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Seasonal influenza infects approximately 5–20% of the U.S. population every year, resulting in over 200,000
hospitalizations. The ability to more accurately assess infection levels and predict which regions have higher
infection risk in future time periods can instruct targeted prevention and treatment efforts, especially during
epidemics. Google Flu Trends (GFT) has generated significant hope that ‘‘big data’’ can be an effective tool
for estimating disease burden and spread. The estimates generated by GFT come in real-time – two weeks
earlier than traditional surveillance data collected by the U.S. Centers for Disease Control and Prevention
(CDC). However, GFT had some infamous errors and is significantly less accurate at tracking
laboratory-confirmed cases than syndromic influenza-like illness (ILI) cases. We construct an empirical
network using CDC data and combine this with GFT to substantially improve its performance. This
improved model predicts infections one week into the future as well as GFT predicts the present and does
particularly well in regions that are most likely to facilitate influenza spread and during epidemics.

G
oogle Flu Trends (GFT) uses aggregated search query data to estimate influenza activity in the ten U.S.
Health and Human Services (HHS) regions and throughout the country. Google’s model produces real-
time estimates of the percentage of physician visits attributed to influenza-like illness (ILI) using a

combination of query terms that best correlated with CDC ILI data from 2003–20081. Initial excitement at the
potential of GFT to predict influenza earlier than traditional methods by harnessing ‘‘big data’’ declined when it
dramatically erred in February 2013: GFT predicted double the number of doctors’ visits from the flu than was
later reported by the CDC’s traditional sentinel system of hospitals and clinics2,3. An additional limitation is that
GFT is significantly less correlated with laboratory-confirmed cases of the flu than with ILI levels1,4. Reducing
error in estimates of actual influenza cases as opposed to ILI is critical for prevention and control efforts because
ILI captures a multitude of other pathogens and provides a noisy measure of actual flu levels5–7.

Following the call by Lazer et al.2, we combine data generated by GFT and the CDC in a model that dynamically
recalibrates to produce better estimates of actual cases of the flu using methods borrowed from social network
analysis. Influenza spreads from person-to-person via respiratory droplets and requires close physical proximity
for infection. As a result, regions with populations that are highly connected to one another (through geographic
proximity, air traffic, commuting, etc.) will likely experience highly correlated patterns in influenza levels. This
study seeks to improve GFT’s accuracy by using historical correlations between influenza outbreaks in different
regions to create a network of connected regions that are likely to experience outbreaks at similar times (Figure 1).
Other recent work has used empirical models8–10 as well as computer simulations11,12 to better understand
systematic patterns in the geographic spread of influenza using network analysis. However, to our knowledge,
no other studies have used empirical data on connectivity between geographic units in models that assess
influenza levels in real time.

Incorporating information on flu levels of connected regions allows for better assessment of real-time infection
levels because knowledge of flu levels in connected regions tempers inflated Google search volumes caused by
excess media coverage, especially during epidemics. In addition, incorporating this information on connected
regions allows for more accurate predictions of future spread by taking into account how the disease spread in
previous years. For example, because flu levels in the mid-Atlantic (Region 3) are historically highly correlated
with flu levels in the Midwest (Region 5), observing a flu outbreak in the mid-Atlantic can inform predictions of
future flu levels in the Midwest. The model performs particularly well during periods of heightened flu activity,
when GFT is most likely to overestimate influenza prevalence. The model also performs best in regions that are
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most likely to facilitate the spread of influenza (structurally ‘‘central’’
regions). Because these regions are more highly connected to other
regions, more information can be gleaned from flu levels in these
other regions. Thus, the times and places in which our model pro-
vides the biggest improvements on GFT are the most important for
prevention and control efforts.

Creating the Network Measure. Incorporating network information
into GFT’s real-time predictive model followed a two-step process.
First, we created a series of weighted ties between regional units
defined by the correlation of influenza levels using the CDC data13

on laboratory confirmed cases in every week of the previous year, T-
1. In our study, each region had nine weighted ties, one with each of
the other regions. A tie between two regions that experience high and
low influenza prevalence at the same time was assigned a larger

weight on a scale from 0 to 1 than a tie between two regions that
experienced peaks and troughs at different times. Cross-correlations
between regions are likely a function of factors such as airline traffic,
commuting traffic, geographic proximity, vaccination coverage, and
climatic patterns, which all impact how influenza spreads between
regions.

