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Abstract: Type 2 diabetes is a combined disease, resulting from a hyperglycemia and peripheral
and hepatic insulin resistance. Recent data suggest that the gut microbiota is involved in diabetes
development, altering metabolic processes including glucose and fatty acid metabolism. Thus, type
2 diabetes patients show a microbial dysbiosis, with reduced butyrate-producing bacteria and elevated
potential pathogens compared to metabolically healthy individuals. Furthermore, probiotics are a known
tool to modulate the microbiota, having a therapeutic potential. Current literature will be discussed to
elucidate the complex interaction of gut microbiota, intestinal permeability and inflammation leading to
peripheral and hepatic insulin resistance. Therefore, this review aims to generate a deeper understanding
of the underlying mechanism of potential microbial strains, which can be used as probiotics.
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1. Introduction

The increasing prevalence of obesity, combined with changing dietary habits and exercise, seems
to reach epidemic proportions worldwide. As more than 80% of patients with type 2 diabetes (T2D)
are overweight, obesity appears to be a significant factor in the increasing incidence of T2D in the
world [1,2]. Also, the proportional increase in T2D shows this alarming trend. From 1980 to 2008
the number of people diagnosed with diabetes, of which 90% are patients with T2D, increased from
153 million to 347 million [3,4]. Given the substantial health economic consequences of obesity and
diabetes, further research to better understand the pathophysiological processes and to develop new
therapeutic approaches is needed.

2. Insulin Resistance in the Development of T2D

T2D results from decreased insulin sensitivity in combination with insufficient insulin secretion.
When approximately 65% of the β-cell function is lost and occurring insulin-resistance cannot be
compensated by hyperinsulinemia, T2D becomes overt [5–10]. Moreover, T2D is associated with
reduced incretin concentrations as well as incretin effect [11–14], resulting in an impaired insulin
secretion in response to glucose. In particular, the first phase of insulin secretion is diminished in T2D,
indicating the important role of incretins in diabetes development [15].

Insulin resistance, described as the fundamental failure to respond appropriately to insulin,
mainly affects the target tissues of insulin, particularly skeletal muscle and liver, but also adipose
tissue and brain [9,16–22] (Figure 1). Whether the peripheral or the hepatic insulin resistance occurs
first and what is the driving feature is still under debate. Skeletal muscle insulin resistance, in terms of
dysfunction of cellular mechanisms to respond appropriately to insulin, and the resulting reduction
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of peripheral glucose uptake seem to develop early, as shown by studies in young lean individuals
with muscle-specific insulin resistance [23]. As a consequence, glucose is redirected to the liver, which
increases de-novo-lipogenesis with consecutive impairment of hepatic energy metabolism [24–26].
On the other hand, it has been suggested that hepatic insulin resistance is the primary event initiating
the development of diabetes. Thus, disruption of hepatic insulin signaling results in fasting and
postprandial hyperglycemia and the subsequent development of peripheral insulin resistance [27,28].
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The link between elevated lipid levels and insulin resistance is widely accepted. Increased
availability of free fatty acids (FFA) and subsequent ectopic intracellular lipid accumulation may
trigger the development of insulin resistance. Particularly, an increased intracellular lipid content in
skeletal muscle and liver has been related to insulin resistance [29,30]. It was postulated that, in muscle
and liver, the intracellular accumulation of lipids and diacylglycerol (DAG) triggers the activation
of novel protein kinases Cs (PKCs) with subsequent impairment of insulin signaling. For example,
insulin-receptor substrate (IRS) 1-associated phosphatidylinositol 3-kinase (PI3K) activity is reduced in
the muscles of individuals after a lipid infusion. In addition, in these individuals the insulin action in
the liver, which has some similarities with the insulin action in muscle, is associated with defects in
insulin signaling, e.g., PKCε activation, reductions in insulin-stimulated insulin receptor substrate-2
(IRS-2) tyrosine phosphorylation, in the state of hepatic steatosis. Increased liver lipid content further
impairs the ability of insulin to regulate gluconeogenesis and activate glycogen synthesis [24,31].

Several other aspects, including genetic factors, have been described to contribute to alterations of
insulin resistance [32–40]. It has been demonstrated that first-degree relatives of type 2 diabetic subjects
have a higher risk to develop insulin resistance and subsequent type 2 diabetes [41–44]. However, the
recent increase in the global incidence of T2D, which is observed in Western countries and developing
nations, suggests that most cases of this disease are caused by changes in environmental factors. Major
risk factors for T2D such as overnutrition and low dietary fiber involve the gut and have been found
to be associated with increased insulin resistance, decreased glucose tolerance and local or systemic
low-grade inflammation [45].

