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A B S T R A C T   

Cyclodextrins (CDs) are cyclic carbohydrate polymers that hold significant promise for drug delivery and in-
dustrial applications. Their effectiveness depends on their ability to encapsulate target molecules with strong 
affinity and specificity, but quantifying affinities in these systems accurately is challenging for a variety of 
reasons. Computational methods represent an exceptional complement to in vitro assays because they can be 
employed for existing and hypothetical molecules, providing high resolution structures in addition to a mech-
anistic, dynamic, kinetic, and thermodynamic characterization. Here, we employ potential of mean force (PMF) 
calculations obtained from guided metadynamics simulations to characterize the 1:1 inclusion complexes be-
tween four different modified βCDs, with different type, number, and location of substitutions, and two sterol 
molecules (cholesterol and 7-ketocholesterol). Our methods, validated for reproducibility through four inde-
pendent repeated simulations per system and different post processing techniques, offer new insights into the 
formation and stability of CD-sterol inclusion complexes. A systematic distinct orientation preference where the 
sterol tail projects from the CD’s larger face and significant impacts of CD substitutions on binding are observed. 
Notably, sampling only the CD cavity’s wide face during simulations yielded comparable binding energies to full- 
cavity sampling, but in less time and with reduced statistical uncertainty, suggesting a more efficient approach. 
Bridging computational methods with complex molecular interactions, our research enables predictive CD de-
signs for diverse applications. Moreover, the high reproducibility, sensitivity, and cost-effectiveness of the 
studied methods pave the way for extensive studies of massive CD-ligand combinations, enabling AI algorithm 
training and automated molecular design.   

1. Introduction 

Cyclodextrins (CDs) are cyclic oligosaccharides, usually formed from 
6, 7, or 8 glucose units denoted as αCD, βCD, and γCD, respectively. With 
hydrophilic exteriors and hydrophobic interiors, CDs can encapsulate 
hydrophobic molecules in soluble inclusion complexes [1–3]. They can 
be chemically modified by substituting the hydroxyls with other func-
tional groups, such as methyl, hydroxypropyl (HP), or sulfobutyl (SB). 
These modifications lead to distributions of structures with different 
numbers and locations of the substitutions which can improve the sol-
ubility of the CD and alter their properties in various ways [1,4–6]. The 
average number of functional groups in the distribution of chemically 
modified CDs is denoted as the degree of substitution/saturation (DS). 

These modifications can also modulate the selectivity for the encapsu-
lation of certain molecules as well as their release rate [7–9], thus 
opening an opportunity to develop ad hoc applications. In pharmaceu-
ticals, CDs are typically employed to enhance the solubility and stability 
of drugs, improving delivery and bioavailability [2,10–12]. Their ap-
plications extend to chemical reactions, environmental uses, food ad-
ditives, and more [1,13–18]. Ongoing research explores novel 
applications such as for the treatment of atherosclerosis or removal of 
PFAS (a group of ‘forever’ chemicals linked to health problems) from 
water [19,20], showcasing their versatile potential. CD rings with 7 
glucopyranoside units, βCDs, are widely used in industrial and drug 
delivery settings since their cavity is able to effectively host an inter-
esting variety of molecules. In particular, it is known that these 
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medium-sized CDs form water soluble inclusion complexes with sterol 
molecules, which are related to a variety of health problems [11,19, 
21–27]. However, actually measuring the affinity constants between 
CDs and sterols is difficult and unreliable due to solubility problems, 
stoichiometric considerations, and the presence of a distribution of CD 
structures in the case of substituted CDs. Therefore, experimental af-
finity constants are often reported as “apparent” affinity constants, and 
there is no accepted experimental value for many of these systems, 
particularly when the guest is poorly soluble, as cholesterol is [19, 
28–30]. Here, we aim to establish an effective and efficient tool for 
obtaining reliable affinity constants for individual CD inclusion com-
plexes using in silico methods. If this tool was validated, it could enable 
the automated production of association constants for many CD inclu-
sion complexes. This would open the door for ML training on a system 
for which we have very little practical control over in vitro, but very 
precise control over in silico. Such a tool could revolutionize our un-
derstanding of CD inclusion complexation. 

The development and optimization of applications based on CDs 
depend on their ability to encapsulate molecules into their hydrophobic 
cavity. For certain uses, such as the extraction of harmful or undesirable 
molecules from organisms or from the environment, a high affinity 
constant and a very low release rate are required to achieve high spec-
ificity. A notable example is the use of the engineered sugammadex to 
capture the neuromuscular blocker rocuronium [31,32]. In contrast, 
employing CDs as excipients necessitates a substantial, though 
comparatively lower, affinity constant, along with lower specificity and 
a more flexible release rate. This distinction is critical; using a CD with a 
very high affinity for an active compound can impede its intended 
function by preventing its release. Therefore, the accurate quantification 
of CD-target complexation affinity constants and specificity to distin-
guish targets/off-targets is key for designing and optimizing CD-based 
applications. 

