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Abstract

Motivation: In the past years, several methods have been developed to incorporate information

about phenotypes into computational disease gene prioritization methods. These methods com-

monly compute the similarity between a disease’s (or patient’s) phenotypes and a database of

gene-to-phenotype associations to find the phenotypically most similar match. A key limitation of

these methods is their reliance on knowledge about phenotypes associated with particular genes

which is highly incomplete in humans as well as in many model organisms such as the mouse.

Results: We developed SmuDGE, a method that uses feature learning to generate vector-based

representations of phenotypes associated with an entity. SmuDGE can be used as a trainable se-

mantic similarity measure to compare two sets of phenotypes (such as between a disease and

gene, or a disease and patient). More importantly, SmuDGE can generate phenotype representa-

tions for entities that are only indirectly associated with phenotypes through an interaction

network; for this purpose, SmuDGE exploits background knowledge in interaction networks com-

prised of multiple types of interactions. We demonstrate that SmuDGE can match or outperform

semantic similarity in phenotype-based disease gene prioritization, and furthermore significantly

extends the coverage of phenotype-based methods to all genes in a connected interaction

network.

Availability and implementation: https://github.com/bio-ontology-research-group/SmuDGE

Contact: robert.hoehndorf@kaust.edu.sa

1 Introduction

There is now a large number of available methods for the prioritiza-

tion or prediction of gene–disease associations (Natarajan and

Dhillon, 2014; Wang et al., 2011; Zhou and Skolnick, 2016).

Computational methods that predict gene–disease associations use a

large number of different features and approaches.

Several approaches to the computational prediction of gene–dis-

ease associations are based on the guilt-by-association principle

(Gillis and Pavlidis, 2012). Using the guilt-by-association approach

relies on prior knowledge of a set of genes associated with a disease

D and a relatedness measure that compares genes with the set of

genes associated with D; if a gene is strongly related with respect to

the relatedness measure it is suggested as a novel candidate gene.

Several measures are used to determine relatedness between genes,

with the most prominent ones relying on network associations

(Aerts, 2006; Köhler et al., 2008; Lee et al., 2011) or some form of

functional or phenotypic similarity (Schlicker and Albrecht, 2008).

However, as guilt-by-association relies on prior knowledge of

disease-associated genes, they cannot easily be applied to monogenic

diseases, and their applications are, in general, limited to few

diseases.

Phenotype-based approaches have been particularly successful in

finding candidate genes for Mendelian diseases (Hoehndorf et al.,

2011). Phenotype-based approaches compare disease phenotypes to

a database of genotype–phenotype associations and suggest candi-

date genes based on measures of phenotype similarity (Eilbeck et al.,

2017; Hoehndorf et al., 2011; Köhler et al., 2009).

The main limitation of phenotype-based approaches, however, is

the limited amount of phenotype annotations that are associated

with particular genotypes in public databases. In the past, one ap-

proach to address this limitation is the use of phenotype associations

resulting from animal model experiments and the use of ontologies

that can combine phenotypes across species so that animal model

and human phenotypes can be compared (Chen et al., 2012;
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Gkoutos et al., 2017; Hoehndorf et al., 2011). While the use of

model organisms significantly extends the scope of phenotype-based

disease-gene prioritization methods, there is nevertheless only a lim-

ited amount of phenotype associations available. In particular, genes

for which there are no orthologs in other organisms cannot benefit

from cross-species phenotype-based approaches. One possible way

in which this challenge could be overcome is to predict phenotypes

associated with genes that have no such associations in databases,

for example through the use of background knowledge in the form

of interaction networks.

We developed SmuDGE, a method that generates features

encoding phenotype-associations, interaction network connectivity

patterns for any gene in the interaction network. These features

can be used to predict gene–disease associations. To achieve

this goal, SmuDGE combines phenotype similarity with network-

based representation learning and propagates information about

phenotype-associations through interaction network connections.

