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1 | HISTORY OF RADIATION IN CANCER

The first medical X-ray image of a hand is attributed to German physi-
cist Wilhelm Conrad Roéntgen in 1895. In the years to follow, it
became clear that the use of X-rays was associated with side effects
such as skin burns® and hair loss.? Thus, the idea of using them as a
potential mean of treating tumors emerged. In parallel, there have
been many advances in the development of X-ray tubes.® X-rays are
produced from electrical current, that is, an electron beam discharged
from a hot cathode in vacuum. The beam of electrons produces X-rays
as it encounters the anode or glass wall (in the case of the early-
developed X-ray tubes, e.g., the Coolidge tube, in 1913). The first
reported case of using radiation therapy to treat cancer with a similar
device was reported in 1896 by French Physician Dr. Victor

Despeignes for the exploratory treatment of a patient with gastric
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Improving the efficacy and spatial targeting of radiation therapy while sparing sur-
rounding normal tissues has been a guiding principle for its use in cancer therapy.
Nanotechnologies have shown considerable growth in terms of innovation and the
development of new therapeutic approaches, particularly as radiosensitizers. The aim
of this study was to systematically review how nanoparticles (NPs) are used to enhance
the radiotherapeutic effect, including preclinical and clinical studies. Clinicaltrials.gov
was used to perform the search using the following terms: radiation, cancer, and NPs.
In this review, we describe the various designs of nano-radioenhancers, the rationale
for using such technology, as well as their chemical and biological effects. Human trials

are then discussed with an emphasis on their design and detailed clinical outcomes.

cancer, nanosized radiosensitizers, radiotherapy

cancer.*> Then, the first instance of brachytherapy shortly followed
Drs. Pierre and Marie Curie's discovery of radium in 1898. In July
1903, Dr. Alexander Graham Bell suggested the use of brachytherapy
in a letter to Dr. Z. T. Sowers; the correspondence was published in
the journal Nature.® In October 1903, Dr. Margaret Abigail Cleaves, an
American physician focused on psychological and gynecological disor-
ders, was the first to use radium in the treatment of gynecologic
malignancies via brachytherapy.” Since then, the management of can-
cer patients using radiation has significantly evolved, with the greater
understanding of the physics and adverse events (AEs) that accom-
pany X-ray therapy. Indeed, radiation-induced leukemia or malignant
skin changes were evidenced as early as 1900.8 Optimization of the
dose intensity delivered and its fractionation have been some of the
major improvements, along with the deployment of modalities that

have significantly improved the spatial targeting of radiation.”'° Over
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the last few years, conventional radiotherapy has progressively been
replaced by conformal radiotherapy (CFRT) where the radiation beam
is geometrically controlled to fit the tumor shape while sparing
the surrounding organs. Additionally, intensity-modulated radiation
therapy (IMRT) has become the gold standard in radiotherapy treat-
ment by allowing a controlled irradiation field shape, like convention-
ally fractionated radiation therapy (CFRT), but its intensity is also
modulated within the irradiated area. Today, IMRT is associated with
image-guided radiotherapy and radiotherapy, in general, is now a
common component of multidisciplinary cancer care, used in conjunc-
tion with surgery and other systemic therapies.’

More recently, a new irradiation modality called hadron therapy
has been developed, using charged particles instead of photons.® In
1946, Robert R. Wilson was the first to propose the use of proton
beams for the treatment of cancer.!! The major advantage of this
technique is its depth-dose profile characterized by a significant
increase in the dose deposited at the end of the particle path.? Based
on clinical data and in vivo experiments, Paganetti et al. have demon-
strated that the relative biological effectiveness (RBE) of protons was
close to 1.1. This implies that protons lead to the same cancer cell
death in comparison to photons, with a 10% reduced dose of radiation
delivered to tissues.'®> RBE depends on several parameters including
the linear energy transfer (LET), which is why the RBE of charged par-
ticles varies along their path and is significantly higher near the Bragg
peak. Photons have a low LET coefficient, meaning that they ionize
atoms in the tissue that are spaced by several tenths of a micrometer
apart, sparsely and randomly along their path. In contrast, LET is
higher for protons, which generate more radicals per particle track
than lower-LET ones.'* Finally, hadron therapy relies on two key
parameters®: (i) ballistic features allowing a dose optimization into
tumor volume, sparing surrounding healthy tissues, and (ii) biological
features that allow a greater RBE associated with a high LET along
their path. Using this method, the dose can be deposited in a chosen
area with a high accuracy. Proton therapy is an especially good option
for the radiation therapy of pediatric cancers, given the sensitivity of
developing organs to radiation and potential long-term side effects.'®

2 | INTERACTION OF PHOTONS WITH
MATTER

The photon attenuation in matter is due to three different processes:
photoelectric effect, Compton scattering (Rayleigh scattering can be
neglected), and pair production.t” A photon can transfer its energy to
one electron of the target leading to an electron ejection from the atom,
that is, the photoelectric effect. During this effect, the energy of the
incident photon is totally transferred to an electron in an inner shell
(photoelectron). The vacancy created in the inner layer is filled by an
electron from an outer layer, the energy being released in the form of a
fluorescence X-ray photon or an Auger electron. For K shell vacancies,
the Auger yield decreases with atomic number (Z), and for Z = 30 (zinc)
the probabilities of the emission of X rays from the innermost shell and
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of the emission of Auger electrons is about equal.”® When Compton

scattering occurs, the electron is spread away together with a new pho-
ton that has a lower energy than the incoming one. Highly energetic
photons (E > 1.02 MeV) produce an electron-positron pair. This posi-
tron slows down in matter and strikes with an electron leading to the
formation of two gamma rays of 0.511 MeV. Photons are produced in
opposite directions. Depending on the atomic number of the material,
each phenomenon contributes in a different way to the total photon
attenuation. At low energy (below 100 keV), the photoelectric effect
governs the attenuation. For energies between 100 keV and 10 MeV,
the Compton effect becomes the primary process for attenuation,
regardless of the intervening material.'? Above 10 MeV, pair produc-
tion dominates. Since energies used in clinical practice are usually
between 0.3 and 20 MeV, the Compton effect is the dominant effect

when the photon passes through tissues.