Historically, this has been achieved through a rational approach, 
assisted by trial-and-error assays. However, AI algorithms represent a 
family of promising alternative methods for the same aim; the bottle-
neck of this approach is the availability of a large volume of high-quality 
data to effectively train models. Acquiring such data for CD systems is 
challenging due to several factors, including solubility issues of the 
compounds involved, the potential presence of impurities, and notably, 
the diversity in the number and location of substitutions in modified 
CDs, not to mention the difficulties in correctly analyzing measurements 
from different sources. Recently, a publicly accessible database that 
compiles affinity constants for the formation of inclusion complexes 
between relatively small molecules and CDs, gathered from existing 
literature, has been published [33]. This information has been obtained 
from different experimental methods published between the years 1963 
and 2021 and includes mainly isothermal titration calorimetry (ITC) and 
various spectroscopic techniques. This publication represents an 
extraordinary effort to collect affinity data between CDs and ligands, but 
the sources are highly heterogeneous and difficult to control, reproduce, 
or scale. Important uncertainties are also present due to the different 
sources of the samples, experiments, and analysis methods, complicating 
analysis. Additionally, the employed techniques face challenges both in 
conducting effective experiments and in analyzing results. This is 
because complex protocols are often necessary, including competitive 
experiments with a reference compound, chemical labeling of mole-
cules, or manipulating the solvent. 

It is important to keep in mind the fact that none of these methods 
actually measure affinity constants directly - instead, they rely on the 
application of thermodynamic models coupled with numerical and sta-
tistical calculations. Best practices involve the global fitting of multiple 
data sets across different concentration ranges, and the employment of 
advanced mathematical methods, along with estimating reasonable 
uncertainty values for numerical parameters. The results typically yield 
apparent values or approaches useful for specific applications within a 
limited context, rather than direct thermodynamic affinities. Thus, truly 

direct laboratory measurements of affinity constants remain an unat-
tainable ideal as of yet, but reasonable estimations are possible in many 
cases by applying robust multidimensional models to multiple experi-
ments [34]. In this context, massive production of many thousand in 
vitro systems that include a large variety of CDs with specific types, 
numbers, and locations of substitutions, along with diverse ligands for 
the purpose of training AI-based algorithms, presents significant chal-
lenges in terms of complexity and cost. 

The use of computational modeling represents an exceptional and 
increasingly realistic complement to in vitro assays for characterizing the 
interaction between molecules - particularly between CDs and small 
molecules that can potentially be encapsulated in their cavity. These 
methods can provide important insights into the mechanism of inter-
action between molecules, saving money, time, and resources by pre-
dicting how a molecule might act before synthesizing and/or testing it 
[35]. Additionally, they can be fully automated and connected to a 
database which would be fed with the results. The information con-
tained in such a database would be highly uniform and it would be very 
easy to scale the production to reach many thousand complexes. The 
database would enable precise control of the CD structures, including 
the type, number, and location of substitutions, and cover a variety of 
targets, considering the ionic state of the molecules, the presence of 
cosolvents, or any other environmental factor. These data could then be 
easily utilized to train AI algorithms. Employing such a workflow could 
significantly enhance the design and optimization of CDs for specific 
applications. The bottleneck to developing a platform based on this 
computational workflow is, again, just as with in vitro, the availability of 
accurate and efficient methods to determine the affinity constant of the 
encapsulation event. Different computational approaches are widely 
employed for characterizing protein-ligand interactions in both aca-
demic research and practical applications, but their use in the charac-
terization of CD systems is quite limited. A reason for this is the lack of 
specific software available to automatically perform these studies, since 
the strategies typically employed to build, execute, and analyze simu-
lations of protein systems differ significantly from those that are more 
suitable for CDs [36–40]. To take advantage of computational simula-
tions, careful parameterization of the involved molecules, efficient 
sampling algorithms, and well-designed analysis methods able to pro-
vide as much information as possible, are always required. Specifically, 
while CDs are often depicted as rigid, truncated cone structures, they are 
actually quite flexible both in solution and in solid form. Capturing this 
behavior is crucial for accurately describing interactions in computa-
tional studies of CD systems [41,42]. 

A large variety of computational methods able to provide useful in-
formation on inclusion complexes is available. Unbiased molecular dy-
namics simulations (MD) follow the dynamic behavior of an initial 
conformation of the studied system. This technique is useful to explore 
the vicinity of the local minima, but the sampling out of this region is not 
guaranteed. A number of biased methods have been developed to 
overcome this limitation, also aiming to determine the free energy 
profile or Potential of Mean Force (PMF). The PMF is a function of a 
reduced number of collective variables (CVs) able to describe the pro-
cess of interest, in this case, the formation of inclusion complexes. From 
PMF profiles it is possible to obtain the most stable structure of the 
complex, as well as the standard Gibbs energy (ΔG0) corresponding to its 
formation. Examining PMF functions reveals the energy barriers and 
wells that contribute to the interaction mechanism. Metadynamics is a 
biased molecular dynamics method that allows for the incorporation of 
specific forces into the system, making it possible to observe events that 
are typically highly improbable; the likeliness of those events can then 
be rationalized using PMF, based on the amount of energy necessary for 
the events to occur in the simulation [43,44]. Metadynamics has already 
been successfully applied to get PMF profiles of relatively complex CD 
systems, even considering membranes and higher-order stoichiometries 
[34,45]. 