We demonstrate that SmuDGE can be used to identify candidate

genes of disease through the use of phenotype similarity even if no

phenotypes are associated with a gene. SmuDGE is freely available

from https://github.com/bio-ontology-research-group/SMUDGE.

2 Materials and methods

2.1 Data sources and versions
We use the PhenomeNET ontology (Rodrı́guez-Garcı́a et al., 2017),

downloaded on 8 Jun 2018 from the AberOWL repository

(Hoehndorf et al., 2015), as our phenotype ontology because it

integrates human and model organism phenotypes and allows them

to be compared. We use a dataset of diseases with their phenotypes

from the HPO database (Köhler et al., 2014), downloaded on 8 Jun

2018.

Furthermore, we use gene-to-phenotype associations observed in

mutant mouse models, downloaded from the Mouse Genome

Informatics (MGI) database (Blake et al., 2014) on 8 Jun 2018, and

gene-to-phenotype associations derived from gene–disease associa-

tions and provided by the HPO database, downloaded on 8 Jun

2018. We further used the interactions provided by STRING

(Szklarczyk et al., 2011) version 10. STRING contains both direct

and indirect interactions.

Our dataset consists of 7149 OMIM diseases with 78 402 associ-

ations to 6596 distinct phenotypes; 3526 human genes with 153 575

associations to 6058 distinct phenotypes; and 12 037 mouse genes

with 209 387 associations to 9292 distinct phenotypes. We use

human–mouse orthology obtained from MGI on 8 Jun 2018 to iden-

tify the human orthologs of mouse genes, and associate mouse gene

phenotypes with their human orthologs, resulting in 152 159 associ-

ations between 9482 human genes and 9215 distinct phenotypes.

Furthermore, we map all proteins in the STRING interaction

network to their gene identifiers using the mappings provided by

STRING. The resulting interaction network between genes consists

of 493 041 interactions between 14 753 genes.

For evaluation, we used 12 469 gene–disease associations for

3159 OMIM diseases, found in the file (MGI_DO.rpt) at MGI.

We use only the gene–disease associations in humans from this file.

2.2 Construction of the heterogeneous graphs
We have built two kinds of heterogeneous knowledge graphs to

study gene–disease associations. The first knowledge graph utilizes

the cross-species PhenomeNET ontology (Rodrı́guez-Garcı́a et al.,

2017) and characterizes phenotypes of human diseases and mouse

models. We associate the human orthologs of the mouse genes with

mouse phenotypes, resulting in 152 159 associations between

human genes and mouse phenotypes. Furthermore, we construct a

second version of that graph in which we use human proteins and

assign them with their phenotypes obtained from the HPO database.

The second graph aims to exploit a protein-protein interaction

network to generate vector representations for genes which don’t

have phenotypes. It consists of the same information as the first type

of graph plus the STRING interaction network (Szklarczyk et al.,

2011).

2.3 Similarity computation and evaluation
We use cosine similarity between two vectors v1 and v2 to determine

the similarity of embeddings:

simðv1; v2Þ ¼
v1 � v2

jjv1jj jjv2jj

We use cosine similarity to compute the similarity between dis-

ease and gene embeddings. We use their similarity as predictor for a

gene being associated with a disease.

As a baseline for comparison, we use a semantic similarity meas-

ure which exploits the background knowledge in an ontology. We

use Resnik’s semantic similarity measure (Resnik et al., 1999) with

the Best Match Average (BMA) strategy for combining similarities

between individual classes. Resnik’s semantic similarity measure is

defined as:

Simðc1; c2Þ ¼ max
c2Sðc1 ;c2Þ

½�log pðcÞ� (1)

where c1 and c2 are the two classes between which similarity is com-

puted, and Sðc1; c2Þ is the set of superclasses of both c1 and c2 in the

ontology hierarchy and p(c) is the probability of a disease or gene

being associated with class c.

