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Abstract

Improving the efficacy and spatial targeting of radiation therapy while sparing sur-

rounding normal tissues has been a guiding principle for its use in cancer therapy.

Nanotechnologies have shown considerable growth in terms of innovation and the

development of new therapeutic approaches, particularly as radiosensitizers. The aim

of this study was to systematically review how nanoparticles (NPs) are used to enhance

the radiotherapeutic effect, including preclinical and clinical studies. Clinicaltrials.gov

was used to perform the search using the following terms: radiation, cancer, and NPs.

In this review, we describe the various designs of nano-radioenhancers, the rationale

for using such technology, as well as their chemical and biological effects. Human trials

are then discussed with an emphasis on their design and detailed clinical outcomes.
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1 | HISTORY OF RADIATION IN CANCER

The first medical X-ray image of a hand is attributed to German physi-

cist Wilhelm Conrad Röntgen in 1895. In the years to follow, it

became clear that the use of X-rays was associated with side effects

such as skin burns1 and hair loss.2 Thus, the idea of using them as a

potential mean of treating tumors emerged. In parallel, there have

been many advances in the development of X-ray tubes.3 X-rays are

produced from electrical current, that is, an electron beam discharged

from a hot cathode in vacuum. The beam of electrons produces X-rays

as it encounters the anode or glass wall (in the case of the early-

developed X-ray tubes, e.g., the Coolidge tube, in 1913). The first

reported case of using radiation therapy to treat cancer with a similar

device was reported in 1896 by French Physician Dr. Victor

Despeignes for the exploratory treatment of a patient with gastric

cancer.4,5 Then, the first instance of brachytherapy shortly followed

Drs. Pierre and Marie Curie's discovery of radium in 1898. In July

1903, Dr. Alexander Graham Bell suggested the use of brachytherapy

in a letter to Dr. Z. T. Sowers; the correspondence was published in

the journal Nature.6 In October 1903, Dr. Margaret Abigail Cleaves, an

American physician focused on psychological and gynecological disor-

ders, was the first to use radium in the treatment of gynecologic

malignancies via brachytherapy.7 Since then, the management of can-

cer patients using radiation has significantly evolved, with the greater

understanding of the physics and adverse events (AEs) that accom-

pany X-ray therapy. Indeed, radiation-induced leukemia or malignant

skin changes were evidenced as early as 1900.8 Optimization of the

dose intensity delivered and its fractionation have been some of the

major improvements, along with the deployment of modalities that

have significantly improved the spatial targeting of radiation.9,10 Over
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the last few years, conventional radiotherapy has progressively been

replaced by conformal radiotherapy (CFRT) where the radiation beam

is geometrically controlled to fit the tumor shape while sparing

the surrounding organs. Additionally, intensity-modulated radiation

therapy (IMRT) has become the gold standard in radiotherapy treat-

ment by allowing a controlled irradiation field shape, like convention-

ally fractionated radiation therapy (CFRT), but its intensity is also

modulated within the irradiated area. Today, IMRT is associated with

image-guided radiotherapy and radiotherapy, in general, is now a

common component of multidisciplinary cancer care, used in conjunc-

tion with surgery and other systemic therapies.9

More recently, a new irradiation modality called hadron therapy

has been developed, using charged particles instead of photons.10 In

1946, Robert R. Wilson was the first to propose the use of proton

beams for the treatment of cancer.11 The major advantage of this

technique is its depth-dose profile characterized by a significant

increase in the dose deposited at the end of the particle path.12 Based

on clinical data and in vivo experiments, Paganetti et al. have demon-

strated that the relative biological effectiveness (RBE) of protons was

close to 1.1. This implies that protons lead to the same cancer cell

death in comparison to photons, with a 10% reduced dose of radiation

delivered to tissues.13 RBE depends on several parameters including

the linear energy transfer (LET), which is why the RBE of charged par-

ticles varies along their path and is significantly higher near the Bragg

peak. Photons have a low LET coefficient, meaning that they ionize

atoms in the tissue that are spaced by several tenths of a micrometer

apart, sparsely and randomly along their path. In contrast, LET is

higher for protons, which generate more radicals per particle track

than lower-LET ones.14 Finally, hadron therapy relies on two key

parameters15: (i) ballistic features allowing a dose optimization into

tumor volume, sparing surrounding healthy tissues, and (ii) biological

features that allow a greater RBE associated with a high LET along

their path. Using this method, the dose can be deposited in a chosen

area with a high accuracy. Proton therapy is an especially good option

for the radiation therapy of pediatric cancers, given the sensitivity of

developing organs to radiation and potential long-term side effects.16

2 | INTERACTION OF PHOTONS WITH
MATTER

The photon attenuation in matter is due to three different processes:

photoelectric effect, Compton scattering (Rayleigh scattering can be

neglected), and pair production.17 A photon can transfer its energy to

one electron of the target leading to an electron ejection from the atom,

that is, the photoelectric effect. During this effect, the energy of the

incident photon is totally transferred to an electron in an inner shell

(photoelectron). The vacancy created in the inner layer is filled by an

electron from an outer layer, the energy being released in the form of a

fluorescence X-ray photon or an Auger electron. For K shell vacancies,

the Auger yield decreases with atomic number (Z), and for Z= 30 (zinc)

the probabilities of the emission of X rays from the innermost shell and

of the emission of Auger electrons is about equal.18 When Compton

scattering occurs, the electron is spread away together with a new pho-

ton that has a lower energy than the incoming one. Highly energetic

photons (E > 1.02 MeV) produce an electron-positron pair. This posi-

tron slows down in matter and strikes with an electron leading to the

formation of two gamma rays of 0.511 MeV. Photons are produced in

opposite directions. Depending on the atomic number of the material,

each phenomenon contributes in a different way to the total photon

attenuation. At low energy (below 100 keV), the photoelectric effect

governs the attenuation. For energies between 100 keV and 10 MeV,

the Compton effect becomes the primary process for attenuation,

regardless of the intervening material.19 Above 10 MeV, pair produc-

tion dominates. Since energies used in clinical practice are usually

between 0.3 and 20 MeV, the Compton effect is the dominant effect

when the photon passes through tissues.