In this study, we have adapted and tested different approaches based 
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on metadynamics simulations to simulate and evaluate CD-based in-
clusion complexes. In order to test these methods, 1:1 βCD-sterol systems 
were employed. Cholesterol (CHOL) and its oxidized form 7-ketocholes-
terol (7KC) were used as ligands for βCD structures with different type, 
number and location of substitutions. The position of the substitutions 
was selected based on steric hindrance and the acidities of the CD OH 
groups. The difference between 7KC and native CHOL is minuscule: just 
one additional atom in 7KC, an oxygen forming a keto group at position 
7 (Fig. 1). This difference, small as it is, is apparently key to the devel-
opment of many diseases such as atherosclerosis and Alzheimer’s [46]. 
Thus, unlike cholesterol, which is essential for various physiological 
roles including cell membrane composition and hormone precursor 
functions, 7KC has disastrous effects in living organisms [46]. This is the 
main reason to look for methods to selectively extract 7KC from cells 
without significantly affecting the concentration of CHOL. Encapsula-
tion of the oxidized sterol by CDs has been proposed for this end [19]. 

In this strategy, specificity for the encapsulation of 7KC over CHOL is 
crucial. Experimental evidence obtained from turbidity studies suggests 
that, in contrast to the native βCD, HPβCD exhibits specific behavior to 
capture 7KC over CHOL [19,47]. The detailed examination of 1:1 
βCD-sterol systems featuring CHOL and 7KC serves as a preliminary 
model for our broader goal, which is to develop accurate and efficient 
computational methods that can be implemented in an automated 
workflow to produce affinity constants for thousands of inclusion com-
plexes. These results enable training machine learning algorithms to 
design optimal modified CDs for specific purposes. 

2. Methods 

2.1. Description of the systems 

PMF profiles were obtained to characterize the binding of CHOL and 
7KC with native βCD, DS3 HPβCD, and SBβCD with DS3 and DS7 (Fig. 1). 
Regarding the modified CDs, the two DS3 structures, both with HP 
substitutions and SB substitutions, have these modifications at the exact 

same positions on the CD molecule. 

2.2. System parameters 

Both the initial coordinates for the βCD and the corresponding to-
pologies were built using our own tools [19]. Initial coordinates and 
topology files for the target molecules (CHOL and 7KC) were obtained 
from the ATB server [48]. To ensure consistency with the force field, 
manual adjustments were made to the parameters, preventing unrea-
sonable interaction constants for bonds and angles. After the βCD and 
ligand were built and parameterized, the ligand was introduced into the 
βCD cavity with its principal axis parallel or antiparallel to the symmetry 
axis of the CD ("up" and "down" orientations, respectively). The up 
orientation corresponds to the complex with the tail of the sterol 
molecule pointing to the large face of the βCD while the down orienta-
tion corresponds to the tail of the sterol molecule pointing to the small 
face (Fig. 2). For each of these complexes, twelve different structures, 
with the position of the ligand incrementally shifted along the symmetry 
axis of the CD by steps of 1 or 2 Å, both in the positive and in the 
negative directions, were built. Each of these structures was inserted in a 
7x7x7 nm3 dodecahedral simulation box, which was then filled with 
approximately 7800 SPC waters. The water molecules overlapping the 
solute molecules were removed and Na+ ions were added to neutralize 
the total charge, when needed. Simulations at constant temperature 
(298 K) and pressure (1 bar) using the v-rescale thermostat [49] and the 
Parrinello-Rahman barostat [50] with coupling times of 0.1 ps and 
0.5 ps, respectively, were performed in all cases. The long-range in-
teractions were determined using the PME (Particle Mesh Ewald) [51, 
52] algorithm with a grid spacing of 0.15 nm and a direct-space cut-off 
of 1.2 nm. The same cut-off was employed for the short-range in-
teractions. A timestep of 2 fs was employed in all cases using the 
leap-frog integrator algorithm [53] to integrate the equation of motion. 
All bonds were constrained using the SETTLE algorithm [54] for water 
and the LINCS [55] algorithm for the CDs and sterol molecules. These 
simulations were executed using the GROMACS [56,57] engine using 

Fig. 1. 2D structures of the molecules to be simulated. (A) Native βCD (O4 atoms circled in red) (B) DS3 HPβCD (one HP group circled in red) (C) DS2 SBβCD (one 
SBE group circled in red) (D) DS7 SBβCD (E) 7KC (oxygen at position 7 circled in red) (F) Cholesterol. 
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the GROMOS54a7 forcefield [58] and PLUMED 2.8. [59–61]. 

2.3. Metadynamics Simulations 

Coupled metadynamics simulations of the twelve slightly different 
complexes built for each system and relative orientation of the ligand in 
the CD cavity were executed in parallel. Simulations with the up and 
down relative orientations of the ligand were conducted separately. 

The trajectories were carried out for 300 ns with walls at − 2.5 and 
2.5 nm between the sterol and the βCD to prevent the sterol from leaving 
the simulation box and crossing the periodic boundary. The final free 
energy profile leading to the formation of the complexes, as well as their 
optimal structure, was obtained by well tempered metadynamics sim-
ulations. Many tests were conducted to determine the ideal parameters 
for the PLUMED metadynamics simulation, and the best are presented 
here. In these simulations, Gaussian Height = 0.1 kJ/mol, σ = 0.1 nm, 
biasfactor = 15 at 298 K, and a grid spacing of 0.02 nm between − 3.4 
and 3.4 nm. The CV was the displacement of the center of mass of the 
target along the symmetry axis of the CD (ξ) which is calculated from the 
plane formed by the O4 atoms in the CD (Fig. 1A). The following re-
straints were devised to focus the investigation on inclusion complex 
structures: permitting the ligand movement solely along the axis 
perpendicular to the plane of the O4 atoms of the CD and constraining 
the relative orientation of the ligand to the up or down orientation 
(Fig. 2). The O4 atoms of the CD were selected as reference points for 
distance measurements and defining reference planes and axes in the 
restraints, due to their relatively static nature compared to the other 
atoms in the CD. All restraints in these simulations were implemented 
using harmonic potentials with a constant force of 1000 kJ⋅mol-1⋅nm-2. 
Each metadynamics simulation was repeated four times with slightly 
different distributions of the starting positions to check for 
reproducibility. 