3 | PRECLINICALSTUDIES BASED ON
THE USE OF NANO-SENSITIZERS IN CANCER
RADIATION THERAPY

3.1 | Rationale for using NPs to target tumors and
initial evidence of radiation enhancing property of NPs

Tumor growth is associated with angiogenesis, the formation of a vas-
cular bed surrounding the tumor, in order to provide it with essential
nutrients that support continued cancer growth. The newly formed
vasculature is in essence disorganized and leaky, which provides an
ideal environment for nanosized particles injected in the bloodstream
to passively permeate into tumor tissue. This effect has been named

the enhanced permeability and retention (EPR) effect.2®

Nanoparticles
(NPs) end up at the tumor site due to the porosity of the local endo-
thelium and are subsequently retained in the tumor because of the
ineffective lymphatic drainage at the tumor level.2® Thus, NPs repre-
sent an ideal candidate to deliver chemotherapeutic drugs to tumor
site, minimizing side effects to healthy tissues. Even though some
nanomedicines have reduced toxicity for patients compared to free
drug (e.g., Doxil vs. Doxorubicin), their accumulation in the tumor usu-
ally represents a very limited fraction of the injected dose.?! Indeed,
Wilhelm et al. reviewed 10 years of data and concluded that 0.7% of
the injected dose typically reaches the tumor site.?* Thus, strategies
have been developed for particles to actively target the tumor site by
tagging them with molecules able to recognize ligands within the
peripheral vascular bed (e.g., vascular endothelial growth factor
(VEGF) receptor??), the extracellular matrix?® or on the surface of can-
cer cells (e.g., folate receptor,* epidermal growth factor receptor
(EGFR), human epidermal growth factor receptor 2 (HER2)2>29), Inter-
estingly, tumor homing can also be enhanced by utilizing tubular-
shaped NPs, 2> which undergo high levels of phagocytosis by immune
cells compared to their spherical counterparts. These cells subse-
quently travel to the tumor via the bloodstream, delivering the nan-
otubes and their drug payloads. Additionally, tagging NP surface with
the marker of self (CD47) delays their recognition and clearance, thus

increasing their ability to accumulate at tumor site.?® Similar strategies
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based on coating the NPs with RBC (red blood cell)?” or leukocyte?®
membranes have successfully extended the circulation time of NPs in
murine models. Using external stimuli to improve targeting has also
been explored, such as using ultrasound stimulation to break nan-
oassembled microparticles, exclusively at tumor site, thus enhancing
their accumulation.?? Targeted delivery using an external magnetic field
is also possible; iron oxide NPs represent an efficient means of drug
delivery in that case.*° Hyperthermia or ultrasound have also been used
to break biological barriers at microscopic level (e.g., blood-brain barrier
[BBB]) and improve nanomedicine delivery®® (Table 1).

Besides utilizing active targeting, local administration of NPs can
allow for increased accumulation of the radiosensitizers at the tumor
site, while limiting the potential toxicity associated with systemic
circulation.®* Hence, the recent review by Boateng and Ngwa®!
highlights the various possible routes of administration of nano-
radioenhancers from passive delivery systems to implantable-sustained
release systems. Utilizing “smart” spacers (i.e., implantable release
systems) during radiotherapy allows for NP radioenhancers to be locally
applied.3? As spacers are often used during radiotherapy to guide the
geometric localization of the treatment, switching from inert spacers to
“smart” spacers would not require additional procedures.3? Inhalation
of radiosensitizers also allows for local administration to the lungs and
has been shown to be effective.® Lastly, as the liver and spleen are the
primary clearance organs of such biomaterials, strategies consisting of
priming/saturating the liver with ghost particles before administering
the nanomedicine have been successfully achieved.3* The parameters
affecting biodistribution, including circulation time following IV injec-
tion of NPs, are highly dependent on NP's intrinsic properties such as
their size, composition, surface charge, surface functionalization (along
with grafting density), shape, etc.®® In addition, NP interaction with
plasma proteins leads to the formation of an adsorbed protein corona
that further modulates NP fate as it can affect its resulting size, surface
charge, and overall stability.3>3¢ PEGylation of the NP surface is a
widely used strategy to significantly decrease plasma protein adsorp-
tion and improve circulation time of NPs.3”

Nano-radioenhancers are capable of enhancing the sensitivity of
cancer cells to radiation. The biological effects subsequent to the use
of nano-enhancers to potentiate tumor cell radiation have been

1.38 and include: (i) reactive oxygen species (ROS)

reviewed by Sun et a
production (leading to oxidative stress, also called the chemical
phase®), as well as (i) DNA damage. Both the levels of ROS produc-
tion and DNA damage appear to be inversely proportional to the size
of NPs,%® suggesting that particles with larger surface area to volume
ratios produce more ROS and DNA damage. Next, nano-sensitizer-
assisted radiation also induces (i) cell cycle arrest in the G2/M

transition,*-42

which then leads to apoptosis (Figure 1). However, cell
cycle arrest in G1/S followed by senescence has also been observed
Mitochondrial

highlighted in multiple studies.***> For example, a study by Ghita

with  nanodiamonds.*® involvement has been
et al. used soft X-ray microbeam (carbon K-shell, 278 eV) to achieve
subcellular targeting of radiation (i.e., cytoplasmic and nuclear irradia-
tion) in an effort to better understand the mechanistic effects of gold

nano-radioenhancers.** Exclusive cytoplasmic irradiation of MDA-

MB-231 human breast cancer cells combined with 1.9 nm Aurovist™
(located in the cytoplasm) still led to DNA damage, along with mito-
chondrial depolarization (oxidation). Ghita et al. highlighted that mod-
ulation of the physico-chemical parameters of the particles might lead
to different effects** Many studies describe the NP's ability to
enhance cell death upon irradiation. Interestingly, some papers report
significant radiosensitization effects in vitro with very low quantity of
NPs.#¢ Regarding this study,*® Penninckx et al. calculated that 0.001%
of gold NPs per mass (650 NPs per HepG2 human liver cancer cells)
led to a radiosentizing effect which was 250 times greater than
predicted.?’ This highlights that critical factors for radioenhancement
go beyond the dose of NPs.*” Oxidative stress has been highlighted
as playing a key role as demonstrated by Daems et al. and Penninckx
et al. They found that gold NPs inhibit thioredoxin reductase (TrxR) and
glutathione reductase, regulators of redox reactions, in both cancer and
normal cells*’*® Guerreiro et al. introduce the idea of the catalytic
nature of NPs, with “a sea” of radiolytic reactants near the NP surface
influencing the radioenhancer capability.*’ This point of view may
explain why some NPs made of elements with relatively low atomic
numbers are also efficient as radiosensitizers. Lastly, a literature exami-
nation by Dr. Kempson focusing on the mechanisms involved in
nanoradiosensitization highlights that nanosensitizer effects cannot be
generalized as they depend on both the biological environment and
particle intrinsic properties.”® Another important parameter has been
highlighted by Cui et al., who demonstrated that the radiosensitization
of gastric cancer cells with miRNA-200c delivery via PEG-Pep-PCL
copolymers NPs may be explained by a decrease in invasiveness and
better targeting to radioresistant cancer stem cells.>?