3 | PRECLINICAL STUDIES BASED ON
THE USE OF NANO-SENSITIZERS IN CANCER
RADIATION THERAPY

3.1 | Rationale for using NPs to target tumors and
initial evidence of radiation enhancing property of NPs

Tumor growth is associated with angiogenesis, the formation of a vas-

cular bed surrounding the tumor, in order to provide it with essential

nutrients that support continued cancer growth. The newly formed

vasculature is in essence disorganized and leaky, which provides an

ideal environment for nanosized particles injected in the bloodstream

to passively permeate into tumor tissue. This effect has been named

the enhanced permeability and retention (EPR) effect.20 Nanoparticles

(NPs) end up at the tumor site due to the porosity of the local endo-

thelium and are subsequently retained in the tumor because of the

ineffective lymphatic drainage at the tumor level.20 Thus, NPs repre-

sent an ideal candidate to deliver chemotherapeutic drugs to tumor

site, minimizing side effects to healthy tissues. Even though some

nanomedicines have reduced toxicity for patients compared to free

drug (e.g., Doxil vs. Doxorubicin), their accumulation in the tumor usu-

ally represents a very limited fraction of the injected dose.21 Indeed,

Wilhelm et al. reviewed 10 years of data and concluded that 0.7% of

the injected dose typically reaches the tumor site.21 Thus, strategies

have been developed for particles to actively target the tumor site by

tagging them with molecules able to recognize ligands within the

peripheral vascular bed (e.g., vascular endothelial growth factor

(VEGF) receptor22), the extracellular matrix23 or on the surface of can-

cer cells (e.g., folate receptor,24 epidermal growth factor receptor

(EGFR), human epidermal growth factor receptor 2 (HER2)25,26). Inter-

estingly, tumor homing can also be enhanced by utilizing tubular-

shaped NPs,25 which undergo high levels of phagocytosis by immune

cells compared to their spherical counterparts. These cells subse-

quently travel to the tumor via the bloodstream, delivering the nan-

otubes and their drug payloads. Additionally, tagging NP surface with

the marker of self (CD47) delays their recognition and clearance, thus

increasing their ability to accumulate at tumor site.26 Similar strategies

2 of 22 BILYNSKY ET AL.



based on coating the NPs with RBC (red blood cell)27 or leukocyte28

membranes have successfully extended the circulation time of NPs in

murine models. Using external stimuli to improve targeting has also

been explored, such as using ultrasound stimulation to break nan-

oassembled microparticles, exclusively at tumor site, thus enhancing

their accumulation.29 Targeted delivery using an external magnetic field

is also possible; iron oxide NPs represent an efficient means of drug

delivery in that case.30 Hyperthermia or ultrasound have also been used

to break biological barriers at microscopic level (e.g., blood–brain barrier

[BBB]) and improve nanomedicine delivery30 (Table 1).

Besides utilizing active targeting, local administration of NPs can

allow for increased accumulation of the radiosensitizers at the tumor

site, while limiting the potential toxicity associated with systemic

circulation.31 Hence, the recent review by Boateng and Ngwa31

highlights the various possible routes of administration of nano-

radioenhancers from passive delivery systems to implantable-sustained

release systems. Utilizing “smart” spacers (i.e., implantable release

systems) during radiotherapy allows for NP radioenhancers to be locally

applied.32 As spacers are often used during radiotherapy to guide the

geometric localization of the treatment, switching from inert spacers to

“smart” spacers would not require additional procedures.32 Inhalation

of radiosensitizers also allows for local administration to the lungs and

has been shown to be effective.33 Lastly, as the liver and spleen are the

primary clearance organs of such biomaterials, strategies consisting of

priming/saturating the liver with ghost particles before administering

the nanomedicine have been successfully achieved.34 The parameters

affecting biodistribution, including circulation time following IV injec-

tion of NPs, are highly dependent on NP's intrinsic properties such as

their size, composition, surface charge, surface functionalization (along

with grafting density), shape, etc.35 In addition, NP interaction with

plasma proteins leads to the formation of an adsorbed protein corona

that further modulates NP fate as it can affect its resulting size, surface

charge, and overall stability.35,36 PEGylation of the NP surface is a

widely used strategy to significantly decrease plasma protein adsorp-

tion and improve circulation time of NPs.37

Nano-radioenhancers are capable of enhancing the sensitivity of

cancer cells to radiation. The biological effects subsequent to the use

of nano-enhancers to potentiate tumor cell radiation have been

reviewed by Sun et al.38 and include: (i) reactive oxygen species (ROS)

production (leading to oxidative stress, also called the chemical

phase39), as well as (ii) DNA damage. Both the levels of ROS produc-

tion and DNA damage appear to be inversely proportional to the size

of NPs,38 suggesting that particles with larger surface area to volume

ratios produce more ROS and DNA damage. Next, nano-sensitizer-

assisted radiation also induces (iii) cell cycle arrest in the G2/M

transition,40–42 which then leads to apoptosis (Figure 1). However, cell

cycle arrest in G1/S followed by senescence has also been observed

with nanodiamonds.43 Mitochondrial involvement has been

highlighted in multiple studies.44,45 For example, a study by Ghita

et al. used soft X-ray microbeam (carbon K-shell, 278 eV) to achieve

subcellular targeting of radiation (i.e., cytoplasmic and nuclear irradia-

tion) in an effort to better understand the mechanistic effects of gold

nano-radioenhancers.44 Exclusive cytoplasmic irradiation of MDA-

MB-231 human breast cancer cells combined with 1.9 nm Aurovist™

(located in the cytoplasm) still led to DNA damage, along with mito-

chondrial depolarization (oxidation). Ghita et al. highlighted that mod-

ulation of the physico-chemical parameters of the particles might lead

to different effects.44 Many studies describe the NP's ability to

enhance cell death upon irradiation. Interestingly, some papers report

significant radiosensitization effects in vitro with very low quantity of

NPs.46 Regarding this study,46 Penninckx et al. calculated that 0.001%

of gold NPs per mass (650 NPs per HepG2 human liver cancer cells)