We also compare SmuDGE results with the simGIC semantic

similarity measure (Pesquita et al., 2008). simGIC is defined as:

simGICðc1; c2Þ ¼
Rc2Sðc1Þ\Sðc2Þ � log pðcÞ
Rc2Sðc1Þ[Sðc2Þ � log pðcÞ (2)

To evaluate the performance of the similarity-based predictions,

we compute a similarity matrix which contains the pairwise similar-

ities of genes and diseases. For each disease, we rank genes in

descending order of the similarity score. We then evaluate at which

rank we identify a gene–disease association in our evaluation data-

set. As this method results in a ranking classifier (as genes are ranked

for each disease), we quantify the performance of the predictions

through the area under the receiver operating characteristic (ROC)

curve (Fawcett, 2006). A ROC curve is a plot of the true positive

rate (TPR) as a function of the false positive rate (FPR). The

TPR at a particular rank is defined as a rate of correctly pre-

dicted gene–disease associations at this rank, and the FPR is the rate

of predicted associations that are not gene–disease associations. As

we do not have true negative gene–disease associations, we treat un-

known gene–disease associations as negatives.

2.4 Supervised prediction and evaluation
SmuDGE is an unsupervised method to generate feature vectors for

genes and diseases based on their phenotypes. Using these features

in a supervised manner can improve the prediction of associations

between two vectors in comparison to use of a pre-defined similarity

measure (Smaili et al., 2018). For this reason, we use an artificial
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neural network (ANN) and train it to predict gene–disease associa-

tions from embedding vectors.

In this experiment, we use the known disease-gene associations

as the positive set, and randomly select an equal number of the non-

associated disease-gene pairs as the negative set.

For the the training and testing, we perform 5-fold cross valid-

ation. We generate folds by sampling diseases, not gene–disease

pairs. 80% of the diseases are used for training the ANN and 20%

of the diseases for testing. As positive pairs, we combine the disease

embeddings in each fold with the gene embeddings for genes associ-

ated with the diseases. The aim of this sampling strategy is to guar-

antee that the ANN does not learn to recognize gene–disease

associations for a disease D based on genes known to be associated

with D, and therefore determine how well our method predicts

genes associated with diseases if no prior knowledge is available.

We used 10% of the training set as a validation set to guide and

stop the training if the loss increases in the validation set; alterna-

tively, training will stop after 100 epochs. We use a Rectified Linear

Unit as an activation function for the hidden layers (Nair and

Hinton, 2010) and a sigmoid function as the activation function for

the output layer; we use cross entropy as loss function in training,

and Rmsprop (Hinton et al., 2012) to optimize the neural networks

parameters during training.

For the evaluation of the ROCAUC, we create an embedding

matrix for each disease in which we fix the first part of the matrix to

represent a particular disease embeddings and the second part repre-

sents the all gene embeddings. We then apply our model and rank

genes based on the model’s prediction scores. The TPR and FPR at

each rank are used to identify the proportion of correctly and falsely

predicted associations.

3 Results

3.1 Heterogeneous representation of genes, diseases

and phenotypes
In our method we use a knowledge graph as data structure in which

we represent genes, diseases, and the phenotypes with which they

are associated. Genes, diseases, and phenotypes are represented as

nodes in the graph. Edges between phenotypes represent axioms in

the Web Ontology Language (OWL) (Grau et al., 2008; Rodrı́guez-

Garcı́a and Hoehndorf, 2018). We represent diseases using their

identifiers from the Online Mendelian Inheritance in Men (OMIM)

(Amberger et al., 2011)) database, human genes using their Entrez

gene identifier, and phenotypes using the cross-species phenotype

ontology PhenomeNET (Rodrı́guez-Garcı́a et al., 2017). We connect

diseases and genes to the phenotypes they are associated with using

the has phenotype relation. Additionally, we represent interactions

between genes and their products using an interacts with relation.

We consider all interacts with edges as symmetric (i.e. it x interacts-

with y then y interacts-with x) and all other edges as non-symmetric.