Finally, five factors have been identified to explain the biological
effects of radiotherapy, referred to as the “5 R's of radiotherapy”®’
(Figure 2): Repair (DNA repair processes after irradiation), Redistribu-
tion (among the various cell cycle phases), Repopulation (cellular
growth and proliferation between radiotherapy fractions), Re-
oxygenation (radiation induces vasodilatation that enables increased
tissue perfusion®?; the increased oxygen concentrations in the tumor
microenvironment facilitate two effects during the subsequent radio-
therapy fraction: ROS production and cell death, while cells in the
hypoxic fraction of the tumor remain more resistant to the treatment)
and intrinsic radiosensitivity (tumor and/or patient-specific response).
As previously mentioned with several examples, NPs may synergize
with several of these factors. In a recent review, Penninckx et al. sum-
marize how gold NPs, used as radioenhancers, affect these 5-R factors
at the molecular and cellular levels.®? In this review, the authors also
point out the major differences induced in these factors for low LET
radiation (mainly X-rays) and high LET radiation (i.e., protons, alpha
rays, or heavy ions) when combined with nano-radioenhancers. In par-
ticular, they notice that, independent of the proton energy or the gold
NP size/concentration, the physical enhancement is negligible, even if
significant radiosensitization effects are observed.>® Moreover,
Heuskin et al. calculated that the interaction probability of gold NPs
with proton radiations is negligible; demonstrating that chemical or
biological enhancement should be envisioned.>* Interestingly, the

oxygen-enhancement ratio (OER, defined as the ratio of hypoxic over
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FIGURE 1

Tl + Oxidative stress

Schematic of the radiobiological effects of nanoparticle radiosensitizers. Radiation-activated NPs, or nano-radioenhancers, enable

sensitization of tumor cells to radiation by the synergistic production of reactive oxygen species (ROS) inducing oxidative stress, cell cycle arrest,

and DNA double strand damage, and ultimately, cell death. Mitochondrial oxidation involvement has been highlighted in some studies as well.

Created with BioRender.com

FIGURE 2 Schematic of the

5R's of radiotherapy: DNA repair, .
redistribution, repopulation, re- SOGOIAK
oxygenation, and intrinsic N
radiosensitivity. Created with WM

BioRender.com
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normoxic doses of radiation leading to the same effect) decreases
with increasing LET.>®> For example, Barendsen et al. demonstrated
that higher LET «-particles have an ability to affect hypoxic and
normoxic T1g cells to a similar level given an OER close to 1 (i.e., 1.3)
at optimum LET (around 100 keV/pm).>

3.2 | NPs with intrinsic radioenhancer properties
The ability of NPs to act as X-ray radiosensitizers is commonly
explained via the physical phenomena described in Section 2, and par-

ticularly due to the increased absorption of X-rays associated with the

4445

o &

Gophase.
(resting)
G,

e &

Redistribution

&

Vasodilatation: O,1

Tumor
specific
Patient
specific
Intrinsic

radiosensitivity

emission of secondary electrons and fluorescence photons.>® These
phenomena lead to an enhancement of energy deposition. Thus, in
the context of radio-enhancement, priority has been given to high
atomic number elements. The combination of photon radiation and
heavy NPs leads to local radiation hardening and higher LET.>” Among
them, gold (Z = 79) has been widely studied for radiation therapy due
to its biocompatibility.>®>? Hainfeld et al.® demonstrated that gold
NPs injected in mice bearing subcutaneous EMT-6 mammary carcino-
mas induce a one-year survival of 86% versus 20% with X-rays alone.
Bismuth (Z = 83) and platinum (Z = 78) have also been investigated
to enhance radiotherapy. Bismuth oxide NPs and bismuth selenide

nanoplates demonstrate dose enhancements in vitro and in vivo.®%%*
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Li et al. found that ultra-small platinum NPs (1.7 nm) amplify gamma
ray radiation effects by more than 40%, with the most radioresistant
organism ever reported (Deinococcus radiodurans).?

Magnetic NPs have been also evaluated as potent radiosensitizers
for the enhancement of radiotherapy, often in combination with
hyperthermia. Iron oxide NPs incubated with prostate carcinoma cells
led to a dose enhancement of radiotherapy, along with a drastic
increase in the concentration of ROS.43¢%

Gadolinium (Z = 64)-based NPs are another promising nan-
oradiosensitizer. Gadolinium nanoclusters have been developed as
multifunctional theranostic agents (computed tomography [CT] or
[MRI]
photothermal or radiation therapy) against tumors. They are highly

magnetic resonance imaging imaging coupled with
effective in vitro for photothermal ablation of cancer cells and in vivo
for radiotherapy of tumors.® Lux et al. have extensively studied an
ultrasmall formulation made of polysiloxane and gadolinium chelates,
called AGulX for “Activation and Guidance of Irradiation by X-Ray.”
The gadolinium doubles as a contrast agent along with a radio-
sensitizer.® Their efficacy as a radiosensitizer has been demonstrated
in vitro on multiple cell lines, including a radioresistant head and neck
squamous cell carcinoma line. In vivo models have shown AGulX's
ability to radiosensitize multiple types of cancer: glioblastoma (admin-
istration route: V), brain metastases (IV), melanoma (IT), pancreatic
cancer (IV), liver cancer (IV), chondrosarcoma (IT), head and neck can-
cer (IT), and lung cancer (airways).®® These preclinical results using the
gadolinium particles have led to multiple clinical trials (Table 2), which
will be discussed in more detail in Section 4.1.

Crystalline hafnium (Z = 72) oxide NPs with a hydrodynamic
diameter of 50 nm and a negative surface charge (—50 mV) have been
injected in radioresistant and radiosensitive human tumor xenografts
(mesenchymal and epithelial cell lines, respectively).®” The NPs dem-
onstrated marked advantage in terms of survival, tumor growth delay,
and local control in both mesenchymal and epithelial human tumor
xenografts, when compared with radiation therapy alone. These NPs,
called NBTXR3, were well tolerated in animal models. They are now
being evaluated in clinical trials which are discussed further in
Section 4.2.

