Characterization of photoelectrochemical performance was conducted using a PGSTAT302N
potentiostat Autolab (Metrohm Autolab, Utrecht, The Netherlands). As shown in Figure 1a, a Pt
electrode and a KCl-saturated silver/silver chloride electrode (Ag/AgCl) were connected as counter
electrode and reference electrode, respectively. The Ta3N5 electrodes with and without CoPi/Co(OH)2

modification were coupled with 304 stainless steel and used as working electrodes. This connection
method enabled detection of the open circuit potential (OCP) changes over time in the dark and under
illumination, respectively.

The electrochemical noise module (ECN) was used to measure the photogenerated current of the
two kinds of Ta3N5 electrodes as a function of time, in the dark and under illumination. As shown in
Figure 1b, the working electrode Ta3N5 was placed opposite the 304 stainless steel counter electrode
(connected to the ground wire in ECN measurements, so that electrons can flow from the Ta3N5

electrode to the 304 stainless steel electrode); the Ag/AgCl electrode was connected likewise as
reference electrode. All the measured potentials were relative to the Ag/AgCl electrode (0.1981 V).
The electrolyte, 3.5 wt% NaCl solution, was replaced for each new measurement. The light source
was a 300 W PLS-SXE 300 Xe lamp (Beijing PerfectLight Co. Ltd., Beijing, China). The experimental
temperature was at room temperature.
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Figure 1. Schematic diagram of the Autolab electrochemical test system for measuring (a) open circuit
potentials and (b) photocurrent densities of Ta3N5 films.

3. Results and Discussion

3.1. Micromorphologies of Ta3N5

The macroscopic surface of the Ta3N5 material prepared by the VPH method and nitriding
treatment was a uniform and wine-red film. The micromorphologies of the unmodified Ta3N5 (shown
in Figure 2) grew in the form of a vimineous nanorod-array, continuously and closely connected to
each other (Figure 2a). The corresponding cross-section morphology shows the nanorod-arrays to be
almost vertical, with lengths of approximately 2–3 µm (Figure 2c).

After surface modification with CoPi/Co(OH)2, the surface morphology shows evidence of
agglomeration of some nanorods (Figure 2b), suggesting that CoPi/Co(OH)2 probably adsorbed on
nanorod-arrays and caused them to bind together as shown in the marked areas. The corresponding
cross-section morphology in Figure 2d shows similar features as the unmodified Ta3N5 nanorod-arrays
in Figure 2c, and the nanorod agglomeration is not very clear.

Such nanorod-array structure should impart many merits like excellent conductivity and
prominent quantum size effect, high specific surface area, and a large number of surface reaction sites,
which will promote transport of electro-hole pairs. This means that solar energy conversion efficiency
and light absorption ability will be enhanced, with the possibility of improved electrochemical
protective performance.

3.2. Crystal Structure and Chemical Composition Analysis of Ta3N5

The XRD patterns of the as-prepared Ta3N5 material with and without CoPi/Co(OH)2

modification are shown in Figure 3. When 2θ is at 17.21◦, 19.74◦, 24.47◦, 26.00◦, 30.09◦, 33.85◦,
34.49◦, 36.01◦, 38.68◦, 43.67◦, 46.67◦, and 47.75◦, the diffraction peaks are basically consistent with
the standard Tantalum Nitride Ta3N5 (JCPDS card no. 19-1291). These peaks match with the (002),
(021), (110), (111), (201), (025,) (401), and (025) crystal planes completely. The other weaker peaks
include the Ta matrix and a small amount of tantalum nitride compounds of other valences arising
from the nitriding treatment. A comparison of the modified and unmodified Ta3N5 materials reveals
that the diffraction peak position and peak intensity of the two curves almost coincide. Moreover,
no peaks are observed for CoPi/Co(OH)2, indicating that their amounts may be too low to be detected
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by XRD. This could also imply that the CoPi/Co(OH)2 additives merely adhered to surface of the
Ta3N5 nanorod-array, causing the observed agglomeration.Materials 2019, 12, x FOR PEER REVIEW 5 of 15 
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Figure 2. SEM images of the microstructures of the prepared Ta3N5 nanorod-array films: (a) surface
morphology of unmodified Ta3N5; (b) surface morphology of modified Ta3N5; (c) cross-section
morphology of unmodified Ta3N5; (d) cross-section morphology of modified Ta3N5.