Step 2 of our method applies the network of weighted ties based on
time-series correlations in the previous year T-1 to real-time empir-
ical data in the current year T. Because the factors facilitating the
spread of influenza between regions remain relatively constant from
year to year, the co-incidence of influenza in the previous year pro-
vides a useful framework for predicting the spread of influenza in the
current year. At the same time, using only the previous year’s corre-
lations (as opposed to correlations over a longer timeframe) allows
the model to adapt to smaller changes in the underlying mechanisms
facilitating the spread of influenza. In order to incorporate informa-
tion from the network into the real time model, we multiplied the
connectivity factor (the weight representing the strength of the tie
between regions i and j) by the estimated levels of influenza produced
by GFT in each region j14. Through this method, we produced an
influenza network-load measure, SWij Pj,t for each region i. In this
measure, W is the strength of the tie between regions i and j and P is
the current GFT estimate for influenza level in each region j in week t.
For example, the influenza-load measure for Region 1 was created by
multiplying the weight of the tie between Region 1 and Region 2 by
the estimated influenza level in Region 2. This process was repeated
for regions 3–10 and the products were summed.

Results
Better Predictions in the Present and Future. Using network data
from the previous year to inform our predictions, we hypothesized
that incorporating this weighted influenza load measure would allow
for (1) better assessment of real-time infection levels and (2) more
accurate predictions regarding the future spread of influenza. To test
the first prediction, we regress the GFT ILI prediction and our
network flu-load measure on laboratory-confirmed cases of
influenza in the same week for all weeks 2003–2012 (Table 1). The
coefficient on the network measure was positive and highly
significant when added to the basic model (column 2). To analyze
the substantive significance of this finding, we compared predicted
flu levels from the basic GFT model and the network model to actual
cases of the flu measured by the CDC. Using this simple network
model in real-time reduced error in predicting actual cases by 2.1%
relative to the GFT model on its own (Figure 2).

One particularly good example of our model’s performance relates
to New York and New Jersey (HHS Region 2) during the 2009 H1N1

Figure 1 | Network Map of Influenza Correlations Between HHS
Regions. Nodes are sized by weighted degree centrality, which incorporates

the number of ties a given region has to other regions (in this case, each

region is connected to all other regions) as well as the strength of those ties,

which is determined by the strength of the cross-correlation between

regions. Nodes are colored by betweenness centrality, which represents the

number of shortest paths to other regions that go through a certain node

(blue indicates high betweenness and yellow indicates low betweenness).

Influenza is likely to pass through regions with high betweenness on its way

to other parts of the country. Edges between nodes are colored by the

weight of the tie between two regions as measured by the correlation

between flu trends in those regions (darker, thicker edges denote stronger

ties); only the ties whose weights are in the upper two quartiles are shown.

All statistics for this figure are calculated using correlations over the full

time period of the data ranging 2003–2012. The nodes and ties were created

using GEPHI (version 0.8.2), a social network visualization software, and

the background map was added using Adobe Photoshop.

Table 1 | Regression on lab-confirmed influenza data in present and future, with and without network statistic. Models one and two regress
the actual flu level in time period t on GFT with and without the network statistic, respectively. Models three and four are identical except the
dependent variable is the flu level in time period t 1 1 (i.e. one week into the future)

CDC Actual Flu Level (Virologic % Positive)

(Present) (Present) (Future) (Future)

Google Flu Trend 0.839*** 0.637*** 0.791*** 0.607***
(0.022) (0.028) (0.022) (0.029)

Network Statistic 0.028*** 0.025***
(0.002) (0.003)

Constant 24.053*** 24.046*** 23.699*** 23.690***
(0.159) (0.156) (0.161) (0.159)

Observations 3,082 3,082 3,069 3,069
R2 0.322 0.348 0.291 0.313
Adjusted R2 0.322 0.348 0.291 0.312

Note: *p , 0.1; **p , 0.05; ***p , 0.01.
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pandemic, which was first identified in the U.S. and later spread
around the globe. Google notoriously underestimated and later over-
estimated influenza activity during this period, due in part to
increased media coverage driving internet search traffic15. Including
our network statistic tempered this effect by accounting for estimates
of influenza in connected regions and resulted in a 31% proportional
reduction in error of estimated influenza levels compared to GFT on
its own (Figure 3).