3. The Impact of the Intestinal Microbiota on T2D

The human intestinal tract is colonized with a plurality of microorganisms, consisting of numerous
bacteria, archaea and viruses. This microbiota results in a biomass of about 1.5 kg. The microbiome,
the number of genes of all bacteria localized in the intestinal tract, exceeds the human genome at least
500-fold [46–48]. Previous research mainly focused on the beneficial functions of these bacteria, such
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as the digestion of complex carbohydrates or the development of innate and acquired immunity. These
studies also provide evidence that the microbiota may influence important functions in the regulation
of metabolism in health and disease [49–51].

The human organism lives in a mutual symbiosis with the bacteria in the gut, and the development
of culture-independent sequencing technologies with high-throughput metagenomic sequencing in
recent years allows a better understanding of the complexity of the intestinal microbiota [52].

In a healthy symbiosis, the gut microbiota promotes development and maturation of the immune
system and contributes to metabolic processes, such as the production of vitamins and the digestion
of dietary fiber [53]. Since germ-free (GF) mice allow to investigate the mechanism behind this
mutual symbiosis, new experimental options have arisen. In these studies, it has been observed
that GF mice are leaner and gain less weight under a high fat diet, compared to their conventionally
colonized littermates, despite a higher total food intake [54]. Obese mice showed a lower proportion
of the dominant bacteria Bacteroidetes and a higher proportion of Firmicutes, compared to their lean
littermates [55–57]. Later, these differences could also be shown between obese and lean patients [57,58].
In addition, weight reduction resulted in an increase of relative abundance of Bacteroidetes, up to
20%, and decreased abundance of Firmicutes, of about 10%, similar to the ratio of Bacteroidetes to
Firmicutes of lean participants. These results indicate that obesity is influenced by the diet itself,
but also by the gut microbiota, and this may provide individualized therapeutic opportunities [57].
However, while the ratio of Bacteroidetes and Firmicutes or their individual relative abundance seems
to be associated with obesity in animal studies and several human studies, a recent meta-analysis
revealed that this association was relatively weak and its detection might be confounded by large
interpersonal variation and insufficient sample sizes [59].

The transfer of obese animals’ microbiota to GF mice resulted in higher body weight gain
compared to these GF animals receiving microbiota from lean animals [56] The transfer of the
microbiota to GF mice increased the body fat of these animals within two weeks by 60%, in spite of
reduced food intake [60]. These results lead to the assumption that the obese microbiota is more efficient
at yielding energy from the diet. Germ-free mice are a valuable tool for studying the ecosystem and
metabolism of the human and animal intestinal microbiota, but it has some limitations. Importantly, the
gut barrier permeability is markedly altered in germ-free mice, which makes their intestine permeable
to inflammatory lipopolysaccharides. This might explain their proneness to alterations in energy
homeostasis or metabolic control when they are colonized with microbiota [61]. Thus, the impact
of gut microbiota dysbiosis on host metabolism by describing the beneficial effects of the transfer of
dysbiotic gut microbiota has to be taken into consideration.

In view of the promising results of fecal microbiota transplantation (FMT) in animal models,
a double-blind, randomized, clinical trial investigated the effect of FMT in obese individuals with
metabolic syndrome, showing an improvement of insulin sensitivity in those participants who received
FMT from a lean donor, whereas the control group who received their own microbiota remained at
stable insulin sensitivity. Also, the hepatic insulin sensitivity tended to be improved in the intervention
group. The effect of FMT was accompanied by an increase in microbial diversity in the gut [62].
However, FMT still remains to be controversial and not all lean microbiota donors had beneficial
effects on their obese recipient. The reasons for this, as well as possible side effects, should be further
investigated. So far, the transfer of fecal microbiota has been clinically used for treatment of Clostridium
difficile infections [63], suggesting the therapeutic potential of the microbiota [64].

Furthermore, Vrieze et al. [62] reported an association of insulin resistance with altered
microbial diversity. Also, metagenomics studies showed that patients with T2D suffer from
microbial dysbiosis, with a reduced abundance of butyrate-producing bacteria and an increase of
opportunistic pathogens such as Bacteroides caccae, Clostridia and Escherichia coli compared to healthy
persons. Both Karlsson et al. [65] and Qin et al. [66] independently reported a decreased number of
butyrate-producing bacteria such as Roseburia and Faecalibacterium prauznitzii in the microbiota of
patients with T2D compared with healthy subjects. In the study of Qin et al., the gut microbiota of 345
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Chinese participants were examined. The authors reported a difference of 3% of the microbial genes
and interpret this as a moderate dysbiosis in patients with T2D [66]. This cautious interpretation may
be due to the limitations of the study, since there was no balanced age and gender distribution in the
groups and information on current medication of the patients was missing. In the study of Karlsson
et al., 145 postmenopausal Scandinavian women with normal glucose metabolism, impaired glucose
tolerance or T2D were examined. Increases in the abundance of Lactobacillus grasseri, Streptococcus
mutans and Escherichia coli was reported to be predictive of the development of insulin resistance in
postmenopausal obese females in Sweden [65]. In order to develop a valid predictive marker based on
the microbial composition, for example in obese individuals with increased risk of developing T2D,
further investigations of the microbiota in clinical studies are needed [66–70].