2.4. Potential of mean force (PMF) 

The PMF profiles were determined from the sum of the gaussian 
functions generated by the 12 walkers corresponding to each relative 
orientation of the target molecule with each CD during the metady-
namics trajectories, using the sum_hills tool of PLUMED. The resulting 
PMF profiles were post-processed to determine the corresponding 
standard binding constant, which for a bimolecular interaction (A+B ↔ 
AB) can be determined from the partition function of each chemical 
species (Zi): 

KA =
ZAB/V

(ZA/V)(ZB/V)
(1)  

where V is the volume of the simulation box. Neglecting the internal 
degrees of freedom of A and B, the corresponding Hamiltonian only 
accounts for the kinetic energy: 

Hi =
∑3

j=1

p2
j

2mi
(2)  

Where pj is the j component of the linear momentum and mi is the mass 
of the molecule i. The partition function corresponding to this Hamil-
tonian is: 

Zi = V
(

2π⋅mi⋅KBT
h2

)3/2

(3) 

With KB representing the Boltzmann constant and h the Plank con-
stant. The Hamiltonian corresponding to the complex would be: 

HAB =
∑3

j=1

(
pcom

j

)2

2(mA + mB)
+

∑3

j=1

(
pR

j

)2

2μ +E(r) (4) 

pcom
j being the j component of the linear momentum of the center of 

mass (COM) of the complex, pR
j the j component of the linear momentum 

of the relative movement between A and B in the complex, μ = mA ⋅mB
(mA+mB)

, 
and E(r) is the potential energy of interaction between A and B as a 
function of the relative coordinates between both molecules. The cor-
responding partition function is: 

ZAB = V
(

2π (mA + mB) KB T
h2

)3/2

⋅
(

2π μ KB T
h2

)3/2 ∫

e− E(r)/RT dv

(5)  

where R and T are the gas constant and the temperature, respectively 
and dv is the volume element expressed in terms of the r coordinates. 
Replacing Eqs. (2)–(5) in Eq. (1), we obtain: 

KA =

∫

e− E(r)/RT dv (6) 

Given the symmetry of the CD monomer and the restraints applied to 
the relative movement of the ligand with respect to the macromolecule, 
the interaction energy E(r) and the volume element dv are naturally 
expressed in cylindrical coordinates (φ,ρ, z). Since the rotations around 
the CD symmetry axis are not restrained, and the interaction energy is 

Fig. 2. (A) 3D molecular structure of the bCD (green carbons) - 7KC (yellow carbons) inclusion complex. (B) Simplified cone representation of the bCD (where the 
smaller side is the primary face and the larger side is the secondary face) showing the up (left) and down (right) orientations of the inclusion complex. The target is 
shown in yellow. (C) Illustration of metadynamics simulations, where the target is guided through the cavity of the CD in each direction and in each orientation. 
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assumed to be independent on the corresponding angle, the volume 
element can be directly integrated over φ (from 0 to 2π). The distance 
from the ligand to the axis perpendicular to the O4 atoms that pass 
throughout their COM is restrained with a harmonic potential, so it is 
not exactly constant, but the PMF is assumed to be independent of this 
parameter. Thus, the volume element is also integrated over ρ from 0 to 
the maximum radius of the cylinder where the ligand can move (ρmax). 
Importantly, the simulations were not performed in the standard state, 
so a correction should be performed for this aim. This correction is 
performed by dividing the volume of each molecule in the simulation 
box by the volume available for one molecule at 1 M concentration 
(1660 Å3). After simplifying this implies an additional factor of Avoga-
dro’s number (NA) in the expression for KA. Taking into account all these 
approaches and considerations, the final expression for the association 
constant would be: 

KA = πNAρ2
max

∫

e− E(ξ)/RT dξ (7)  

where the cylindrical coordinate z was replaced by the collective vari-
able ξ employed in our simulations and E(ξ) can be replaced by the PMF. 
Using this equation, the binding constant for each system was computed 
by numerical integration of the PMF along the CV. For our calculations, 
a constant value of 0.4 nm was taken for ρmax. In order to estimate the 
uncertainty of the KA values, multiple integrations were considered for 
each PMF profile, with different integration limits in the unbound re-
gion. The values of KA obtained in this way were then transformed into 
ΔG0 by using the classical relationship: ΔG0 = − RT ln(KA). Then, the 
ΔG0 values obtained in this way for each PMF profile were clusterized 
with the k-means algorithm with the optimal number of clusters deter-
mined using the Silhouette [62] method. The final ΔG0 value, together 
with the corresponding standard errors were taken as the average and 
standard deviation of the ΔG0 values of the most populated cluster. 
Then, the corresponding association constant was obtained as KA = exp 
(− ΔG0/RT) and its uncertainty determined by standard error trans-
mission. This procedure allows us to automatically eliminate outliers 
without any human bias. For the calculation of average values we 
decided to work in the ΔG space due to the exponential nature of the 
association constants, whose direct averaging can be heavily skewed by 
values that differ significantly in magnitude. However, energies are 
additive, a property that makes it well suited to operations such as 
summation and averaging. By converting KA to ΔG0 values, one can 
obtain a more representative average, which can then be transformed 
back into the KA space for interpretation. This method ensures that the 
derived average value is not disproportionately influenced by constants 
that are significantly larger or smaller than the others, providing a more 
accurate and meaningful representation of the dataset. This approach 
resulted in a fully automated PMF method, providing a quantitative 
approach for obtaining association constants for the formation of 1:1 
inclusion complexes using a reasonable amount of computational re-
sources. The final values of KA and the corresponding ΔG0 were obtained 
using a Python script that uses the pandas, [63,64] numPy, [65] mat-
plotlib, [66] and kmeans1d [67,68] libraries. 