Thulium (Z = 69) oxide NPs have been successfully evaluated as
CT imaging contrast agents and radiosensitizers in rats bearing 9 L

gliosarcomas®®

and also showed promising in vitro results with
patient-derived cell lines from metastatic cutaneous squamous cell
carcinoma.®’

However, low Z element-based NPs have also demonstrated sig-
nificant potential as radiosensitizers. For example, Grall et al. reported
that radiation-exposed hydrogenated nanodiamonds displayed signifi-
cantly higher ROS compared to both radiation and particle effect
alone, as well as DNA damage, cell cycle arrest, and senescence.*®
Mirjolet et al. used titanate nanotubes to radiosensitize glioblastoma
lines (U87-MG and SNB-19) and observed a significant production of
DNA double strand breaks and cell cycle arrests in the G2/M check-
point.*! A second generation of these nanotubes was then loaded
with taxanes to potentiate the radiosensitization effect, as taxanes
also promote G2/M arrest, making the cells further susceptible to

radiation.”®”1

In prostate (PC-3) tumor-bearing mice, 70% of
Docetaxel-loaded titanate nanotubes were successfully retained in
the tumor 7 days after intratumoral (IT) injection and led to signifi-
cantly reduced tumor growth as early as day 18.”* Such nanotubes
have also been decorated with iron oxide NPs’? and gold NPs,”®
which could potentially enable their use for both image-guided and
synergistic radiosensitization of tumors.

The lack of systematic evaluation of metal oxide NPs in parallel,
led Guerreiro et al. to assess ROS production effect of 22 NP suspen-
sions following 10 Gy of 6-MV X-ray photon irradiation.*’ Key high-
lights from their ROS production assessment demonstrated that:
V,05 produced the most hydroxyls upon radiation (further increased
in comparison to its production of hydroxyls at baseline, i.e., without
radiation, which was already significantly greater than other NPs),
while lanthanides did not produce any (both at baseline and with radi-
ation), TiO, showed a trend toward increased superoxide anion pro-
duction with radiation, MoO3; demonstrated a protective effect as
highlighted by the decreased superoxide anion level detected com-
pared to water, and the following NPs induced a protective effect
regarding singlet oxygen production: V,0s, NiO, CuO, MoOs3,
(Z between 23 and 42), Nd,0O3, Eu,0O3, Gd,03, Dy,05 (Z between
60 and 66).%° As previously explained, this suggests that surface
chemistry of NPs may be the key parameter instead of atomic num-
ber. NPs may act as a catalyzer of surrounding chemical reactions and
increase the overall concentration of radicals. It is worth noting that
these measurements have been done in water and not in biologically

relevant conditions.

3.3 | NPs used to deliver radiation-enhancer
molecules

NPs can also be used as a vehicle to deliver radiosensitizing drugs or
molecules to the tumor site rather than the NPs themselves sensitizing
the tumor. One common strategy is to deliver chemotherapy to the
tumor which can enhance the effects of radiation treatment. Cisplatin,
a commonly used chemotherapy, enhances the effects of radiation
through its interaction (i.e., high reactivity and electron-transfer reac-
tions) with the electrons generated during radiation.”* Liposomal cis-
platin has been found to be effective both in vitro and in vivo against
Lewis lung carcinoma. Furthermore, it was found to be more effective
as a radiosensitizer than free cisplatin due to increased accumulation
within cancer cells.”® Cisplatin has also been conjugated to gold NPs for
tumor sensitization of head and neck cancers, as well as glioblas-
toma.”®”” This is doubly beneficial as the gold NPs in themselves are
radiosensitizers and can act as a tumor imaging agents using CT.”®

NP formulations that target DNA repair pathways have also
shown encouraging results in conjunction with radiation therapy. For
example, twice a week administration of NanoOlaparib, a PEGylated
lipid based-NP loaded with the FDA approved PARP (poly[ADP-
ribose] polymerase) inhibitor Olaparib, has demonstrated greater
tumor reduction when given along with radiation (focused beam; sin-

gle dose of 10 Gy) in a prostate tumor model (using murine Pten®*~/~;
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Trp53°°~/~ FKO1 cells in a nude mouse model), compared to either
radiation or NanoOlaparib controls.”® Strategies leveraging NP-based
delivery of PARP (poly[ADP-ribose] polymerase) inhibitors in conjunc-
tion with radiotherapy have been reviewed by Singh et al.”? In addi-
tion, approaches using NP-based delivery of siRNA targeting DNA
repair proteins have also been developed.2%8! For example, Kievit
et al. successfully knocked down Ape1 (apurinic endonuclease 1) using
iron oxide NPs functionalized with PEG/chitosan/PEIl (poly-
ethyleneimine) to deliver siRNA in a genetic glioblastoma mouse
model.2° Mice received siRNA NPs IV and whole brain gamma radia-
tion (2 Gy '¥Cs-y-rays at 1 Gy/min, 24 h post-injection) daily for
5 days. Silencing of Apel in this model translated to a significant
increase in overall survival compared to radiation alone.®°

Docetaxel is another chemotherapy that is commonly used in
these nano-enhancer formulations. Docetaxel causes cells to arrest in
the G2/M phase of the cell cycle by acting as an anti-microtubule
agent; cells in this stage are particularly sensitive to radiation.”® How-
ever, off-target effects of systematically circulating docetaxel, like
those of many chemotherapeutics, are severe in patients and inspire a
need for the drug to accumulate specifically at the tumor site.”®
Researchers encapsulated docetaxel in a PLGA (poly[lactic-co-glycolic
acid]) NP conjugated with folate to improve tumor targeting for head
and neck cancers. This formulation successfully sensitized tumors in
mice models more efficiently than free docetaxel and the non-
targeted version of the NPs.82 PLGA NPs containing docetaxel have
also been used to treat lung and pancreatic cancer in vitro, using b-
alpha-tocopheryl PEG4qo0 to assist with cellular uptake.®® Docetaxel
has also been loaded onto titanate nanotubes to treat prostate
cancer,’® as well as a PCL (polycaprolactone) NP for gastric cancer.8
Other chemotherapeutics delivered in nano-formulations for radio-