We associate all OMIM diseases with their phenotypes from the

Human Phenotype Ontology (HPO) database (Köhler et al., 2017),

and obtain information about interactions between human genes

from the STRING database (Szklarczyk et al., 2011).

We build two knowledge graphs which differ in the associations

between genes and their phenotypes. In the first case, we use the

phenotypes associated with human genes in the HPO database; these

phenotypes are indirectly derived from gene–disease associations

and the disease phenotypes, i.e. if a gene G is associated with a dis-

ease D and the disease has a set of phenotypes P, then all phenotypes

in P are assigned to G. Because this assignment of phenotypes to

human genes can indirectly encode gene–disease associations, we

also use mouse model phenotypes as an independent dataset of phe-

notypes. For this purpose, we identify the phenotypes of non-

conditional loss of function mutations (i.e. knockouts) of gene G in

the Mouse Genome Informatics (MGI) database (Blake et al., 2014);

if we can identify a human ortholog of G, we assign all phenotypes

of G to the human ortholog. Phenotypes of mouse models are

encoded using the Mammalian Phenotype Ontology (MP) (Smith

et al., 2004); through the use of the cross-species PhenomeNET

ontology (Rodrı́guez-Garcı́a et al., 2017), the phenotypes encoded

using MP (in the mouse) and HPO (in human disease) can be com-

pared directly.

Our graphs consist of 7149 nodes for OMIM diseases and

15 391 nodes for human genes. Including the PhenomeNET ontol-

ogy, it further contains 12 289 nodes for MP classes and 12 007

nodes for HPO classes. It has 78 599 disease–phenotype associa-

tions. Using phenotypes from HPO, we include 153 575 gene–

phenotype associations; using mouse phenotypes from MGI, we

include 152 159 gene–phenotype associations. We also include

493 041 interactions between genes, all of which we consider as

symmetric. Figure 1 illustrates the knowledge graph we generate.

3.2 Joint representation learning from PPI network

structure and phenotype annotations
We designed an algorithm to encode features based on the pheno-

types that are associated with entities in the knowledge, either dis-

eases or genes and gene products, in the form of a dense vector; the

vector representation of the genes can then be used in unsupervised

or supervised machine learning approaches or other predictive mod-

els. Figure 2 provides a high-level overview over our algorithm.

Our algorithm, Semantic Disease Gene Embeddings (SmuDGE),

comes in two forms. First, it encodes the phenotypes that are directly

associated with an entity (i.e. a disease or gene/gene product); for

this purpose, it generates a dense representation of an entities

ontology-based annotations and its superclasses. This algorithm is

applicable to all diseases and genes that are directly associated with

phenotypes. However, while diseases are commonly associated with

(or even defined by) a set of phenotypes, the majority of genes are

HP:000153 MP:002922 MP:002912

OWL:Thing

…..

….. …..

gene-mouse model phenotypes

ATXN1ATXN7

…

disease-phenotypes

OMIM:18
1010

OMIM:264
800

Infers gene-disease associations

PhenomeNet ontology

Fig. 1. Our knowledge graph consists of gene–phenotype associations

(encoded using either HPO or MP), disease–phenotype associations (encoded

using the HPO), interactions between genes (from the STRING database) and

the PhenomeNET ontology
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not associated with phenotypes, neither in humans, where pheno-

types are generally derived from gene–disease associations (Köhler

et al., 2014), nor in the mouse where phenotypes are the result of

phenotyping experiments (de Angelis et al., 2015). Therefore, we

use a second form of our algorithm which is applicable to genes

without any phenotype associations and in which a phenotype-

based representation is assigned indirectly using the network envir-

onment in which a gene product is embedded.