Perhaps more importantly, incorporating the network measure
significantly improved predictions of laboratory confirmed influenza
cases one week into the future (Hypothesis 2). With the knowledge of
where influenza is now, along with an understanding of which
regions are likely to experience influenza outbreaks at similar times,
we estimated next week’s influenza levels in all regions. Columns 3
and 4 of Table 1 show the same regression model but with the
dependent variable (actual flu cases) being predicted one week in
the future. The proportional reduction in error of the network model
compared to the basic GFT model in this case is 1.7%. By including
our network variable, we do just as well at predicting virological
outcomes one week into the future as GFT on its own does at pre-
dicting outcomes in the present (Figure 2).

Epidemics and Centrality. In addition to improving on the general
GFT model, the network model performs particularly well in the
times and places that are most pivotal for prevention and control
efforts. During seasonal epidemics, proportional reduction in error
of the network model relative to GFT alone was three times greater
than during periods of low or normal flu levels (6.3% compared to
2.1%). Moreover, during these periods, the network model predicted
flu levels one week into the future nearly 2% more accurately than
GFT predicted influenza levels in the present (Figure 2).

The network model also performed best in regions that were most
important for facilitating the spread of influenza. The proportional
reduction in error of the network model compared to GFT was great-
est in regions that were most highly connected to other regions
(Figure 4). We calculated a weighted degree centrality score for each
region using correlations between regions over the full time period.
In the most central region (Region 5), the network reduced more

than twice as much error as the average across all other regions (over
5% compared to an average of just over 2%). Our results show that
geography plays an important role in the network: regions with more
central geographic locations were more likely to have strong ties to a
greater number of regions and consequently have a large influence
over influenza spread. However, we also found that regions that are
important transportation hubs (e.g. Regions 2 and 9 – New York and
California) were more central to the influenza network than geo-
graphy alone might suggest (Figure 1).

Discussion
This study responds to the need to combine novel, modern data
sources with time-proven data collection2. By combining sentinel
data on laboratory confirmed cases of influenza with GFT, we make
strides towards accessing the best of both. There are several reasons
why our model improves on either data source alone. Our dynamic
network model combines the accuracy of time proven sentinel data
collection with the real-time predictions that make GFT valuable. In
addition, a network based in empirical trends of connectivity
between US regions makes it possible to leverage data on infection
levels in adjacent areas when estimating current illness levels for a
given area. Information on infection rates in other regions is particu-
larly valuable in predicting future flu incidence because many of the
factors that facilitate the spread of disease between areas remain
relatively constant from year to year (for example, travel between
regions).

The findings of this paper have important implications for pre-
vention and control efforts at the local and national level. Predicting
the geographical spread of influenza is critical for informing clinical
treatment of disease as well as prioritizing public health interventions
such as vaccination. Early and accurate detection of influenza activity
can inform efforts to reduce the spread and impact of the disease5,6,16.
At the national level, vaccination campaigns can target central
regions in the network that are likely to be epicenters for large-scale
regional and national outbreaks7. Having more accurate predictions
of influenza levels in the most central regions is particularly valuable
for prevention and control efforts, as they are likely to facilitate the
spread of influenza to other parts of the country. Reducing influenza

Figure 2 | Correlations of Predicted Values with Laboratory-Confirmed Influenza. Over the full time period of the data, the network model predicted

laboratory-confirmed influenza cases significantly better than Google Flu Trends in both the present and one week into the future. Network model

predictions for one week into the future were within 1% of GFT predictions for the present. During periods of heightened flu levels above the CDC

baseline for each region (seasonal epidemics), estimates influenza levels one week into the future produced by the network model were more than 2%

better than GFT predictions for the present.
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levels in these regions will have the greatest spillover effects on influ-
enza levels elsewhere.

Our focus on estimating laboratory-confirmed influenza levels (as
opposed to ILI) is particularly impactful because targeted prevention
efforts will only be successful at culling outbreaks if the proper illness
is being tracked. Accurate ILI assessment and prediction can help
prepare medical personnel for the influx of patients but is less useful
for targeting the future spread of disease. Because ILI is a measure of
doctors visits as opposed to actual disease, it is highly sensitive to
factors that influence visits and not the disease itself (e.g. media cov-
erage). In addition to the focus on actual cases of the flu as opposed to
ILI, this paper takes the important step of assessing real-time models
that predict the future spread of the flu. Prevention and control efforts
relying on current flu estimates suffer from the tendency to chase the
disease rather than anticipate its spread. Models that improve predic-
tions of future disease spread in real-time allow officials to get a leg up
on the disease and target efforts in areas that are likely to be affected,
thus increasing a potential campaign’s effectiveness. Knowing future
spread is particularly important during epidemics, time periods in
which our model performs particularly well.