1,8> doxorubicin,®® and topotecan.®”

sensitization include paclitaxe

Another common strategy was to deliver molecules that reduced
the effects of hypoxia-related resistance to radiotherapy.
Nitroimidazole is an imaging agent specific to hypoxia; it manages to
sensitize tumors to radiation by generating ROS.88 Researchers have
made “smart” nanogels loaded with IAZA (iodoazomycin arabinoside),
a nitroimidazole derivative, and functionalized with galactose. These
nanogels were able to sensitize hepatocellular carcinoma (HCC) cells
under hypoxic conditions in vitro.®8 Zong et al. used lipid NPs with
encapsulated metronidazoles, a nitroimidazole derivative, and
temozolomide, a pro-drug that releases a DNA alkylating agent, to
treat glioblastoma. It successfully increased survival in mouse models
when compared to radiotherapy alone.®’ Another nitroimidazole
derivative, liposomal pimonidazole has also been used to radio-
sensitize melanoma under hypoxic conditions.”®

Hypoxia-related resistance to radiotherapy by addressing hyp-
oxia itself, that is, by supplying oxygen to the tumor site. Xu et al.
encapsulated perfluorohexane into liposomes because of its high
oxygen capacity. This allowed oxygen to be directly administered to
the tumor without additional oxygen supply.”* They found that the
NPs and radiotherapy delayed tumor growth significantly when
compared to radiotherapy alone in a mouse model’* A nano-

emulsion of dodecafluoropentane has also been used to increase

oxygen in hypoxic tumors in mice, leading to a stronger response to

radiation.”?

3.4 | Active targeting of nanosized radioenhancers
In an effort to further improve the targeting efficiency, nanosized
radioenhancers have been functionalized with moieties able to
actively target the tumor, its microenvironment, or the associated vas-
culature. One common method utilized is by conjugating antibodies to
the particle surface. EGFR is a receptor whose over-expression in can-
cer cells is linked to cell proliferation, angiogenesis, and tumor metas-
tasis.”® One study functionalized gold NPs with anti-EGFR antibodies,
where they were able to sensitize the effects of proton irradiation in
cells over-expressing EGFR but not in cells lacking EGFR.”* Another
study used anti-EGFR antibody functionalized to gold NPs to deliver
B-lapachone, an anticancer agent.?” These NPs preferentially accumu-
lated in cancer cells according to the amount of EGFR expressed, with
higher accumulation occurring in A431s than in A549s, though both
had more accumulation in comparison to RKO cells, which lack EGFR.
They successfully radio-sensitized tumors following IV injection in a
mouse model with xenografted A549 tumors.”® Similarly, both iron-
oxide NPs and silver NPs also have been functionalized to increase
sensitivity to radiation for radioresistant glioblastoma and nasopha-
ryngeal carcinoma cells, respectively.”°”

In addition, HER2, overexpressed in some cancers, has also been
leveraged to improve tumor targeting/treatment of breast, pancreatic,
ovarian, endometrial, gastric, and esophageal cancers.?® HER2
targeting strategies include monoclonal antibodies (e.g., Traztuzumab,
Pertuzumab, etc.), tyrosine kinase inhibitors (e.g., Lapatinib, Neratinib,
etc.), Hsp90 inhibitors (e.g., Tanespimycin, Retaspimycin, etc.) or inhib-
itors of downstream signaling such as mTOR and PI3K pathways
(e.g., Everolimus, PI-103, etc.).?® Silica NPs functionalized with
hyperbranched polyamidoamine as well as an anti-HER2 antibody
successfully targeted human SK-BR-3 breast cancer cells over-
expressing HER2.?” HER2 is a rational target beyond just breast can-
cer, as multiple epithelial tumor types correlate HER2 overexpression
with poor clinical outcome.1®° Anti-HER2 functionalized gold and sil-
ver NPs have also been used to radiosensitize breast cancer.101:102
Other antibodies used for radioenhancer NPs include Anti-RhoJ,
which is expressed in the vasculature of peri- and intratumoral
regions, and cmHsp70.1 antibody, which targets a heat shock protein
expressed on aggressive glioma cells. 103719

Another commonly utilized strategy for targeting is to conjugate
the particles with folate or folic acid. One study comparing the effi-
cacy of nano-radiosensitizers decorated with folic acid, glucose, or
glutamine found that both glutamine and folic acid significantly
increase the efficacy of the radiosensitizers for breast cancer. How-
ever, neither showed significant advantage over the other.1% Despite
this, using folic acid and folate remains a major strategy for tumor
Combined and RBC

membrane- functionalized bismuth NPs enabled an increased survival

targeting  nano-radioenhancers. folate-

in mouse models of breast cancer compared to the nontargeted NPs
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and radiation alone.’®” Other studies have used bovine serum albumin
NPs with folate to target breast cancer in vitro.1% Multiple studies have
developed nano-radioenhancer formulations utilizing folate targeting
nasopharyngeal cancer as a model of head and neck cancers. All of these
studies demonstrated radio-sensitizing efficacy using KB cells, which
overexpress the folate receptor.21%%110 |n vitro studies done by
Shakeri-Zadeh et al. used folate conjugated gold NPs and nanorods
to enhance the effects of radiation and photothermal therapy.10%:11°
Werner et al. found that, in vivo, PLGA-lecithin-PEG NPs containing
docetaxel with folate were more effective at radio-sensitizing KB cell
tumors than free docetaxel or the nontargeted NPs.8? Folate-conjugated
NPs have also been shown to target gliomas for radio-sensitization, as
folate receptors are overexpressed in some brain tumors, as well as on
the luminal side of the BBB endothelial cells, which can help bring
folate-conjugated NPs into the brain through the BBB.11%112

A variety of other strategies have also been utilized. Conjugating
particles with Arg-Gly-Asp (RGD) has been used for the radio-
sensitization of lung, breast, and cervical cancer. RGD peptides recog-
nize a few integrins, including the o, 83 integrin, which have increased
expression on tumor blood vessels and some cancer cells.113-118
Thio-glucose is another targeting modality used for a variety of differ-
ent cancers. Cancer cells exhibit a higher glucose metabolism than
normal tissues, resulting in preferential uptake of the thio-glucose
bound NPs than by normal tissue cells.**?=*2* |n addition, glioma cells,
along with the BBB, express low-density lipoprotein receptor-related
protein-1 (LRP-1) which can be targeted with angiopep-2 conjugated
NPs for radio-enhancement.8?:122