For the first version of our algorithm, we ignore all interactions

between genes and their products and focus only on encoding an

entity’s phenotype annotations and the ontology structure (i.e. sub-

class relations). Given an entity E (disease or gene) that has has

phenotype edges to the phenotypes P1; . . . ;Pn, we generate n senten-

ces starting with E. We generate n sentences where each sentence

starts with E followed by Pi and all of the superclasses of Pi, for all

Pi that are directly associated with E.

We then apply a Word2Vec skipgram model (Mikolov et al.,

2013) to learn vector representations for each token occurring in a

generated sentence, in particular for all entities and phenotype

classes. The vectors generated for entities through this approach en-

code directly associated phenotypes and all their superclasses, and

we call the vectors P-Vecs (for Phenotype Vectors).

We can only generate P-Vecs for genes and gene products with

directly associated phenotypes. For all other genes, however, we can

use their interaction network environment to assign phenotypes that

are over-represented in the neighboring nodes. Similar to generating

knowledge graph embeddings (Alshahrani et al., 2017), for a gene

G, we use a random walk, starting at G, over the network of interac-

tions between genes and gene products to randomly sample G’s net-

work neighborhood. We terminate the walk once we found a node

G0 with has phenotype edges, or after a pre-determined step limit,

whichever occurs first. If the step limit has been reached, we restart

the walk at G. If the walk found a G0 with an outgoing has pheno-

type edge, and the phenotypes associated with G0 are P1; . . . ;Pm,

then we randomly sample one phenotype P of P1; . . . ;Pm and gener-

ate a sentence starting with G followed by P and all superclasses of

P; after adding the sentence to our corpus, we restart at G until a

maximum number of walks is reached. The aim of this approach is

to sample the network environment in which G is located for pheno-

types. Through inclusion of the ontology hierarchy in the generated

sentences, the approach is intended to be more robust to differences

in specific phenotypes. Similarly to generating P-Vecs, we apply a

Word2Vec skipgram model on the generated sentences to produce

vector representations of all entities and phenotypes in the corpus.

Because these representations are generated from a gene node’s net-

work environment, we call the vectors E-Vecs (for Environment

Vectors). Figure 2 provides a high-level overview over our method.

We generate both P-Vecs and E-Vecs for our two graphs (using

human and mouse gene–phenotype associations separately). We

generate P-Vecs for all human diseases, and we further generate

P-Vecs both for genes that have human and mouse phenotypes asso-

ciated. We generate E-Vecs both for nodes which do not have phe-

notypes associated and for nodes which have phenotypes associated;

if a gene node has directly associated phenotypes, we mask them

during the generation of sentences (i.e. random walks) for the E-Vec

approach so that only the network environment is sampled for phe-

notypes. Furthermore, we generate vector representations for all

phenotype classes from HPO and MP which are either used to dir-

ectly annotate a gene or diseases, or are a superclass of a direct

annotation.

In total, we generate 12 289 embedding vectors for phenotype

classes from MP, 12 007 for phenotype classes from HPO, 7150 for

Dropout

sigmoid
score

. .

Dropout

2x x

0.5 0.5

….
…. …

..

….
.….

.
...

…

Skipgram

Feature 
genera�on 

Supervised 
training

..

..
..
..

+ 1

+ 1

..

..
..
..

..

..
..
..

…
…
…

Apply learned ANN model

…
…
…

Apply learned ANN model

Model 
evalua�on

(a) (b)(a) (c)

Fig. 2. Overview over SmuDGE and its applications. (a) On the left side we show the graph of disease–phenotype and gene–phenotype associations together with

the PhenomeNET ontology (top), and the same graph including interactions between genes used to generate E-Vecs at the bottom. We generate a corpus by

graph traversal and then use a skipgram model to generate vectors for genes and gene products in the graph. These vectors can be used as input to a similarity

measure, or a neural network, to predict interactions between genes and diseases. (b) Our ANN model is shown in the center; the input is the pair of disease and

gene feature vectors of dimension x, the first hidden layer consists of 2x hidden units, and the second hidden layer consist of x hidden units; we use a dropout of