led to a radiosentizing effect which was 250 times greater than

predicted.39 This highlights that critical factors for radioenhancement

go beyond the dose of NPs.47 Oxidative stress has been highlighted

as playing a key role as demonstrated by Daems et al. and Penninckx

et al. They found that gold NPs inhibit thioredoxin reductase (TrxR) and

glutathione reductase, regulators of redox reactions, in both cancer and

normal cells.47,48 Guerreiro et al. introduce the idea of the catalytic

nature of NPs, with “a sea” of radiolytic reactants near the NP surface

influencing the radioenhancer capability.49 This point of view may

explain why some NPs made of elements with relatively low atomic

numbers are also efficient as radiosensitizers. Lastly, a literature exami-

nation by Dr. Kempson focusing on the mechanisms involved in

nanoradiosensitization highlights that nanosensitizer effects cannot be

generalized as they depend on both the biological environment and

particle intrinsic properties.50 Another important parameter has been

highlighted by Cui et al., who demonstrated that the radiosensitization

of gastric cancer cells with miRNA-200c delivery via PEG-Pep-PCL

copolymers NPs may be explained by a decrease in invasiveness and

better targeting to radioresistant cancer stem cells.51

Finally, five factors have been identified to explain the biological

effects of radiotherapy, referred to as the “5 R's of radiotherapy”39

(Figure 2): Repair (DNA repair processes after irradiation), Redistribu-

tion (among the various cell cycle phases), Repopulation (cellular

growth and proliferation between radiotherapy fractions), Re-

oxygenation (radiation induces vasodilatation that enables increased

tissue perfusion52; the increased oxygen concentrations in the tumor

microenvironment facilitate two effects during the subsequent radio-

therapy fraction: ROS production and cell death, while cells in the

hypoxic fraction of the tumor remain more resistant to the treatment)

and intrinsic radiosensitivity (tumor and/or patient-specific response).

As previously mentioned with several examples, NPs may synergize

with several of these factors. In a recent review, Penninckx et al. sum-

marize how gold NPs, used as radioenhancers, affect these 5-R factors

at the molecular and cellular levels.39 In this review, the authors also

point out the major differences induced in these factors for low LET

radiation (mainly X-rays) and high LET radiation (i.e., protons, alpha

rays, or heavy ions) when combined with nano-radioenhancers. In par-

ticular, they notice that, independent of the proton energy or the gold

NP size/concentration, the physical enhancement is negligible, even if

significant radiosensitization effects are observed.53 Moreover,

Heuskin et al. calculated that the interaction probability of gold NPs

with proton radiations is negligible; demonstrating that chemical or

biological enhancement should be envisioned.54 Interestingly, the

oxygen-enhancement ratio (OER, defined as the ratio of hypoxic over
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normoxic doses of radiation leading to the same effect) decreases

with increasing LET.55 For example, Barendsen et al. demonstrated

that higher LET α-particles have an ability to affect hypoxic and

normoxic T1g cells to a similar level given an OER close to 1 (i.e., 1.3)

at optimum LET (around 100 keV/μm).55

3.2 | NPs with intrinsic radioenhancer properties

The ability of NPs to act as X-ray radiosensitizers is commonly

explained via the physical phenomena described in Section 2, and par-

ticularly due to the increased absorption of X-rays associated with the

emission of secondary electrons and fluorescence photons.56 These

phenomena lead to an enhancement of energy deposition. Thus, in

the context of radio-enhancement, priority has been given to high

atomic number elements. The combination of photon radiation and

heavy NPs leads to local radiation hardening and higher LET.57 Among

them, gold (Z = 79) has been widely studied for radiation therapy due

to its biocompatibility.58,59 Hainfeld et al.58 demonstrated that gold

NPs injected in mice bearing subcutaneous EMT-6 mammary carcino-

mas induce a one-year survival of 86% versus 20% with X-rays alone.

Bismuth (Z = 83) and platinum (Z = 78) have also been investigated

to enhance radiotherapy. Bismuth oxide NPs and bismuth selenide

nanoplates demonstrate dose enhancements in vitro and in vivo.60,61

F IGURE 1 Schematic of the radiobiological effects of nanoparticle radiosensitizers. Radiation-activated NPs, or nano-radioenhancers, enable
sensitization of tumor cells to radiation by the synergistic production of reactive oxygen species (ROS) inducing oxidative stress, cell cycle arrest,
and DNA double strand damage, and ultimately, cell death. Mitochondrial oxidation involvement has been highlighted in some studies as well.44,45

Created with BioRender.com

F IGURE 2 Schematic of the
5R's of radiotherapy: DNA repair,
redistribution, repopulation, re-
oxygenation, and intrinsic
radiosensitivity. Created with
BioRender.com
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Li et al. found that ultra-small platinum NPs (1.7 nm) amplify gamma

ray radiation effects by more than 40%, with the most radioresistant

organism ever reported (Deinococcus radiodurans).62

Magnetic NPs have been also evaluated as potent radiosensitizers

for the enhancement of radiotherapy, often in combination with

hyperthermia. Iron oxide NPs incubated with prostate carcinoma cells

led to a dose enhancement of radiotherapy, along with a drastic

increase in the concentration of ROS.63,64

Gadolinium (Z = 64)-based NPs are another promising nan-

oradiosensitizer. Gadolinium nanoclusters have been developed as

multifunctional theranostic agents (computed tomography [CT] or

magnetic resonance imaging [MRI] imaging coupled with

photothermal or radiation therapy) against tumors. They are highly

effective in vitro for photothermal ablation of cancer cells and in vivo

for radiotherapy of tumors.65 Lux et al. have extensively studied an

ultrasmall formulation made of polysiloxane and gadolinium chelates,

called AGuIX for “Activation and Guidance of Irradiation by X-Ray.”
The gadolinium doubles as a contrast agent along with a radio-

sensitizer.66 Their efficacy as a radiosensitizer has been demonstrated

in vitro on multiple cell lines, including a radioresistant head and neck

squamous cell carcinoma line. In vivo models have shown AGuIX's

ability to radiosensitize multiple types of cancer: glioblastoma (admin-

istration route: IV), brain metastases (IV), melanoma (IT), pancreatic

cancer (IV), liver cancer (IV), chondrosarcoma (IT), head and neck can-

cer (IT), and lung cancer (airways).66 These preclinical results using the

gadolinium particles have led to multiple clinical trials (Table 2), which

will be discussed in more detail in Section 4.1.

Crystalline hafnium (Z = 72) oxide NPs with a hydrodynamic

diameter of 50 nm and a negative surface charge (�50 mV) have been

injected in radioresistant and radiosensitive human tumor xenografts

(mesenchymal and epithelial cell lines, respectively).67 The NPs dem-

onstrated marked advantage in terms of survival, tumor growth delay,

and local control in both mesenchymal and epithelial human tumor

xenografts, when compared with radiation therapy alone. These NPs,

called NBTXR3, were well tolerated in animal models. They are now

being evaluated in clinical trials which are discussed further in

Section 4.2.