The PMF calculation was performed two times: once using the entire 
distribution of the CV (− 2 to 2 nm, the “All Method”), and once 
considering only the wide face of the βCD (CV from 0 to 2 nm only, the 
“Wide Face Method”). It is expected that the targets will tend to form 
complexes via the wide face of the βCD, and sampling only half of the 
βCD will lead to a faster and still accurate result. In addition to associ-
ation constants, from PMF profiles we can also get the energy wells and 
barriers of the encapsulation process as a function of the distance be-
tween the center of mass of both molecules and the most stable struc-
tures for each complex. By using these systems, we hope to gain insight 
into the effect of each substitution type on the complex. 

2.5. Statistical analysis 

The ΔG0 values obtained from the PMF profiles using both integra-
tion methods ("All” and “Wide-Face”) for the four metadynamics simu-
lations of each CD + sterol combination and for both orientations of each 
system were plotted to check for reproducibility and systematic differ-
ences. A total of 128 ΔG0 values were collected in this way. Then several 
statistical tests were applied to check for the normality of the uncer-
tainty distributions (Shapiro-Wilk [69] test) and for significant differ-
ences between the values (t-test, Mann-Whitney [70] test, paired t-test, 
or Wilcoxon [71] test, depending on the case) obtained using different 
integration methods, considering relative orientations of the ligand in 
the CD cavity, different ligands for the formation of the complexes, and 
also to compare the uncertainties obtained using the two integration 
methods. The average values of the repeats under the same conditions 
were obtained after removing possible outliers (those with a z-score >
1.5). The standard deviation was taken as a measurement of the repro-
ducibility for these repeats. Bland-Altman [72] plots were also gener-
ated to highlight possible trends in the differences of ΔG0 value obtained 
using different integration methods, relative orientations, and ligands. 

3. Results 

3.1. General description of the PMF profiles 

PMF profiles were generated for all systems studied by metady-
namics simulationswith 300 ns-long trajectories for each of the 12 
walkers to ensure simulation convergence. This convergence is 
demonstrated by the overlapping curves in the PMF profile evolution 
over time, as shown in Figs. 3–4 and in the Supplementary Material. The 
simulations sampled the displacement of the target along the symmetry 
axis of the CD ring, with restraints on the relative orientation and on the 
distance to this axis (see Methods for details). Consequently, two regions 
with negligible interaction in the PMF are expected at both negative and 
positive long-distance displacements between the CD and the ligand. In 
these “unbound” regions, the PMF profile should level off, indicating no 
change in interaction energy. This behavior was observed in most sys-
tems, with some exceptions showing significant differences in the height 
of the PMF at opposite sides of the CD. These discrepancies contribute to 
the uncertainties in the calculated ΔG0 values. Typically, one or more 
energy barriers are observed for the ligand entry into the CD cavity from 
the narrower side, presenting a sampling challenge. Conversely, calcu-
lating ΔG0 values might be simpler when integrating the pathway from 
the bound to the unbound region via the wider cavity side, usually 
devoid of significant energy barriers. KA and corresponding ΔG0 values 
for all systems were calculated using these two approaches, as shown in 
the Supplementary Material. 

All employed CDs generally exhibit a marked preference, evidenced 
by more negative ΔG0 values, for the down orientation. Specifically, the 
native βCD monomer shows its lowest energy at exactly 0.748 nm for 
both sterols in the down orientation, and around 0.4 nm in the up 
orientation. The positions of these minima are more varied for modified 
CDs, but they remain fairly consistent for both sterols within each CD 
and orientation pair, with one notable exception for HPβCD with 
cholesterol in the up orientation, which shows the absolute minimum at 
− 1.05 nm and secondary minima at approximately 0.5 and 1 nm. While 
the PMF profiles for both sterols with a given CD are similar, the pres-
ence of two local minima of varying depth for both sterols in the up 
orientation influences these results. Overall, across all systems, the 
roughness of the energy profile is much more pronounced in the region 
corresponding to the narrow face of the CD than the wide face, making 
the former more challenging to sample than the latter. Additionally, it 
seems that the larger the number of substitutions the more sophisticated 
the PMF profile is, with more and higher energy barriers for SBβCD 
(DS7) than for SBβCD (DS3) and a more complex energy profile for both 
modified CDs with DS3 than for the native βCD. (Fig. 5). 