0.5 to mitigate the effects of overfitting. (c) We evaluate the model by predicting candidate genes for each disease and rank each gene for each disease based on

the ANN’s prediction score

i904 M.Alshahrani and R.Hoehndorf

Deleted Text: ,
Deleted Text: ,
Deleted Text: ,
Deleted Text: , 


diseases from OMIM, 9482 P-Vecs for genes using mouse pheno-

types (i.e. assigning phenotypes of mouse genes to their human

orthologs), and 3526 P-Vecs for genes using human phenotype data

(i.e. genes-phenotypes associations provided by the HPO database).

We generate E-Vecs for 14 753 genes, i.e. for all genes in our inter-

action network that are connected to a gene with phenotype

associations.

3.3 Similarity-based prediction of disease-associated

genes
We use the generated vectors representing genes and diseases to pre-

dict gene–disease associations based on phenotype similarity. The

SmuDGE vectors encode phenotype annotations connectivity pat-

terns along with the ontology super classes associated with each

phenotype annotation. Similar phenotypes for both genes and dis-

eases indicate similar features vectors and therefore we can infer

disease-gene associations by comparing feature vectors.

To determine similarity of the resulting features vectors, we use

the cosine similarity measure and we compute the pairwise similar-

ity between all OMIM diseases and genes (using either their P-Vec

or E-Vec representation). We then rank the most similar genes for

each disease and determine how well we recover known gene–

disease associations from OMIM using a receiver operating charac-

teristic (ROC) curve (Fawcett, 2006); we quantify the performance

of the similarity-based prediction using the area under the ROC

curve (ROCAUC) which is equivalent to the probability that a ran-

domly chosen positive sample is ranked higher than a randomly

chosen negative sample. We limit our evaluation of P-Vec similarity

to the genes for which we can generate the representations, i.e. 3526

genes using human phenotypes and 9482 genes using mouse pheno-

types. For comparison, we use a semantic similarity measure to com-

pare disease and gene phenotype annotations. For the evaluation of

E-Vec similarity, since we generate representations for all of the

genes in the interactions network, we evaluate the disease vectors

against the set of 14 753 genes vectors. Figure 3 shows the results

using P-Vec similarity for human and mouse phenotypes. Table 1

shows a summary of applying both approaches (i.e. P-Vec and

E-Vec) using human and mouse phenotypes.

We find that P-Vec similarity using human phenotypes results in

almost perfect prediction, which is the consequence of how the phe-

notypes have been assigned to genes in the HPO database (i.e. the

phenotypes are identical to the phenotypes of the disease with which

the gene is associated, and using them for prediction is therefore al-

most circular); these similarities are therefore not truly predictive

but mainly reproduce our evaluation dataset. However, using mouse

phenotypes, we obtain a ROCAUC of 0.706 when comparing

P-Vecs to the disease vectors. Using E-Vecs, we obtain a ROCAUC

of 0.765 when using human gene–phenotype associations and a

ROCAUC of 0.673 using gene–phenotype associations from the

mouse. Notably, because we mask all direct gene–phenotype associ-

ations when generating E-Vecs, our use of human gene–phenotype

associations does not encode gene–disease associations, and the

performance of this similarity-based evaluation is therefore indica-

tive of predicting disease-associated genes in the absence of gene–

phenotype associations.

3.4 Supervised prediction of disease-associated genes
Cosine similarity can only be applied to vectors of the same dimen-

sion, and furthermore cannot easily account for dataset-specific fea-

tures. Therefore, we also apply supervised machine learning to

‘learn’ a function (akin to a similarity measure) that takes two

phenotype-based representation vectors as input and is predictive of

gene–disease associations. We use an artificial neural network

(ANNs) to learn these functions in a supervised manner; the ANN

model accepts a pair of features vectors (i.e. embeddings) zd 2 R
d

and zg 2 R
d corresponding to entities Ed, Eg for disease and gene

nodes.