Thulium (Z = 69) oxide NPs have been successfully evaluated as

CT imaging contrast agents and radiosensitizers in rats bearing 9 L

gliosarcomas68 and also showed promising in vitro results with

patient-derived cell lines from metastatic cutaneous squamous cell

carcinoma.69

However, low Z element-based NPs have also demonstrated sig-

nificant potential as radiosensitizers. For example, Grall et al. reported

that radiation-exposed hydrogenated nanodiamonds displayed signifi-

cantly higher ROS compared to both radiation and particle effect

alone, as well as DNA damage, cell cycle arrest, and senescence.43

Mirjolet et al. used titanate nanotubes to radiosensitize glioblastoma

lines (U87-MG and SNB-19) and observed a significant production of

DNA double strand breaks and cell cycle arrests in the G2/M check-

point.41 A second generation of these nanotubes was then loaded

with taxanes to potentiate the radiosensitization effect, as taxanes

also promote G2/M arrest, making the cells further susceptible to

radiation.70,71 In prostate (PC-3) tumor-bearing mice, 70% of

Docetaxel-loaded titanate nanotubes were successfully retained in

the tumor 7 days after intratumoral (IT) injection and led to signifi-

cantly reduced tumor growth as early as day 18.71 Such nanotubes

have also been decorated with iron oxide NPs72 and gold NPs,73

which could potentially enable their use for both image-guided and

synergistic radiosensitization of tumors.

The lack of systematic evaluation of metal oxide NPs in parallel,

led Guerreiro et al. to assess ROS production effect of 22 NP suspen-

sions following 10 Gy of 6-MV X-ray photon irradiation.49 Key high-

lights from their ROS production assessment demonstrated that:

V2O5 produced the most hydroxyls upon radiation (further increased

in comparison to its production of hydroxyls at baseline, i.e., without

radiation, which was already significantly greater than other NPs),

while lanthanides did not produce any (both at baseline and with radi-

ation), TiO2 showed a trend toward increased superoxide anion pro-

duction with radiation, MoO3 demonstrated a protective effect as

highlighted by the decreased superoxide anion level detected com-

pared to water, and the following NPs induced a protective effect

regarding singlet oxygen production: V2O5, NiO, CuO, MoO3,

(Z between 23 and 42), Nd2O3, Eu2O3, Gd2O3, Dy2O3 (Z between

60 and 66).49 As previously explained, this suggests that surface

chemistry of NPs may be the key parameter instead of atomic num-

ber. NPs may act as a catalyzer of surrounding chemical reactions and

increase the overall concentration of radicals. It is worth noting that

these measurements have been done in water and not in biologically

relevant conditions.

3.3 | NPs used to deliver radiation-enhancer
molecules

NPs can also be used as a vehicle to deliver radiosensitizing drugs or

molecules to the tumor site rather than the NPs themselves sensitizing

the tumor. One common strategy is to deliver chemotherapy to the

tumor which can enhance the effects of radiation treatment. Cisplatin,

a commonly used chemotherapy, enhances the effects of radiation

through its interaction (i.e., high reactivity and electron-transfer reac-

tions) with the electrons generated during radiation.74 Liposomal cis-

platin has been found to be effective both in vitro and in vivo against

Lewis lung carcinoma. Furthermore, it was found to be more effective

as a radiosensitizer than free cisplatin due to increased accumulation

within cancer cells.75 Cisplatin has also been conjugated to gold NPs for

tumor sensitization of head and neck cancers, as well as glioblas-

toma.76,77 This is doubly beneficial as the gold NPs in themselves are

radiosensitizers and can act as a tumor imaging agents using CT.76

NP formulations that target DNA repair pathways have also

shown encouraging results in conjunction with radiation therapy. For

example, twice a week administration of NanoOlaparib, a PEGylated

lipid based-NP loaded with the FDA approved PARP (poly[ADP-

ribose] polymerase) inhibitor Olaparib, has demonstrated greater

tumor reduction when given along with radiation (focused beam; sin-

gle dose of 10 Gy) in a prostate tumor model (using murine Ptenpc�/�;
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Trp53pc�/� FKO1 cells in a nude mouse model), compared to either

radiation or NanoOlaparib controls.78 Strategies leveraging NP-based

delivery of PARP (poly[ADP-ribose] polymerase) inhibitors in conjunc-

tion with radiotherapy have been reviewed by Singh et al.79 In addi-

tion, approaches using NP-based delivery of siRNA targeting DNA

repair proteins have also been developed.80,81 For example, Kievit

et al. successfully knocked down Ape1 (apurinic endonuclease 1) using

iron oxide NPs functionalized with PEG/chitosan/PEI (poly-

ethyleneimine) to deliver siRNA in a genetic glioblastoma mouse

model.80 Mice received siRNA NPs IV and whole brain gamma radia-

tion (2 Gy 137Cs-γ-rays at 1 Gy/min, 24 h post-injection) daily for

5 days. Silencing of Ape1 in this model translated to a significant

increase in overall survival compared to radiation alone.80

Docetaxel is another chemotherapy that is commonly used in

these nano-enhancer formulations. Docetaxel causes cells to arrest in

the G2/M phase of the cell cycle by acting as an anti-microtubule

agent; cells in this stage are particularly sensitive to radiation.70 How-

ever, off-target effects of systematically circulating docetaxel, like

those of many chemotherapeutics, are severe in patients and inspire a

need for the drug to accumulate specifically at the tumor site.70

Researchers encapsulated docetaxel in a PLGA (poly[lactic-co-glycolic

acid]) NP conjugated with folate to improve tumor targeting for head

and neck cancers. This formulation successfully sensitized tumors in

mice models more efficiently than free docetaxel and the non-

targeted version of the NPs.82 PLGA NPs containing docetaxel have

also been used to treat lung and pancreatic cancer in vitro, using D-

alpha-tocopheryl PEG1000 to assist with cellular uptake.83 Docetaxel

has also been loaded onto titanate nanotubes to treat prostate

cancer,70 as well as a PCL (polycaprolactone) NP for gastric cancer.84

Other chemotherapeutics delivered in nano-formulations for radio-

sensitization include paclitaxel,85 doxorubicin,86 and topotecan.87

Another common strategy was to deliver molecules that reduced

the effects of hypoxia-related resistance to radiotherapy.