A. Anderson et al.                                                                                                                                                                                                                              



Computational and Structural Biotechnology Journal 23 (2024) 1117–1128

1122

To facilitate comparison of results from various combinations of 
employed variables (relative orientation, integration method, and 
ligand name), the average values for each specific combination, along 
with their standard deviations, were calculated (Fig. 6 and Table 1). As 
mentioned above, the outliers (values with z-score > 1.5) were excluded 
for these calculations (a total of 11 ΔG values). In general, there is a 
good correlation observed between the two integration methods. 
Additionally, clear trends are evident in these results, although some are 
more subtle. A notable example is the difference between the results for 
the up and down orientations, with the down orientation consistently 

showing significantly stronger affinity across all CDs. This trend is 
reproducible with both integration methods. However, the specificity of 
the CDs for each sterol is less clear. While the native βCD in the up 
orientation appears to be more specific for CHOL and HPβCD, also in the 
up orientation, is more specific for 7KC, the overall impact of these 
differences is limited due to the much lower significance of the up 
orientation compared to the down orientation. It is important to note 
that the overall association constant for a given CD is the sum of the 
association constants from both the up and down orientations. The as-
sociation constants are proportional to the exponential of ΔG0 (KA = exp 

Fig. 3. PMF profiles for the four βCDs with 7KC in the up and down orientations, together with the structures of the complexes and the CV value corresponding to the 
energy minimum. The KA and ΔG0 values calculated from both the All and Wide Face method, as well as the additional simulation replicates, are available in the 
Supplementary Material. 

Fig. 4. PMF profiles for the four βCDs with cholesterol in the up and down orientations, together with the structures of the complexes and the CV value corre-
sponding to the energy minimum. The KA and ΔG0 values calculated from both the All and Wide Face method, as well as the additional simulation replicates, are 
available in the Supplementary Material. 
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(− ΔG0/RT)), meaning even small differences in ΔG0 can lead to sub-
stantial variations in the association constants. Therefore, in all cases, 
the contribution of the up orientation to the quantification of binding 

energies is expected to be low when compared to the down orientation. 
The results corresponding to the down orientation do not exhibit clear 
specificity for any of the sterol molecules. 

Fig. 5. ΔG0 values obtained from all the PMF profiles calculated in the present work. For each system and integration method, four independent calculations were 
conducted, represented by the colors blue, orange, green, and red. The top plot displays results utilizing the entire PMF profile. The middle plot shows the results 
obtained from the integration from the bound region near the global minimum to the unbound region towards the wide face direction. The bottom plots highlight the 
differences between the two integration methods for identical simulations. The left column contains the results of simulations where the ligand is in the up 
orientation, while the results for the down orientation are in the right column. 

Fig. 6. Average ΔG0 values for each group of experiments (n = 4) together with the corresponding standard deviation (error bars). The results using the ‘All’ 
integration method are in blue and those using the ‘Wide-Face’ method are in orange. Values with z-score > 1 (a total of 11 out of 128 values) were excluded from the 
calculations. 
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A more robust support for this discussion could be provided by 
applying appropriate statistical tests. 

3.2. Statistical results 

3.2.1. All vs. Wide-Face methods 
To explore the differences in ΔG0 values, uncertainties, and repro-

ducibility between the two integration methods (All and Wide-Face) 
across both up and down orientations, the average values shown in 
Fig. 6 and in Table 1 were employed. The standard deviation was taken 
as a measurement of the reproducibility of the ΔG0 values in each in-
dependent simulation. 

The Bland-Altman plots suggest a small bias between the two 
methods (represented by the red line in Fig. 7). In addition to this visual 
comparison, a quantitative analysis aimed to assess whether or not both 
methods are equivalent to each other was performed. The analysis was 
performed in different ways: (i) ignoring the uncertainties; and (ii) 
considering the uncertainties to weight the differences in the results 
obtained from both methods. Note that outliers were excluded from the 

calculation of the average values. To assess the differences in ΔG0 values 
derived from the two integration methods, both the paired t-test and the 
Wilcoxon test were utilized. Initial comparisons, which did not account 
for uncertainties, suggested significant differences between the 
methods. However, when incorporating the standard deviation of the 
average values into the analysis, there are no significant differences 
between the two integration methods (p-value > 0.05) (Table 2). 

The t-test for independent samples and the Mann-Whitney test were 
employed to check for differences in the uncertainties of both methods. 
Both tests suggest that the uncertainties are significantly different with 
p-values of 0.030 and 0.018, respectively. The mean difference of the 
standard deviations is 1.83 ± 0.49 (larger for the All method). This 
means that the data obtained using the Wide-Face method is signifi-
cantly more reproducible than those using the All method, even though 
the two methods provide equivalent mean values. 

3.2.2. Up vs. down orientation 
This analysis was performed using the mean values to determine if 

significant differences exist between the up and down orientations, in-
dependent of the reproducibility of repeated experiments for the same 
system. It was conducted separately for both the All and Wide-Face 
integration methods. 

The Bland-Altman plots show a clear systematic bias between the 
results provided by both orientations, with a negative excess in the ΔG0 

value of more than 10 kJ/mol, as shown in Fig. 8. Table 3. 
No statistical differences were observed between the uncertainties of 

the two orientations, the t-test for independent samples, and the Mann- 
Whitney test providing values of 0.51 and 0.80 for the All method and 
0.79 and 0.51 for the Wide-Face method. 