It is important to note that the majority of cancer nanomedicines
that are approved or undergoing clinical trials rely on passive
targeting.2®® In addition, active targeting strategies do not fully

address the issue of off target effects!?®

as the targeted receptors are
also expressed on normal tissue, though to a lesser extent (e.g., EGFR,

HERZ2, transferrin, folate receptors, ett:.).124

3.5 |
effect

Radiosensitizer combination for an enhanced

Radiosensitizer combinations have also been explored to achieve an
enhanced therapeutic effect, including, but not limited to, tandems of:

125 (i) NP radiosensitizers and a chemo-

(i) two NP radiosensitizers,
therapeutic drug,”® (jii) NP radiosensitizers and tumor oxygenation2®
or including (iv) dual effect NPs displaying radiosensitizing and gluta-
thione trapping effect.'?” Indeed, Cheng et al. engineered dumbbell-
like NPs made of gold and titanium dioxide NPs to achieve a synergis-
tic radiosensitization effect in vitro using triple-negative breast cancer
SUM159 cells.*?® Such technology translated with a significant thera-
peutic effect both on tumor growth and animal survival in SUM159
tumor-bearing mice.1?> Mirjolet et al. have established a synergistic
effect of radiosensitizers docetaxel and titanate nanotubes in a murine
model of PC-3 xenografted tumors.”® In addition, Song et al.
engineered oxygen nanoshuttles made of Bi,Se; NPs functionalized

with the oxygen carrier perfluorocarbon.*?® Oxygen is released via the

evaporation of perfluorocarbon, triggered by the near-infrared light
activation of the Bi,Se; NPs.1?¢ Interestingly, Zhang et al. developed
“glutathione-depleting gold nanoclusters” in order to leverage the dual
properties of the NPs via both intrinsic radiosensitivity and by seques-

127 128

tering glutathione,™“” otherwise implicated in ROS “quenching.

4 | EARLY CLINICAL TRIALS
There are currently no FDA-approved nanosized radioenhancers for
cancer radiation therapy and a single formulation has received
European approval. Clinical trials are evaluating the efficiency and
safety of two NP candidates utilizing gadolinium (Gd) chelates into
polysiloxane NPs (AGulX) and hafnium-based NPs (NBTXRS3, also
known as PEP503). Polysiloxane Gd-chelates-based NPs and hafnium
oxide NPs enable both radiosensitization and multimodal imaging of
tumors prior to radiation, using MRI and CT, respectively. In trials,
AGulX is administered via intravenous injection (IV), while NBTXR3
can potentially be administered by either intra-tumoral (IT) or intra-
arterial (IA) routes (NCT01946867 v5 and NCT02721056 vé). The
advantage of the IT injection is that it bypasses the challenges associ-
ated with inefficient biodistribution to tumors following vascular
administration (compared to the initial injected dose).

Clinicaltrials.gov was used to perform the search using the follow-
ing terms: radiation, cancer, NPs (Table 2). Trials involving NPs used
as a mean of drug delivery only were excluded.

41 | Trials involving AGulX

The first phase | trial (NANORAD, NCT02820454) was dedicated to
patients with multiple brain metastasis from non-small cell lung cancer
(NSCLC), breast cancer, colon cancer, or melanoma and therapy con-
sisted of whole brain radiotherapy (WBRT) (10 x 3Gy/fraction over
3 weeks) combined with IV AGulX nano-radioenhancers.*?? The dose
escalation was designed with 15, 30, 50, 75, and 100 mg/kg doses.'??
Fifteen patients were enrolled and no dose-limiting toxicity (DLT) was
observed across the dose escalation cohorts. AGulX mean plasma
half-life was 1.3 h. Thirteen out of 14 observable patients had stabili-
zation or reduction in tumor burden.**® The diagnostic potential of
AGulIX was also assessed and compared to Dotarem®, a gadolinium-
based contrast agent.*3! Results indicate a linear correlation between
MRI SE (spin echo) values and increasing AGulX injected doses.
Finally, AGulX MRI SE was still detected a week post-injection, which
denotes a key improvement in local retention, in comparison to exis-
ting Gd-based contrast agents.*5?

This initial success led to the NANORAD2 phase |l trial
(NCT03818386) that is currently recruiting patients and consists of
3 x 100 mg/kg AGuIX IV injections (7 days prior to WBRT, before the
1st fraction and before the 6th fraction; 30 Gy and 3 Gy/fraction over
2-3 weeks). The primary endpoint compared to WBRT alone in this
randomized trial is assessment of brain disease response at 3 and

6 months using RECIST (Response Evaluation Criteria in Solid Tumors).
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A second single arm phase Il trial (NANOSTEREO, NCT04094077)
aims to assess the efficacy of AGulX activated by fractionated stereo-
tactic radiotherapy (SRT) in treatment of brain metastasis. Specifically,
100 mg/kg AGulX is injected intravenously at days 4 and 8 followed by
SRT on days 8 to 15 according to standard regimen. Similarly, the pri-
mary endpoint is brain metastases' response using RECIST. This trial
has been terminated and a new trial design, including a second arm (pla-
cebo control group), is currently recruiting (NCT04899908).

Next, the NANOCOL phase | trial (NCT03308604) focused on
treating cervical cancer with combined radiotherapy (RT) (45 Gy,
25 fractions over 5 weeks) assisted by AGulX NPs and cisplatin
(40 mg m~2 weekly injections during RT), and followed by uterovaginal
brachytherapy (15 Gy over 2 weeks).?® The study focuses on safety
and dose escalation with 20 mg/kg (level —1), 30 mg/kg (level 1), and
50 mg/kg (level 2) doses and follows a modified toxicity probability
interval (mTPI) design. Such a clinical trial design has been reported to
be safer compared to a standard 3 + 3 phase | design.'%2

AGulX activated by stereotactic body radiation therapy (SBRT) is
also evaluated in comparison with stereotactic magnetic resonance
(MR)-guided adaptive radiation therapy (SMART) alone for the treat-
ment of non-small cell lung cancer and advanced pancreatic adenocar-
cinoma (NCT04789486, phase I-ll). Phase | will established the
recommended phase Il dose, while phase Il will evaluate efficacy.
Primary endpoint is maximum tolerated dose and secondary end-
points include overall response rate, progression-free survival, overall
survival, quality of life data, as well as serious AEs.

Lastly, a phase Il trial is currently ongoing with AGulX activated via
hypofractionated proton therapy (NCT04784221). The treatment con-
sists of IV injections of AGulX on days 1, 8, and 15 and proton therapy
(20 fractions, day 1 to 26). The trial is a single arm study that evaluates
local efficacy of tumor regression and local progression-free survival rate.