The compositions of the modified and unmodified Ta3N5 surfaces were further investigated by
XPS, with special focus on the peaks and transformations of Co and P elements. The high-resolution
complete survey XPS in Figure 4a shows Ta 4f, Ta 4d, N 1s, O 1s, Co 2p, and P 2p peaks, corresponding
to the as-prepared samples. The major difference between the two curves is that the peak of the Co
and P appeared only in the curve of the modified Ta3N5, indicating that CoPi/Co(OH)2 was indeed
successfully deposited on the surface of the Ta3N5 nanorod-array in the modified sample.
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Figure 3. X-ray diffraction patterns of the Ta3N5 material with and without CoPi/Co(OH)2

modification.

From the high-resolution spectra of CoPi/Co(OH)2 for the modified Ta3N5 (Figure 4b), the binding
energies of Co 2p3/2 and 2p1/2 (the red curve) are 780.0 eV and 795.6 eV, respectively. Furthermore,
the peak of P 2p at 132.6 eV could be mainly attributed to the P element in CoPi in Figure 4c (the red
curve). Both sets of results confirm the presence of CoPi/Co(OH)2 on the modified Ta3N5.

3.3. UV-Vis Absorption Properties of Ta3N5

The UV-Vis diffuse reflectance spectrum of the Ta3N5 nanorod-array films with and without
modification is shown in Figure 5. The absorption shoulders of both Ta3N5 curves are located deep
into the visible region. The absorption spectra of the unmodified and CoPi/Co(OH)2 modified
Ta3N5 are 590 nm and 610 nm, respectively, corresponding to band gap energies ∆Eg = 2.10 eV and
2.03 eV according to the equation Eg = 1240

λ . The light absorption threshold of the CoPi/Co(OH)2

surface-modified Ta3N5 is wider than the unmodified one, hence the narrowed band gap would
result in lower photogenerated electron transition energy, stronger photocatalytic activity, and better
photoelectric chemical protection performance in theory.

Ta3N5 is a new type of photocatalytic material with a broad spectral response range, which has a
much higher visible absorption value and narrower energy gap than that of the TiO2 photocatalyst.
Hara et al. [22] reported the photocatalytic mechanism and energy band structure of TaON, Ta2O5,
and Ta3N5 materials and ascribed the small energy gaps of TaON and Ta3N5 to the higher potential
energy of the N 2p orbitals compared to the O 2p orbitals, resulting in the higher negative potential of
Ta3N5 and the narrowing of the semiconductor energy gap.

3.4. Photoelectrochemical Cathodic Protection Performance of Ta3N5

After coupling of the Ta3N5 electrode (with or without CoPi/Co(OH)2 modification) and the
304 stainless steel electrode, their open circuit potentials over time in 3.5 wt% NaCl solution in the dark
and under the illumination were tested, as shown in Figure 6a. The duration of either cycle (in the
dark and under the illumination) was 300 s, which means that a complete cycle lasted for 600 s.

The corrosion potential of the 304 stainless steel was initially determined to be approximately
−0.17 V in 3.5 wt% NaCl solution by potentiodynamic polarization measurements. The unmodified
Ta3N5 also has photocatalytic activity [23,24,39] and theoretically should generate some degree of
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protective potential. However, the actual results in Figure 6a show that the potential of the unmodified
Ta3N5 could only reach to −0.12 V after the first illumination (300 s). It remained stable under
illumination and did not change with the continued illumination. This means that the OCP of the
unmodified Ta3N5 (−0.12 V) is more positive than that of 304 stainless steel (−0.17 V). Therefore,
the unmodified Ta3N5 cannot achieve electrochemical protection of 304 stainless steel.Materials 2019, 12, x FOR PEER REVIEW 8 of 15 
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modification.