Nitroimidazole is an imaging agent specific to hypoxia; it manages to

sensitize tumors to radiation by generating ROS.88 Researchers have

made “smart” nanogels loaded with IAZA (iodoazomycin arabinoside),

a nitroimidazole derivative, and functionalized with galactose. These

nanogels were able to sensitize hepatocellular carcinoma (HCC) cells

under hypoxic conditions in vitro.88 Zong et al. used lipid NPs with

encapsulated metronidazoles, a nitroimidazole derivative, and

temozolomide, a pro-drug that releases a DNA alkylating agent, to

treat glioblastoma. It successfully increased survival in mouse models

when compared to radiotherapy alone.89 Another nitroimidazole

derivative, liposomal pimonidazole has also been used to radio-

sensitize melanoma under hypoxic conditions.90

Hypoxia-related resistance to radiotherapy by addressing hyp-

oxia itself, that is, by supplying oxygen to the tumor site. Xu et al.

encapsulated perfluorohexane into liposomes because of its high

oxygen capacity. This allowed oxygen to be directly administered to

the tumor without additional oxygen supply.91 They found that the

NPs and radiotherapy delayed tumor growth significantly when

compared to radiotherapy alone in a mouse model.91 A nano-

emulsion of dodecafluoropentane has also been used to increase

oxygen in hypoxic tumors in mice, leading to a stronger response to

radiation.92

3.4 | Active targeting of nanosized radioenhancers

In an effort to further improve the targeting efficiency, nanosized

radioenhancers have been functionalized with moieties able to

actively target the tumor, its microenvironment, or the associated vas-

culature. One common method utilized is by conjugating antibodies to

the particle surface. EGFR is a receptor whose over-expression in can-

cer cells is linked to cell proliferation, angiogenesis, and tumor metas-

tasis.93 One study functionalized gold NPs with anti-EGFR antibodies,

where they were able to sensitize the effects of proton irradiation in

cells over-expressing EGFR but not in cells lacking EGFR.94 Another

study used anti-EGFR antibody functionalized to gold NPs to deliver

β-lapachone, an anticancer agent.95 These NPs preferentially accumu-

lated in cancer cells according to the amount of EGFR expressed, with

higher accumulation occurring in A431s than in A549s, though both

had more accumulation in comparison to RKO cells, which lack EGFR.

They successfully radio-sensitized tumors following IV injection in a

mouse model with xenografted A549 tumors.95 Similarly, both iron-

oxide NPs and silver NPs also have been functionalized to increase

sensitivity to radiation for radioresistant glioblastoma and nasopha-

ryngeal carcinoma cells, respectively.96,97

In addition, HER2, overexpressed in some cancers, has also been

leveraged to improve tumor targeting/treatment of breast, pancreatic,

ovarian, endometrial, gastric, and esophageal cancers.98 HER2

targeting strategies include monoclonal antibodies (e.g., Traztuzumab,

Pertuzumab, etc.), tyrosine kinase inhibitors (e.g., Lapatinib, Neratinib,

etc.), Hsp90 inhibitors (e.g., Tanespimycin, Retaspimycin, etc.) or inhib-

itors of downstream signaling such as mTOR and PI3K pathways

(e.g., Everolimus, PI-103, etc.).98 Silica NPs functionalized with

hyperbranched polyamidoamine as well as an anti-HER2 antibody

successfully targeted human SK-BR-3 breast cancer cells over-

expressing HER2.99 HER2 is a rational target beyond just breast can-

cer, as multiple epithelial tumor types correlate HER2 overexpression

with poor clinical outcome.100 Anti-HER2 functionalized gold and sil-

ver NPs have also been used to radiosensitize breast cancer.101,102

Other antibodies used for radioenhancer NPs include Anti-RhoJ,

which is expressed in the vasculature of peri- and intratumoral

regions, and cmHsp70.1 antibody, which targets a heat shock protein

expressed on aggressive glioma cells.103–105

Another commonly utilized strategy for targeting is to conjugate

the particles with folate or folic acid. One study comparing the effi-

cacy of nano-radiosensitizers decorated with folic acid, glucose, or

glutamine found that both glutamine and folic acid significantly

increase the efficacy of the radiosensitizers for breast cancer. How-

ever, neither showed significant advantage over the other.106 Despite

this, using folic acid and folate remains a major strategy for tumor

targeting nano-radioenhancers. Combined folate- and RBC

membrane- functionalized bismuth NPs enabled an increased survival

in mouse models of breast cancer compared to the nontargeted NPs
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and radiation alone.107 Other studies have used bovine serum albumin

NPs with folate to target breast cancer in vitro.108 Multiple studies have

developed nano-radioenhancer formulations utilizing folate targeting

nasopharyngeal cancer as a model of head and neck cancers. All of these

studies demonstrated radio-sensitizing efficacy using KB cells, which

overexpress the folate receptor.82,109,110 In vitro studies done by

Shakeri-Zadeh et al. used folate conjugated gold NPs and nanorods

to enhance the effects of radiation and photothermal therapy.109,110

Werner et al. found that, in vivo, PLGA–lecithin–PEG NPs containing

docetaxel with folate were more effective at radio-sensitizing KB cell

tumors than free docetaxel or the nontargeted NPs.82 Folate-conjugated

NPs have also been shown to target gliomas for radio-sensitization, as

folate receptors are overexpressed in some brain tumors, as well as on

the luminal side of the BBB endothelial cells, which can help bring

folate-conjugated NPs into the brain through the BBB.111,112

A variety of other strategies have also been utilized. Conjugating

particles with Arg-Gly-Asp (RGD) has been used for the radio-

sensitization of lung, breast, and cervical cancer. RGD peptides recog-

nize a few integrins, including the αvβ3 integrin, which have increased

expression on tumor blood vessels and some cancer cells.113–118

Thio-glucose is another targeting modality used for a variety of differ-

ent cancers. Cancer cells exhibit a higher glucose metabolism than

normal tissues, resulting in preferential uptake of the thio-glucose

bound NPs than by normal tissue cells.119–121 In addition, glioma cells,

along with the BBB, express low-density lipoprotein receptor-related

protein-1 (LRP-1) which can be targeted with angiopep-2 conjugated

NPs for radio-enhancement.89,122

It is important to note that the majority of cancer nanomedicines

that are approved or undergoing clinical trials rely on passive

targeting.123 In addition, active targeting strategies do not fully

address the issue of off target effects123 as the targeted receptors are

also expressed on normal tissue, though to a lesser extent (e.g., EGFR,

HER2, transferrin, folate receptors, etc.).124

3.5 | Radiosensitizer combination for an enhanced
effect

Radiosensitizer combinations have also been explored to achieve an

enhanced therapeutic effect, including, but not limited to, tandems of:

(i) two NP radiosensitizers,125 (ii) NP radiosensitizers and a chemo-

therapeutic drug,70 (iii) NP radiosensitizers and tumor oxygenation126

or including (iv) dual effect NPs displaying radiosensitizing and gluta-

thione trapping effect.127 Indeed, Cheng et al. engineered dumbbell-

like NPs made of gold and titanium dioxide NPs to achieve a synergis-

tic radiosensitization effect in vitro using triple-negative breast cancer

SUM159 cells.125 Such technology translated with a significant thera-

peutic effect both on tumor growth and animal survival in SUM159

tumor-bearing mice.125 Mirjolet et al. have established a synergistic

effect of radiosensitizers docetaxel and titanate nanotubes in a murine

model of PC-3 xenografted tumors.70 In addition, Song et al.

engineered oxygen nanoshuttles made of Bi2Se3 NPs functionalized

with the oxygen carrier perfluorocarbon.126 Oxygen is released via the

evaporation of perfluorocarbon, triggered by the near-infrared light

activation of the Bi2Se3 NPs.126 Interestingly, Zhang et al. developed

“glutathione-depleting gold nanoclusters” in order to leverage the dual

properties of the NPs via both intrinsic radiosensitivity and by seques-

tering glutathione,127 otherwise implicated in ROS “quenching.”128

4 | EARLY CLINICAL TRIALS

There are currently no FDA-approved nanosized radioenhancers for

cancer radiation therapy and a single formulation has received

European approval. Clinical trials are evaluating the efficiency and

safety of two NP candidates utilizing gadolinium (Gd) chelates into

polysiloxane NPs (AGuIX) and hafnium-based NPs (NBTXR3, also

known as PEP503). Polysiloxane Gd-chelates-based NPs and hafnium

oxide NPs enable both radiosensitization and multimodal imaging of

tumors prior to radiation, using MRI and CT, respectively. In trials,

AGuIX is administered via intravenous injection (IV), while NBTXR3

can potentially be administered by either intra-tumoral (IT) or intra-

arterial (IA) routes (NCT01946867 v5 and NCT02721056 v6). The

advantage of the IT injection is that it bypasses the challenges associ-

ated with inefficient biodistribution to tumors following vascular

administration (compared to the initial injected dose).

Clinicaltrials.gov was used to perform the search using the follow-

ing terms: radiation, cancer, NPs (Table 2). Trials involving NPs used

as a mean of drug delivery only were excluded.

4.1 | Trials involving AGuIX

The first phase I trial (NANORAD, NCT02820454) was dedicated to

patients with multiple brain metastasis from non-small cell lung cancer

(NSCLC), breast cancer, colon cancer, or melanoma and therapy con-

sisted of whole brain radiotherapy (WBRT) (10 � 3Gy/fraction over

3 weeks) combined with IV AGuIX nano-radioenhancers.129 The dose

escalation was designed with 15, 30, 50, 75, and 100 mg/kg doses.129

Fifteen patients were enrolled and no dose-limiting toxicity (DLT) was

observed across the dose escalation cohorts. AGuIX mean plasma

half-life was 1.3 h. Thirteen out of 14 observable patients had stabili-

zation or reduction in tumor burden.130 The diagnostic potential of

AGuIX was also assessed and compared to Dotarem®, a gadolinium-

based contrast agent.131 Results indicate a linear correlation between

MRI SE (spin echo) values and increasing AGuIX injected doses.

Finally, AGuIX MRI SE was still detected a week post-injection, which

denotes a key improvement in local retention, in comparison to exis-

ting Gd-based contrast agents.131

This initial success led to the NANORAD2 phase II trial

(NCT03818386) that is currently recruiting patients and consists of

3 � 100 mg/kg AGuIX IV injections (7 days prior to WBRT, before the

1st fraction and before the 6th fraction; 30 Gy and 3 Gy/fraction over

2–3 weeks). The primary endpoint compared to WBRT alone in this

randomized trial is assessment of brain disease response at 3 and

6 months using RECIST (Response Evaluation Criteria in Solid Tumors).
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A second single arm phase II trial (NANOSTEREO, NCT04094077)

aims to assess the efficacy of AGuIX activated by fractionated stereo-

tactic radiotherapy (SRT) in treatment of brain metastasis. Specifically,

100 mg/kg AGuIX is injected intravenously at days 4 and 8 followed by

SRT on days 8 to 15 according to standard regimen. Similarly, the pri-

mary endpoint is brain metastases' response using RECIST. This trial

has been terminated and a new trial design, including a second arm (pla-

cebo control group), is currently recruiting (NCT04899908).

Next, the NANOCOL phase I trial (NCT03308604) focused on

treating cervical cancer with combined radiotherapy (RT) (45 Gy,

25 fractions over 5 weeks) assisted by AGuIX NPs and cisplatin

(40 mg m�2 weekly injections during RT), and followed by uterovaginal

brachytherapy (15 Gy over 2 weeks).66 The study focuses on safety

and dose escalation with 20 mg/kg (level �1), 30 mg/kg (level 1), and

50 mg/kg (level 2) doses and follows a modified toxicity probability

interval (mTPI) design. Such a clinical trial design has been reported to

be safer compared to a standard 3 + 3 phase I design.132

AGuIX activated by stereotactic body radiation therapy (SBRT) is

also evaluated in comparison with stereotactic magnetic resonance

(MR)-guided adaptive radiation therapy (SMART) alone for the treat-

ment of non-small cell lung cancer and advanced pancreatic adenocar-

cinoma (NCT04789486, phase I–II). Phase I will established the

recommended phase II dose, while phase II will evaluate efficacy.

Primary endpoint is maximum tolerated dose and secondary end-

points include overall response rate, progression-free survival, overall

survival, quality of life data, as well as serious AEs.

Lastly, a phase II trial is currently ongoing with AGuIX activated via

hypofractionated proton therapy (NCT04784221). The treatment con-

sists of IV injections of AGuIX on days 1, 8, and 15 and proton therapy

(20 fractions, day 1 to 26). The trial is a single arm study that evaluates

local efficacy of tumor regression and local progression-free survival rate.