A new generation of these particles (Bi@AGulX) is under preclinical
evaluation. The formulation includes bismuth (Z = 82) in addition of gad-
olinium (Z = 64), with the rationale that a higher Z would lead to a
greater radiosensitization effect.>® This formulation showed superior
efficacy in tumor burden in vivo as compared to the radiotherapy control
(no particles).**3 In comparison to the first generation AGulX, Bi@AGuIX
led to a decrease in in vitro cell survival following irradiation.?®3

4.2 | Trials involving NBTXRS3 (also known as
Hensify® and PEP503)

The initial phase | study (NCT01433068) focused on locally advanced
soft-tissue sarcoma and involved dose escalation with IT injection of
2.5%, 5%, 10%, and 20% of tumor volume at 53.3 g/L.*** This was
followed by radiation therapy (5 weeks, 50 Gy, 2 Gy/fraction) starting
24 h following injection, and tumor resection at 6-8 weeks post-
radiation. Dose-limiting toxicities (DLT) were observed in the 20%
dose group and thus the recommended dose was defined at 10%
initial tumor volume. This was followed by a randomized, multicentre,
international phase Il-Ill trial (NCT02379845) in patients with soft
tissue sarcomas. The trial consisted of a single IT injection of NBTXR3

NPs (10% of tumor volume at 53.3 g/L), followed by radiation therapy
(5 weeks, 50 Gy, 2 Gy/fraction) starting 24 h following injection, and
tumor resection at 5 weeks post-radiation.*®> The goal of the study
was to determine the DLT and safety profile of NBTXR3. A total of
176 eligible patients were analyzed out of 180 enrolled; 9% of
patients developed grade 3-4 AEs; 39% versus 30% of patients devel-
oped a serious adverse event (SAE) in the NBTXR3 group versus
radiotherapy alone. The primary endpoint was the pathological com-
plete response with a significant difference of 16% versus 8%
(b = 0.044) in the radiotherapy with NBTXR3 group versus radiother-
apy alone. The use of NBTXR3 (Hensify®) in patients with soft tissue
sarcomas has been approved in Europe on April 4, 2019.

The success of the initial trials using NBTXR3 led to further clini-
cal trials such as the phase I/1l trial (NCT02721056), a dose-escalation
study for patients with HCC or liver metastasis. The dose-escalation
study was designed as follows: 10%, 15%, 22%, 33%, and 42% of
tumor volume at baseline, using a 3 + 3 design.*3¢ The radiation dose
following particle injection was 45 Gy using three fractions of 15 Gy
over 5-7 days or 50 Gy using five fractions of 10 Gy over 5-15 days.
Interim results published in November 2020 indicated no DLT and a
single patient (out of 22) developed a SAE. Disease assessment with
RECIST showed five patients with complete response and three with
partial response (HCC group), as well as five patients with partial
response and one with stable disease (liver metastasis group).137 This
trial has been terminated following the determination of the rec-
ommended phase |l dose, along with a change in standard clinical
practice for HCC (NCT02721056 vé).

Further translation has been extended to patients with locally
advanced squamous cell carcinoma of the oral cavity or oropharynx
(NCT01946867 phase | trial). A similar 3 + 3 design was used for the
dose-escalation study (dose levels: 5%, 10%, 15%, and 22% of base-
line tumor volume) and IMRT was used to deliver a total dose of
70 Gy in 35 fractions over 7 weeks. Out of 19 patients, five patients
developed low-grade AEs (one grade 1 and four grade 2 events), no
DLT and SAE were observed and nine patients had a complete
response (out of 13 patients, as measured at 7 weeks following
NBTXR3 IT injection).?®® It is unclear if patients were accrued to the
study arm with NBTXR3 IA administration (NCT01946867 version 5)
as this arm of the study has not been reported to date.*3®

Additional trials include (i) in advanced cancers (i.e., squamous cell
carcinoma of head and neck, metastatic gastric cancer, metastatic cer-
vical cancer, metastatic squamous cell carcinoma, metastatic mela-
noma, metastatic lung, and metastatic bladder cancers) in conjunction
with anti-PD1 immunotherapy (phase I, NCT03589339) and (ii) in the
treatment of prostate adenocarcinoma in conjunction with brachy-
therapy (phase I/Il, NCT02805894). The study design for phase |
NCT03589339 assesses IT NBTXR3 activated by stereotactic ablative
radiotherapy (SABR) in combination with an anti-PD1 immunotherapy
agent. The study design for phase I/l NCT02805894 included IT
NBTXR3 activated by IMRT (phase I) and IT NBTXR3 activated by
brachytherapy and IMRT (phase Il). This trial has been terminated due
to a change in standard clinical practice in the treatment of prostate
cancer (NCT02805894 v14).
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NBTXRS3 is currently being evaluated with additional phase I/II
trials. First, a single arm trial is intended for patients with head and neck
squamous carcinoma (NCT02901483). The intervention consists of
IT PEP503, in combination with weekly administration of cisplatin
(dose varies according to PEP503 dose level) and radiation therapy
(70-72 Gy, 2-2.12 Gy/fraction over 7 ~ 8 weeks). The primary end-
points of this trial are the determinations of DLT, SAE and the rate of
local disease control at 1 year. Further, PEP503 is also being evaluated
as radiosensitizer in combination with chemotherapy for patients
undergoing neoadjuvant therapy for rectal cancer (NCT02465593).
The dose-escalation study follows a 3 + 3 design and the escalation
doses are 5%, 10%, 15%, and 22% of the tumor volume at baseline.
The intervention consists of IT PEP503 (day 1), followed by pre-operative
radiation (tumor and nodes: 200 cGy/fraction, 25 fractions; pelvis:
180 cGy/fraction, 25 fractions, 5 times/week) with concomitant chemo-
therapy: 5-fluorouracil (225 mg/m? daily, 5 days/week, 5 weeks during
radiotherapy) and capecitabine (825 mg/m? twice a day, 5 days/week,
5 weeks during the radiotherapy). Twenty patients were enrolled and
distributed as follows for the dose escalation: 7 (5%), 4 (10%), 3 (15%),
and 6 (22% of tumor volume at baseline). Data presented at the
2021 American Society of Clinical Oncology Gastrointestinal Cancers
Symposium (ASCO-GI 2021, Poster #66) showed no observed SAEs,
highlighting good tolerability of PEP503, and a single DLT (a urinary tract
infection). 90% of patients underwent surgery: pathological complete
response was measured in 17.6%, and 50% had tumor regression to
grade O or 1 (using the American Joint Committee on Cancer [AJCC]
tumor regression grade [TRG] system). The phase Il study is currently
ongoing using a 22% PEP503 dose. Next, NBTXR3 is being assessed
in the management of locally advanced- or borderline-resectable pancre-
atic cancer (NCT04484909, phase |). In this single arm study, patients
receive IT radioenhancers (day 1), followed by radiation (15 fractions
during days 15-43). The primary endpoint is the determination of DLT,
MTD and recommended phase Il dose. Secondary outcomes include
the determination of progression-free and overall survival (PSS and OS),
as well as whether pancreatic injection of NBTXR3 can be achieved.
NBTXR3 is also being evaluated for the treatment of inoperable recurrent
non-small cell lung cancer (NCT04505267, phase |). Primary outcomes
are the determination of occurrences of DLT and recommended phase Il
dose. Secondary outcomes include determination of AE, feasibility of
injection in lung, lymph nodes, determination of complete, partial
response, or stable disease (objective response rate, ORR) along with
local disease control rate, and survival parameters.