Table 1 
Average ΔG0 values for each group of experiments (n = 4) together with the 
corresponding standard deviation for the All and the Wide-Face integration 
methods. Values with z-score > 1 (a total of 11 out of 128 values) were excluded 
from the calculations.   

up down  

all Wide-Face all Wide-Face 

β-CHOL − 13.53 
± 0.39 

− 14.2 ± 1.2 − 19.5 ± 1.4 − 18.40 
± 0.94 

β-7KC − 9.5 ± 4.6 − 6.5 ± 1.1 − 27.1 ± 6.7 − 18.83 
± 0.54 

HP(3)- 
CHOL 

− 7.2 ± 2.5 − 7.7 ± 1.0 − 23.4 ± 3.9 − 22.5 ± 4.0 

HP(3)− 7KC − 15.9 ± 4.8 − 10.05 
± 0.68 

− 24.80 
± 0.85 

− 22.4 ± 1.2 

SB(3)- 
CHOL 

− 11.7 ± 1.7 − 10.2 ± 2.5 − 29.2 ± 6.5 − 22.6 ± 1.1 

SB(3)− 7KC − 9.6 ± 1.7 − 9.6 ± 1.9 − 33.6 ± 2.2 − 18.33 
± 0.34 

SB(7)- 
CHOL 

− 7.7 ± 2.1 − 7.3 ± 2.0 − 12.9 ± 2.1 − 15.4 ± 4.4 

SB(7)− 7KC − 8.6 ± 2.7 − 8.6 ± 1.9 − 16.4 ± 2.0 − 15.5 ± 1.1  

Fig. 7. Differences in ΔG0 values obtained from the integration of the whole PMF profile and using just the wide face (ΔG0
All – ΔG0

Wide-Face) as a function of the 
average of both values (0.5(ΔG0

All + ΔG0
Wide-Face)). The mean of the difference together with the confidence interval (mean difference ± 1.96 times the standard 

deviation of the differences) are shown as a dashed red line and dashed green lines, respectively. 

Table 2 
Comparison of the average difference in ΔG0 values (ΔG0

all − ΔG0
wide) obtained 

from all the PMF plots with different considerations.  

Analysis Method Mean Difference (kJ/mol) p-value 
t-test 

p-value 
Wilcoxon 

Results using the mean values for each system 
Without Uncertainties − 2.67 ± 1.10 0.028 0.0125 
With Uncertainties − 1.96 ± 1.04 0.080  
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3.2.3. Cholesterol vs. 7KC targets 
Again, the same analysis as in the previous section was performed, i. 

e. using the mean values of the four replicas obtained for each system 
and orientation. Again, the analysis was performed using the two inte-
gration methods separately. 

The Bland-Altman plots (Fig. 9) suggest systematic bias of different 
sign, where the All method is positive and the Wide Face method is 
negative, depending on the employed method to integrate the PMF 
profiles. The application of statistical tests also provides contradictory 
results for both integration methods, but with no significant systematic 
differences between both sterols (Table 4). 

Additionally, no statistical differences were observed between the 
uncertainties of the mean values for both sterols, the t-test for inde-
pendent samples, and the Mann-Whitney test providing values of 0.53 
and 0.51 for the All method and 0.073 and 0.16 for the Wide-Face 
method. 

4. Discussion 

The present study provides a comprehensive investigation into the 
inclusion complexes formed between different βCDs (βCD, HPβCD with 
DS3, and SBβCD with DS3 and DS7) and sterol molecules, specifically 
CHOL and 7KC, through guided metadynamics simulations followed by 
PMF calculations. The research aims to establish robust and efficient 
methods to characterize the interaction between CDs and small ligands. 

Fig. 8. Differences in mean ΔG0 values obtained for the up and down orientations of each system for the All (left) and Wide-Face (right) integration methods. The 
mean of the difference together with the confidence interval (mean difference ± 1.96 times the standard deviation of the differences) are shown as a dashed red line 
and dashed green lines, respectively. 

Table 3 
Comparison of the average difference in ΔG0 values (ΔG0

up − ΔG0
down) obtained 

from the mean values of the four PMF replicas obtained for each system and 
orientation. Both integration methods were employed, providing similar results, 
as indicated in the Table. The p-values obtained from both the paired t-test and 
the Wilcoxon tests are lower than 0.05 in all cases, indicating that the difference 
between ΔG0

up and ΔG0
down is significant, with lower (more negative) values for 

ΔG0
down.  

Analysis Method Mean Difference (kJ/mol) p-value 
t-test 

p-value 
Wilcoxon 

Results using the All method with mean values of each system 
Without Uncertainties 12.88 ± 2.41 0.0011 0.00781 
With Uncertainties 9.79 ± 2.35 0.004 
Results using Wide Face method with mean values of each system 
Without Uncertainties 9.98 ± 1.26 0.0001 0.00781 
With Uncertainties 9.92 ± 118 0.0000  

Fig. 9. Differences in mean ΔG0 values obtained for cholesterol and 7KC with the different CDs for the All (left) and Wide-Face (right) integration methods. The mean 
of the difference together with the confidence interval (mean difference ± 1.96 times the standard deviation of the differences) are shown as a dashed red line and 
dashed green lines, respectively. 

Table 4 
Comparison of the average difference in ΔG0 values (ΔGcholesterol − ΔG7KC) ob-
tained from the mean values of the four PMF replicas obtained for each system 
and orientation.  