A new generation of these particles (Bi@AGuIX) is under preclinical

evaluation. The formulation includes bismuth (Z= 82) in addition of gad-

olinium (Z = 64), with the rationale that a higher Z would lead to a

greater radiosensitization effect.133 This formulation showed superior

efficacy in tumor burden in vivo as compared to the radiotherapy control

(no particles).133 In comparison to the first generation AGuIX, Bi@AGuIX

led to a decrease in in vitro cell survival following irradiation.133

4.2 | Trials involving NBTXR3 (also known as
Hensify® and PEP503)

The initial phase I study (NCT01433068) focused on locally advanced

soft-tissue sarcoma and involved dose escalation with IT injection of

2.5%, 5%, 10%, and 20% of tumor volume at 53.3 g/L.134 This was

followed by radiation therapy (5 weeks, 50 Gy, 2 Gy/fraction) starting

24 h following injection, and tumor resection at 6–8 weeks post-

radiation. Dose-limiting toxicities (DLT) were observed in the 20%

dose group and thus the recommended dose was defined at 10%

initial tumor volume. This was followed by a randomized, multicentre,

international phase II–III trial (NCT02379845) in patients with soft

tissue sarcomas. The trial consisted of a single IT injection of NBTXR3

NPs (10% of tumor volume at 53.3 g/L), followed by radiation therapy

(5 weeks, 50 Gy, 2 Gy/fraction) starting 24 h following injection, and

tumor resection at 5 weeks post-radiation.135 The goal of the study

was to determine the DLT and safety profile of NBTXR3. A total of

176 eligible patients were analyzed out of 180 enrolled; 9% of

patients developed grade 3–4 AEs; 39% versus 30% of patients devel-

oped a serious adverse event (SAE) in the NBTXR3 group versus

radiotherapy alone. The primary endpoint was the pathological com-

plete response with a significant difference of 16% versus 8%

(p = 0.044) in the radiotherapy with NBTXR3 group versus radiother-

apy alone. The use of NBTXR3 (Hensify®) in patients with soft tissue

sarcomas has been approved in Europe on April 4, 2019.

The success of the initial trials using NBTXR3 led to further clini-

cal trials such as the phase I/II trial (NCT02721056), a dose-escalation

study for patients with HCC or liver metastasis. The dose-escalation

study was designed as follows: 10%, 15%, 22%, 33%, and 42% of

tumor volume at baseline, using a 3 + 3 design.136 The radiation dose

following particle injection was 45 Gy using three fractions of 15 Gy

over 5–7 days or 50 Gy using five fractions of 10 Gy over 5–15 days.

Interim results published in November 2020 indicated no DLT and a

single patient (out of 22) developed a SAE. Disease assessment with

RECIST showed five patients with complete response and three with

partial response (HCC group), as well as five patients with partial

response and one with stable disease (liver metastasis group).137 This

trial has been terminated following the determination of the rec-

ommended phase II dose, along with a change in standard clinical

practice for HCC (NCT02721056 v6).

Further translation has been extended to patients with locally

advanced squamous cell carcinoma of the oral cavity or oropharynx

(NCT01946867 phase I trial). A similar 3 + 3 design was used for the

dose-escalation study (dose levels: 5%, 10%, 15%, and 22% of base-

line tumor volume) and IMRT was used to deliver a total dose of

70 Gy in 35 fractions over 7 weeks. Out of 19 patients, five patients

developed low-grade AEs (one grade 1 and four grade 2 events), no

DLT and SAE were observed and nine patients had a complete

response (out of 13 patients, as measured at 7 weeks following

NBTXR3 IT injection).138 It is unclear if patients were accrued to the

study arm with NBTXR3 IA administration (NCT01946867 version 5)

as this arm of the study has not been reported to date.138

Additional trials include (i) in advanced cancers (i.e., squamous cell

carcinoma of head and neck, metastatic gastric cancer, metastatic cer-

vical cancer, metastatic squamous cell carcinoma, metastatic mela-

noma, metastatic lung, and metastatic bladder cancers) in conjunction

with anti-PD1 immunotherapy (phase I, NCT03589339) and (ii) in the

treatment of prostate adenocarcinoma in conjunction with brachy-

therapy (phase I/II, NCT02805894). The study design for phase I

NCT03589339 assesses IT NBTXR3 activated by stereotactic ablative

radiotherapy (SABR) in combination with an anti-PD1 immunotherapy

agent. The study design for phase I/II NCT02805894 included IT

NBTXR3 activated by IMRT (phase I) and IT NBTXR3 activated by

brachytherapy and IMRT (phase II). This trial has been terminated due

to a change in standard clinical practice in the treatment of prostate

cancer (NCT02805894 v14).
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NBTXR3 is currently being evaluated with additional phase I/II

trials. First, a single arm trial is intended for patients with head and neck

squamous carcinoma (NCT02901483). The intervention consists of

IT PEP503, in combination with weekly administration of cisplatin

(dose varies according to PEP503 dose level) and radiation therapy

(70–72 Gy, 2–2.12 Gy/fraction over 7 ~ 8 weeks). The primary end-

points of this trial are the determinations of DLT, SAE and the rate of

local disease control at 1 year. Further, PEP503 is also being evaluated

as radiosensitizer in combination with chemotherapy for patients

undergoing neoadjuvant therapy for rectal cancer (NCT02465593).

The dose-escalation study follows a 3 + 3 design and the escalation

doses are 5%, 10%, 15%, and 22% of the tumor volume at baseline.

The intervention consists of IT PEP503 (day 1), followed by pre-operative

radiation (tumor and nodes: 200 cGy/fraction, 25 fractions; pelvis:

180 cGy/fraction, 25 fractions, 5 times/week) with concomitant chemo-

therapy: 5-fluorouracil (225 mg/m2 daily, 5 days/week, 5 weeks during

radiotherapy) and capecitabine (825 mg/m2 twice a day, 5 days/week,

5 weeks during the radiotherapy). Twenty patients were enrolled and

distributed as follows for the dose escalation: 7 (5%), 4 (10%), 3 (15%),

and 6 (22% of tumor volume at baseline). Data presented at the

2021 American Society of Clinical Oncology Gastrointestinal Cancers

Symposium (ASCO-GI 2021, Poster #66) showed no observed SAEs,

highlighting good tolerability of PEP503, and a single DLT (a urinary tract

infection). 90% of patients underwent surgery: pathological complete

response was measured in 17.6%, and 50% had tumor regression to

grade 0 or 1 (using the American Joint Committee on Cancer [AJCC]

tumor regression grade [TRG] system). The phase II study is currently

ongoing using a 22% PEP503 dose. Next, NBTXR3 is being assessed

in the management of locally advanced- or borderline-resectable pancre-

atic cancer (NCT04484909, phase I). In this single arm study, patients

receive IT radioenhancers (day 1), followed by radiation (15 fractions

during days 15–43). The primary endpoint is the determination of DLT,

MTD and recommended phase II dose. Secondary outcomes include

the determination of progression-free and overall survival (PSS and OS),

as well as whether pancreatic injection of NBTXR3 can be achieved.