Several approaches to computational prediction of gene–disease

associations utilize the principle known as ‘guilt-by association’

(Gillis and Pavlidis, 2012) which infers the associations of a gene to

a disease based on the similarity to other genes associated with the

disease. As a result, it fails to predict genes for diseases with no prior

knowledge of any associated genes. Supervised training to predict

gene–disease associations is similar to the guilt-by-association ap-

proach if some genes associated with a disease have been used in

training and the model is evaluated on the remaining genes, because

knowledge about disease-associated genes is used to predict more

associations. To estimate the performance of our method for pre-

dicting gene-associations for diseases without associated genes,

We first split the training and testing based on diseases, not on

gene–disease pairs. In particular, we select 80% of the diseases and

all their associated genes for training, and apply the model to predict

all the genes for the remaining 20% of the diseases and their associ-

ated genes for testing.

We evaluate each type of vector representation individually using

our ANN model approach (see Section 2). As in the similarity-based

Fig. 3. ROC curves for predicting gene–disease associations using cosine

similarity between SmuDGE’s P-Vecs and comparison to Resnik’s semantic

similarity measure

Table 1. Summary of the ROCAUCs for predicting gene–disease

associations using human and mouse phenotypes and using the

P-Vec and E-Vec approaches

Approach P-Vec P-Vec E-Vec E-Vec

phenotype source human mouse human Mouse

SmuDGE (cosine) 0.935 0.706 0.765 0.673

SmuDGE (ANN) 0.972 0.911 0.871 0.839

Resnik 0.940 0.764 N/A N/A

simGIC 0.858 0.713 N/A N/A

Note: We compare the results to Resnik and simGIC semantic similarity;

these measures are ontology-based semantic similarity measures and only

comparable to SmuDGE’s P-Vec approach as genes without phenotype anno-

tations cannot benefit from semantic similarity.
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prediction of disease-associated genes, we use pairs of P-Vecs or

E-Vecs as input to the ANN and use the ANN to compute the

‘similarity’ between them as a predictor of gene–disease associa-

tions. The ROC curves for using mouse phenotypes, as well as the

comparison to other semantic similarity measures, are shown in

Figure 4 and Table 1. We find that using the ANN significantly

improves the results compared to the unsupervised, similarity-based

approach, increasing the ROCAUC from 0.935 to 0.972 for human

phenotypes and from 0.706 to 0.911 for mouse phenotypes with

P-Vec approach as well as using E-Vecs from 0.764 to 0.871 with

human phenotypes and from 0.673 to 0.839.

As another use case, we also evaluated how well SmuDGE can

predict gene–disease associations for diseases with only a single as-

sociation compared to diseases with multiple associated genes.

Although our dataset is stratified by disease and known associations

are therefore not used during training of the neural network, we in-

tend to test the performance of our approach on rare diseases for

which no or only little information is available. Figures 5 and 6

show the result. We find that for diseases which have more gene

associations and are likely better studied, SmuDGE can predict asso-

ciated genes better than for diseases with only a single associated

gene, using both the P-Vec and E-Vec approach.

4 Discussion

SmuDGE is an algorithm that exploits ontologies and knowledge

graphs to learn representations of genes, gene products and diseases,

based on the phenotypes they are associated with. While we demon-

strate in our evaluation that the performance of SmuDGE in predict-

ing gene–disease associations matches, and sometimes outperforms,

traditional phenotypes-based gene prioritization methods such as

PhenomeNET (Hoehndorf et al., 2011) or the MouseFinder (Chen

et al., 2012), we see our main contribution in extending the pheno-

type- and similarity-based approaches for gene–disease prioritiza-

tion to all genes represented in an interaction network (or

knowledge graph).