Analysis Method Mean Difference (kJ/mol) p-value 
t-test 

p-value 
Wilcoxon 

Results using the All method with mean values of each system 
Without Uncertainties 2.54 ± 1.56 0.148 0.195 
With Uncertainties 1.02 ± 1.23 0.433 
Results using Wide Face method with mean values of each system 
Without Uncertainties -1.07 ± 1.17 0.931 0.742 
With Uncertainties -1.37 ± 1.21 0.295  
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For this, a relatively large set of trajectories is used to assess the 
reproducibility in the determination and accuracy of ΔG0 values by 
different approaches. Additionally, the ability of the different CDs to 
distinguish the two sterols and their relative orientation into the cavity 
are assessed. Complementarily, the obtained results shed light on the 
interactions between the molecules employed in our calculations. 

All employed CDs display a strong preference for the down orienta-
tion, indicated by more negative ΔG0 values by ~10 kJ/mol, compared 
to the opposite orientation of the sterol in the CD cavity. The positions of 
all minima (displacement between the CD and the sterol) vary for 
different CDs, but they are consistent for both sterols within each CD and 
orientation. SBβCD with DS= 7 is the only exception to this behavior due 
to the presence of two local minima in the up orientation at similar lo-
cations but with different depths for both sterols. This preference could 
be due to the fact that the hydrophobic headgroup of the sterol is in 
better contact with the hydrophobic CD cavity, while the hydrophilic 
tail of the sterol is in better contact with water in this orientation. Subtle 
differences in sterol specificity among CDs was observed. This could be 
due to the significant differences in ΔG0 values in the up orientation, and 
the impact of this contribution to the overall association constant is 
limited due to the much higher significance of the down orientation. 
Note that the total association constant for the interaction between a 
given CD-ligand pair results from the sum of the association constants in 
the two orientations and the transformation from the ΔG0 to the KA 
space is performed by the exponential function. Thus, relatively small 
differences in ΔG0 are magnified when they are transformed to KA, as it 
happens for all the studied systems when combining ΔG0 values ob-
tained from both orientations of the sterol in the CD cavity. 

The roughness of the energy profile is evident around the narrow 
face of the CD, in contrast to the wide face, making it harder to sample. 
The results obtained from the two integration methods (All and Wide- 
Face) were consistent, with no significant differences between them. 
However, the Wide-Face method was significantly more reproducible 
and it is cheaper, from the computational point of view, than the All 
method, since the former requires the sampling of a much smaller range 
of the CV used in the metadynamics simulations. This method is ex-
pected to be sufficient for randomly substituted or unsubstituted CDs 
interacting with steroidal target molecules. 

The study successfully reveals energy profiles, optimized complex 
structures, and quantitative estimations of binding affinities for the in-
clusion complexes between βCDs and sterols. The computed PMF pro-
files offer a detailed understanding of the energy landscapes governing 
the association between the host βCDs and the guest sterols. The 
rationalization of these energy landscapes provides insights into the 
mechanisms of inclusion, shedding light on the interactions and driving 
forces governing the formation of inclusion complexes. The employed 
approach to exploring selective sequestration of specific molecules using 
modified βCDs opens up possibilities for designing novel molecular 
systems for targeted drug delivery or other applications. Our study is 
focused only on 1:1 complexes, but it is worth mentioning that other 
stoichiometries such as 2:1 (two CD molecules threaded by the same 
ligand), 1:2 (one CD molecule simultaneously binding 2 sterol mole-
cules), or even aggregates of higher order could significantly contribute 
to the solubilization of a given ligand by CDs. [24,27,73–77] However, 
inclusion complexes are of special interest because the interaction 
mechanism leading to these structures is expected to take advantage of 
the particular design of the CD molecules to specifically distinguish 
between different ligands. The CDs employed in this study did not suc-
cessfully differentiate CHOL from 7KC, but it has been demonstrated, 
with approaches similar to those employed in the present work, that CD 
dimers, with the monomers joined by a chemical linker, are indeed able 
to distinguish these two sterol molecules. 

Overall, in addition to the new insight that our calculations provide 
on the specific interactions between different CDs and the two studied 
sterol molecules, we propose a protocol that could be employed in 
massive PMF calculations of CD-ligand systems. This protocol is based 

on metadynamics simulations that only require the sampling in one 
dimension (the displacement of the ligand along the symmetry axis of 
the CD) in the direction of the wide face of the cavity with some re-
straints (the relative orientation of the ligand with respect to the CD and 
the distance from the ligand to the symmetry axis of the CD). The ΔG0 

and association constant values obtained from these calculations were 
highly reproducible and allowed us to save significant computational 
resources compared to other methods. We intend to implement this 
method into an automated workflow for designing modified CDs 
tailored for specific applications. 

5. Conclusion 

This study focuses on the computational study of inclusion com-
plexes between multiple βCDs and sterols, using metadynamics simu-
lations and PMF calculations to understand their interactions. The 
methods reveal that CDs-sterol inclusion complexes are generally 
preferred in the "down" orientation, with notable differences in binding 
affinities and energy profiles among different CDs. These differences 
highlight the impact of number and type of substitution on the charac-
teristics of CD inclusion complexes. The research demonstrates the 
consistency and efficiency of the Wide-Face integration method in these 
calculations, offering insights for designing faster, specialized methods 
to analyze CD-sterol inclusion complexes in silico. These results are 
significant for various applications, including targeted drug delivery and 
novel drug design. Finally, the automated techniques presented here 
showcase the potential of accelerating CD development by creating and 
using large amounts of data for training AI and ML algorithms. These 
advancements are poised to not only improve our understanding of CD 
inclusion complexes, but also open new horizons for a world where 
tailored, CD-based solutions can be developed more efficiently and 
effectively than ever before. 
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