NBTXR3 is also being evaluated for the treatment of inoperable recurrent

non-small cell lung cancer (NCT04505267, phase I). Primary outcomes

are the determination of occurrences of DLT and recommended phase II

dose. Secondary outcomes include determination of AE, feasibility of

injection in lung, lymph nodes, determination of complete, partial

response, or stable disease (objective response rate, ORR) along with

local disease control rate, and survival parameters.

Recently, NBTXR3 + IMRT is being assessed in conjunction with

chemotherapy (NCT04615013, phase I) in the treatment of esopha-

geal cancer. The regimen consists in IT or IN (intra-nodally) injection

of NBTXR3 on day 1 followed by radiation and concurrent chemo-

therapy (from day 15, 28 fractions over 6 weeks). Primary outcomes

are the determination of occurrences of DLT and recommended phase

II dose. Secondary endpoints comprise late onset AE, ORR, major

pathological response rate, feasibility of injection in tumor and nodes

involved, and survival parameters.

Finally, NBTXR3 is evaluated in combination with immunotherapy

(pembrolizumab) in the context of recurrent and non-resectable head

and neck squamous cell carcinoma (NCT04834349, phase II). NBTXR3

is administered IT on day 1, followed by SBRT during days 15–29 (first

arm) or 15–50 (second arm). Immunotherapy starts on day 15 with

repeated cycles every 3 weeks and up to 2 years for both cohorts. Pri-

mary endpoints include ORR 6 months post-RT, progression-free sur-

vival, and late AEs. Secondary endpoints are ORR and overall

response at 5 years, acute AEs and survival parameters.

4.3 | Trial involving Ferumoxytol
(superparamagnetic iron oxide NPs)

In November 2020, a phase I prospective observation study has been

launched for the use of Ferumoxytol, that is, iron oxide NPs, to

enhance radiotherapy using a MR-Linac in the treatment of primary or

metastatic hepatic cancers and liver cirrhosis (NCT04682847, phase

I). The MR-Linac enables both the visualization of the tumor and NPs

via MRI, as well as the delivery of radiation therapy.

5 | CONCLUSION AND FUTURE
CHALLENGES

In this review, we discussed the recent advances involving the use of

NPs as radiation therapy enhancers, both in preclinical and clinical stud-

ies. Such nanoscale technologies still face some critical biological bar-

riers when injected intravenously such as nonspecific biodistribution,

clearance by the reticuloendothelial system, hemorheological consider-

ations, and cell internalization.139 The use of active targeting strategies

has shown promising success (vs. nontargeted nanoformulations) in the

context of radioenhancement and drug delivery. However, the vast

majority of the injected dose remains inefficiently delivered and is thus

cleared. This led some investigators to use the intra-tumoral route for

tumors of known location and, importantly, that are within reach. How-

ever, this translates into a limited number of eligible cancers. Thus, the

next generation of nano-radioenhancers would benefit from improved

biodistribution and tumor retention. A greater retention might enable a

reduction in frequency of injections before each radiation fraction.

These efforts could potentially be achieved by combining strategies

such as keeping the macrophages in clearance organs occupied prior to

nanomedicine injection (such as demonstrated by Germain et al.34), and

leveraging the shape of NPs for improved targeting and/or retention

(such as the strategies described in references,25,73 respectively). In

addition, approaches leveraging the intra-operative delivery of

nanoformulations post tumor resection would be of particular interest

to eliminate potential residual tumor/tumor margins using NP-

sensitized radiation. Such strategy has recently been developed for glio-

blastoma patients by Grauer et al.140 An iron oxide NP paste was

applied to the tumor resection site prior to combined hyperthermia and

radiation therapies.140 A localized inflammatory response was observed

and Grauer et al. hypothesized that it might encourage an antitumor

immune response. Significantly, two out of six patients exhibited dura-

ble responses (overall survival greater than 23 months).140
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In addition, it would be beneficial to compare multiple formulations

in parallel to gain a greater understanding of all the key parameters

involved. Furthermore, systematically disclosing the type and energy

level of the applied radiation would facilitate the comparison of formula-

tions across trials and studies. An issue that is seen in many studies in

the cancer nanomedicine field is different standards of measuring the

efficacy of anti-cancer treatments. Measurement of the efficacy of thera-

peutics varies in both in vivo and in vitro studies. These differences could

be possibly mitigated by reporting the sensitizer-enhancement ratio, as

some studies do, so that formulations' radiosensitizing effect could be

better compared across studies. Other considerations would include fully

reporting NP's physico-chemical attributes, including their specific sur-

face. Higher NP surface area directly provides greater opportunities for

surface interactions, which is especially important in the context of ROS

production.141 In this regard, elucidating the specific surface contribution

of nano-radioenhancement by varying size/shape of NPs of similar com-

position, could help in designing the next generation of nano-sensitizers.

Numerous preclinical studies regarding the use of NPs as radio-

enhancers or sensitizers have been published; however, very few

studies translate into clinical trials. This could be explained by the dif-

ficulty in manufacturing NPs following Good Manufacturing Practices

(GMP), along with extensive toxicity studies which are required under

Good Laboratory Practice (GLP) conditions. It is worth noting that var-

ious routes toward approval can be explored with varied regulatory

requirements.142 For instance, NBTXR3 (Nanobiotix, France) and

AGuIX (NH TherAguix, France) are currently being evaluated as “medi-

cal device” and “drug,” respectively, according to their clinical trial

descriptions provided by clinicaltrials.gov.

A further in depth understanding of all the key parameters and

specific mechanisms of action involved in NP radiosensitization

effects might help address part of the current gap in the translation of

these nanotechnologies to the clinic.
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