The prediction of disease genes using phenotype-similarity has

been highly successful (Chen et al., 2012; Hoehndorf et al., 2011;

Köhler et al., 2009) and a major limitation has been the availability

of phenotypes for many genes. The use of non-human model

organisms such as the mouse (Meehan et al., 2017) can generate

phenotype representations of human genes even in the absence of

clinically determined phenotypes associated with a gene; however,

even using model organism phenotypes, phenotype similarity can

still not be applied to a large portion of human genes due to missing

data or lack of a non-human ortholog.

SmuDGE’s E-Vecs don’t use directly associated phenotypes but

encode phenotypes of a gene based on knowledge of interactions—

both direct and indirect—of a gene with other genes with which

phenotypes are associated. The disease vector representations we

generate always encode phenotypes, and the success in identifying

gene–disease associations when comparing both demonstrates that

E-Vecs and disease phenotype vectors have similar (and possibly

complementary) information, sufficient for their comparison to be

predictive of disease mechanisms (i.e. disease-associated genes).

The E-Vecs we construct in our work further encode, although

indirectly, for phenotypic network modules, since they are generated

through random walks on an interaction network and will encode

phenotypes overrepresented within a network region. In future

work, we plan to evaluate whether our approach can identify inter-

acting genes that may be jointly associated with a disease, such as in

Fig. 4. Comparision of ROC curves for predicting gene–disease associations

based on mouse phenotypes using SmuDGE’s feature vectors and compari-

son to the Resnik and simGIC semantic similarity measures

Fig. 5. ROC curves for predicting gene–disease associations for diseases with

a single or multiple associated genes using SmuDGE’s P-Vec approach

Fig. 6. ROC cuves for predicting gene–disease associations for diseases with

a single or multiple associated genes using SmuDGE’s E-Vec approach
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digenic and other oligogenic diseases (Gazzo et al., 2016). We may

also explore the possibility to combine SmuDGE with variant priori-

tization tools to provide additional information that can be used to

determine whether a variant is associated with a phenotype or not

(Boudellioua et al., 2017).

5 Conclusions

SmuDGE is a method to generate semantic disease gene embeddings

and use them to predict gene–disease associations. SmuDGE is

phenotype-based and can be used to predict disease-associated genes

by computing the similarity between the phenotypes associated with

a disease and those associated with a gene; utilizing an interaction

network as background knowledge and assigning phenotype-based

representations to genes that have no associated phenotypes,

SmuDGE is applicable to any gene for which either phenotype asso-

ciations or background knowledge about interactions with other

genes that have phenotype associations is available. We have dem-

onstrated through multiple experiments that SmuDGE can improve

the state of the art in phenotype-based prioritization of disease

genes. We envision the main application of SmuDGE in the priori-

tization of genes for rare genetic diseases.
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Rodrı́guez-Garcı́a,M.Á. et al. (2017) Integrating phenotype ontologies with

phenomenet. J. Biomed. Semantics, 8, 58.

Schlicker,A. and Albrecht,M. (2008) Funsimmat update: new features for

exploring functional similarity. Nucleic Acids Res., 36, D434–D439.

Smaili,F.Z. et al. (2018) Onto2vec: joint vector-based representation of bio-

logical entities and their ontology-based annotations. Bioinformatics, 34,

i52–i60.

Smith,C.L. et al. (2004) The mammalian phenotype ontology as a tool for

annotating, analyzing and comparing phenotypic information. Genome

Biol., 6, R7.

Szklarczyk,D. et al. (2011) The STRING database in 2011: functional inter-

action networks of proteins, globally integrated and scored. Nucleic Acids

Res., 39, D561–D568.

Wang,X. et al. (2011) Network-based methods for human disease gene predic-

tion. Brief. Funct. Genomics, 10, 280–293.

Zhou,H. and Skolnick,J. (2016) A knowledge-based approach for predict-

ing genedisease associations. Bioinformatics, 32, 2831–2838.

SmuDGE i907

https://www.cs.toronto.edu/&sim;tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/&sim;tijmen/csc321/slides/lecture_slides_lec6.pdf

	bty559-TF1