Recently, NBTXR3 + IMRT is being assessed in conjunction with
chemotherapy (NCT04615013, phase 1) in the treatment of esopha-
geal cancer. The regimen consists in IT or IN (intra-nodally) injection
of NBTXR3 on day 1 followed by radiation and concurrent chemo-
therapy (from day 15, 28 fractions over 6 weeks). Primary outcomes
are the determination of occurrences of DLT and recommended phase
Il dose. Secondary endpoints comprise late onset AE, ORR, major
pathological response rate, feasibility of injection in tumor and nodes
involved, and survival parameters.

Finally, NBTXR3 is evaluated in combination with immunotherapy

(pembrolizumab) in the context of recurrent and non-resectable head

and neck squamous cell carcinoma (NCT04834349, phase Il). NBTXR3
is administered IT on day 1, followed by SBRT during days 15-29 (first
arm) or 15-50 (second arm). Immunotherapy starts on day 15 with
repeated cycles every 3 weeks and up to 2 years for both cohorts. Pri-
mary endpoints include ORR 6 months post-RT, progression-free sur-
vival, and late AEs. Secondary endpoints are ORR and overall
response at 5 years, acute AEs and survival parameters.

4.3 | Trial involving Ferumoxytol
(superparamagnetic iron oxide NPs)

In November 2020, a phase | prospective observation study has been
launched for the use of Ferumoxytol, that is, iron oxide NPs, to
enhance radiotherapy using a MR-Linac in the treatment of primary or
metastatic hepatic cancers and liver cirrhosis (NCT04682847, phase
I). The MR-Linac enables both the visualization of the tumor and NPs
via MR, as well as the delivery of radiation therapy.

5 | CONCLUSION AND FUTURE
CHALLENGES

In this review, we discussed the recent advances involving the use of
NPs as radiation therapy enhancers, both in preclinical and clinical stud-
ies. Such nanoscale technologies still face some critical biological bar-
riers when injected intravenously such as nonspecific biodistribution,
clearance by the reticuloendothelial system, hemorheological consider-
ations, and cell internalization.®” The use of active targeting strategies
has shown promising success (vs. nontargeted nanoformulations) in the
context of radioenhancement and drug delivery. However, the vast
majority of the injected dose remains inefficiently delivered and is thus
cleared. This led some investigators to use the intra-tumoral route for
tumors of known location and, importantly, that are within reach. How-
ever, this translates into a limited number of eligible cancers. Thus, the
next generation of nano-radioenhancers would benefit from improved
biodistribution and tumor retention. A greater retention might enable a
reduction in frequency of injections before each radiation fraction.
These efforts could potentially be achieved by combining strategies
such as keeping the macrophages in clearance organs occupied prior to
nanomedicine injection (such as demonstrated by Germain et al.>%), and
leveraging the shape of NPs for improved targeting and/or retention

2573 respectively). In

(such as the strategies described in references,
addition, approaches leveraging the intra-operative delivery of
nanoformulations post tumor resection would be of particular interest
to eliminate potential residual tumor/tumor margins using NP-
sensitized radiation. Such strategy has recently been developed for glio-
blastoma patients by Grauer et al.*® An iron oxide NP paste was
applied to the tumor resection site prior to combined hyperthermia and
radiation therapies.*® A localized inflammatory response was observed
and Grauer et al. hypothesized that it might encourage an antitumor
immune response. Significantly, two out of six patients exhibited dura-

ble responses (overall survival greater than 23 months).14°
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In addition, it would be beneficial to compare multiple formulations
in parallel to gain a greater understanding of all the key parameters
involved. Furthermore, systematically disclosing the type and energy
level of the applied radiation would facilitate the comparison of formula-
tions across trials and studies. An issue that is seen in many studies in
the cancer nanomedicine field is different standards of measuring the
efficacy of anti-cancer treatments. Measurement of the efficacy of thera-
peutics varies in both in vivo and in vitro studies. These differences could
be possibly mitigated by reporting the sensitizer-enhancement ratio, as
some studies do, so that formulations' radiosensitizing effect could be
better compared across studies. Other considerations would include fully
reporting NP's physico-chemical attributes, including their specific sur-
face. Higher NP surface area directly provides greater opportunities for
surface interactions, which is especially important in the context of ROS
production.**? In this regard, elucidating the specific surface contribution
of nano-radioenhancement by varying size/shape of NPs of similar com-
position, could help in designing the next generation of nano-sensitizers.

Numerous preclinical studies regarding the use of NPs as radio-
enhancers or sensitizers have been published; however, very few
studies translate into clinical trials. This could be explained by the dif-
ficulty in manufacturing NPs following Good Manufacturing Practices
(GMP), along with extensive toxicity studies which are required under
Good Laboratory Practice (GLP) conditions. It is worth noting that var-
ious routes toward approval can be explored with varied regulatory
requirements.’*? For instance, NBTXR3 (Nanobiotix, France) and
AGulX (NH TherAguix, France) are currently being evaluated as “medi-
cal device” and “drug,” respectively, according to their clinical trial
descriptions provided by clinicaltrials.gov.

A further in depth understanding of all the key parameters and
specific mechanisms of action involved in NP radiosensitization
effects might help address part of the current gap in the translation of

these nanotechnologies to the clinic.
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