More broadly, this paper highlights the advantages of incorporat-
ing network measures into real-time models of the spread of disease
and of integrating, rather than replacing, traditional data collection
with ‘‘big data’’. Building on these methods may have implications
for a wide range of epidemiological models. Given the increasing
focus on the structural spread of disease through individual17 and
geographic networks8, incorporating these aspects into real-time pre-
dictive models is a natural next step.

Methods
Data from GFT and the CDC were available for every week from October 2004
through September 2011 and were joined by week and HHS Region. The CDC reports
data on the number of doctor visits attributed to influenza-like-illness (ILI) as well as
the percentage of respiratory samples tested for influenza that come back positive13.
Virological data comes from state public health laboratories and certain smaller level
public health laboratories and participating medical centers. Weeks in which a region
experienced heightened flu activity (an epidemic) were determined using the CDC’s
threshold for epidemics, defined as an increase of 1.645 standard deviations above the
seasonal baseline of deaths attributed to influenza and pneumonia.

To construct the weighted network measure, we first calculate a connectivity factor,
W, for every pair of regions i and j, where i denotes the region for which the measure is
being calculated. The connectivity factor is the cross-correlation in laboratory con-
firmed-influenza cases for each pair of regions ij in the previous year, T-1 (correlation
taken across all weeks). We then multiply the current GFT value in region j by the
connectivity factor, Wij. Lastly, we sum the product of these process for region i across
all other regions, j.

We report models predicting lab confirmed cases in table 1 and calculate a pro-
portional reduction in error (PRE) for the models with and without the network
measure. PRE is calculated by subtracting the sum of prediction errors for the model
with the network measures from the sum of errors of the base model and dividing this
difference by the summed errors of the base model.

We fit the following linear regression models (OLS):

Yi,t~b1Pi,tzl
X

Wi,j Pj,t ð1Þ

Yi,tz1~b1Pi,tzl
X

Wi,j Pj,t ð2Þ

OLS regression is used in keeping with Ginsberg et al (2009)1 and other papers
assessing the effectiveness of GFT. In each model, the first right-hand-side term is the
GFT estimate for each region i in the current week t and the second is our weighted
influenza load measure. Model 1 allows us to assess the impact of including our
network term in real-time assessments for the current week (t) while Model 2 allows

Figure 3 | Region 2 Time Trend during the 2009 H1N1 Pandemic. Google Flu Trends is particularly prone to error during pandemics. The top panel

compares the network model (pink) and GFT on its own (blue) to laboratory confirmed influenza levels during the 2009–2010 season. The y-axis on the

bottom panel is the residual of the network model subtracted from the residual of Google’s model at any given week, with areas above the red line

indicating times in which the network model outperformed Google on its own. The proportional reduction in error of the network model compared to

GFT during this time span is 31%.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 8154 | DOI: 10.1038/srep08154 4



us to assess its usefulness in making predictions one week in the future (t 1 1).
Following previous studies that evaluate GFT’s estimates, we compared these data to
CDC data on the percentage of cases that exhibit ILI as well as lab-confirmed cases of
influenza (Y)1,3.

To verify the resilience of our main findings, we performed out-of-sample testing
through K-fold cross-validation. This method involved splitting the sample into equal
sized subsamples, or folds. Over k rounds, the model was recursively fit on a training
set, consisting of (k-1)/k folds, and then the dependent variable was predicted for
observations in the validation set (1/k). This method included every observation in
the testing set only once, helping avoid any testing error that might result from single
out of sample predictions on a single fold18. The results confirm the reported
reductions in error.

Statistical analyses were done using R (version 3.0).
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Figure 4 | Centrality and Network Model Effectiveness. The network

model does particularly well in more central regions. The y-axis

(proportional reduction in error) is a measure comparing the residuals of

the network model to the residuals of the Google Flu Trends model, with

positive numbers indicating regions in which the network model

outperforms Google on its own. All statistics are calculated using the full

time period of data ranging from 2003–2012.
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