For the Ta3N5 modified with CoPi/Co(OH)2, the first photoinduced potential drop reached
−0.45 V after 300 s, which is far lower (more cathodic) than the corrosion potential of 304 stainless
steel, indicating that the generation and transfer of photogenerated electrons occurred instantaneously.
Under this condition, there are no photogenerated holes to start reacting with OH− and H2O in solution,
and the electrochemical protection of 304 stainless steel should be largely realizable. Although this
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potential increases slowly to −0.20 V with prolonged illumination for 3000 s (at the end of illumination
cycle), it still remained more negative than the corrosion potential of 304 stainless steel. Our results
therefore prove that Ta3N5 modified with CoPi/Co(OH)2 achieved photoelectrochemical cathodic
protection of 304 stainless steel within the experimental time interval. However, the rising trend of
its potential also indicates that CoPi/Co(OH)2 is probably not stable and its ability to consume holes
decreases on the surface of Ta3N5 nanorods. Ta3N5 material is also unstable and easy to be oxidized by
photogenerated holes due to the accumulation of holes, so that its photoelectrochemical protective
performance is still unstable.
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The minimum protection current density of 304 stainless steel is 15 µA/cm2 [29]. As shown
in Figure 6b, the instantaneous photocurrent of unmodified Ta3N5 can reach to 32 µA/cm2 (300 s),
but it remains stable at about 7 µA/cm2 (600 s). This illustrates that the stable current cannot reach to
15 µA/cm2, so that the 304 stainless steel cannot be protected, consistent with the change law of OCP.

There is an instantaneous rise to more than 80 µA/cm2 that rapidly drops to 15 µA/cm2

within one illumination cycle, and is just sufficient to protect 304 stainless steel within the first
cycle. For subsequent cycles, the photocurrent density at the beginning of illumination consistently
remained above 20 µA/cm2, and then dropped to around 10 µA/cm2 at the end of cycle. It is therefore
obvious that CoPi/Co(OH)2 modification improved the photocurrent of Ta3N5 consistent with the
OCP results, and can thus be further investigated as a method for improving the performance of
photocatalytic materials. Although the CoPi/Co(OH)2 modified Ta3N5 does protect 304 stainless steel,
the long-term performance would require further improvement.

3.5. Mechanism Analysis of Photoelectrochemical Cathodic Protection

The proposed mechanism of photoelectrochemical cathodic protection for 304 stainless steel
under illumination by Ta3N5 modified with CoPi/Co(OH)2 is schematically illustrated in Figure 7.
Photogenerated electrons from the Ta3N5 valence band (VB) are excited to the conduction band
(CB) under illumination, leaving photogenerated holes and electrons in the valence band and the
conduction band, respectively. Subsequently, the photogenerated electrons transfer to the surface of
the 304 stainless steel matrix to reduce oxygen, causing the surface potential of the 304 stainless steel
to fall below its corrosion potential, thus realizing photoelectrochemical cathodic protection. At the
same time, the photogenerated holes transfer from the VB to the CoPi/Co(OH)2 additive to oxidize
Co2+ into Co3+ [28].
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CoPi/Co(OH)2 modified Ta3N5 films under illumination.

CoPi is strongly adsorbed on the surface of Ta3N5 and provides more adsorption sites and reaction
sites in the reaction process. Co(OH)2 is oxidized from Co2+ into Co3+, and then the Co3+ oxidizes
H2O to O2. During this process, Co3+ is reduced to Co2+, which again awaits to be reoxidized by the
next photogenerated hole. This cycle does not include Co2+ consumption. The valence transitions
between Co2+ and Co3+ of the CoPi/Co(OH)2 co-catalysis is favorable for separation and migration of
photogenerated charges [33,40,41], and as a result, more holes are consumed, photogenerated charge
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recombination and the reverse reaction is inhibited, and electron-hole pairs are increased [34,42,43].
Finally, the photostability and photogenerated electrons and holes utilization efficiency of Ta3N5

material are enhanced so that the protective effect on metals is improved.

4. Conclusions

The photoelectrochemical cathodic protection of 304 stainless steel in a 3.5 wt% NaCl solution by
a novel broad-spectrum response material—CoPi/Co(OH)2 modified Ta3N5—was studied. The main
conclusions are as follows: CoPi/Co(OH)2 modified Ta3N5 can attain a more negative corrosion
potential and the minimum protection photocurrent density of 304 stainless steel and as such can
theoretically achieve photoelectrochemical cathodic protection for 304 stainless steel. CoPi/Co(OH)2,
as co-catalyst, can reduce the activation energy of Ta3N5, promote photogenerated charge separation,
consume holes and provide more active sites for electrochemical reactions, thus improving the
photoelectric property and greatly enhancing the electrochemical protection for metals. However,
long-term performance would require further improvement due to the decline of protection current
density at the end of the later illumination cycles.
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