Moreover, Wu et al. [71] showed that metformin, as firstline treatment for T2D, but not
calorie-restriction had a strong impact on the microbial composition in individuals with newly-diagnosed
T2D. Changes in composition of the microbiota, induced by metformin, were accompanied by an
improvement of HbA1c and fasting blood glucose concentrations and even transferable to mice after
colonization with microbiota of metformin-treated donors. Therefore, the authors stated that the
anti-diabetic effect of metformin is due to an altered composition of the microbiota.

Thus, it needs to be established whether the changes in the composition of the microbiota in T2D
is a secondary effect, as a consequence of an altered intestinal motility, diet, drug therapy or bacterial
overgrowth of the small intestine, as it is frequently observed in patients with T2D.

4. Diets and the Metabolic Products of the Intestinal Microbiota on Diabetes Development

Dietary habits of the Western lifestyle, such as consumption of fast food, are associated with insulin
resistance [72]. In addition, high-fat diet [73–75] and reduced consumption of dietary fiber, especially
cereals and/or carbohydrates with low glycemic index, are associated with insulin resistance [76–84].
It has been suspected that the consumption of dietary fiber is beneficial in several aspects. For instance,
it can increase the production of short-chain fatty acids (SCFA) in the colon [85,86], which in turn
may improve lipid homeostasis and reduce hepatic glucose output [87]. These metabolic alterations
are mediated by the secretion of gastrointestinal hormones like ghrelin, peptide YY (PYY), and
glucose-dependent insulinotropic peptide (GIP), with subsequent alteration of satiety [82,88–92].
Hence, the mechanisms through which these different diets promote the progression to insulin
resistance and consecutively towards a pre-diabetic state involve a complex physiology of glucose
homeostasis [93] and microbial metabolism [94], requiring further research. Additionally, it should be
noted that the concept that different dietary components can modulate the microbiota may also be
used therapeutically.

Also, the total energy intake and the macronutrient composition of the diet have an impact on
the composition of the human gut microbiota and thereby on human health [95]. However, the gut
microbiota respond rapidly to dietary interventions, since short-term consumption of diets, with either
animal or plant products, can alter the overall community structure of the gut microbiota. Thus, an
animal-based diet seems to increase the abundance of bile-tolerant microorganisms (Alistipes, Bilophila
and Bacteroides) and decrease the levels of Firmicutes that metabolize dietary plant polysaccharides
(Roseburia, Eubacterium rectale and Ruminococcus bromii) [96–98]. But in the long term, individual dietary
preferences seem to affect the microbial community structure of the microbiota [98].

Furthermore, Wu et al. [98] showed that the gut microbiota of people consuming high amounts
of protein and animal fat is dominated by the Bacteroides genus while the gut microbiota of people
consuming more fiber and carbohydrates is dominated by the Prevotella genus. Similar findings
were observed in a study comparing children in Burkina Faso and Italy, demonstrating reduced levels
of Prevotella and increased levels of Bacteroides in the Italian cohort. The reduction in Bacteroides
correlates with lower fiber intake [99]. Kovatcheva-Datchary et al. compared the composition of gut
microbiota of healthy subjects who showed enhanced glucose metabolism after three-day consumption
of barley kernel-bread (BKB) with subjects who did not respond (non-responder) to the dietary
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intervention. The Prevotella/Bacteroides ratio was higher in the responders than in non-responders
after BKB consumption. Furthermore, metagenomics analysis revealed that microbiota was enriched
in Prevotella copri and this was accompanied by an increase in the potential to ferment complex
carbohydrates after BKB. Results of GF mice models transplanted with microbiota from responder
human donors suggest that improvement in glucose metabolism might be promoted by increased
glycogen storage [100].

However, clinical studies comparing omnivores and vegans indicate that the microbial metabolism
in omnivores and vegans differs, since they reveal distinct metabolic profiles in the plasma, while
there was no clear taxonomic shift in the microbial composition, which suggests that the microbiota
adapts to shifts in diet which facilitate digestion of specific nutrients [101,102]. A study by Sonnenburg
et al. [103] showed that changes in the microbiota of mice consuming a diet low in dietary fiber
and harboring a human microbiota are reversible within a single generation, but not over several
generations, where a diet low in fiber results in a progressive loss of diversity which is not recoverable
after the reintroduction of dietary fibers.

5. Probiotics

Probiotics are live microorganisms which, when ingested in adequate amounts, may exert specific
health benefits to their host [104]. Since it is well accepted that disturbance in the intestinal microbiota
is involved in the development of metabolic diseases, modifying the microbiota by probiotics seems
to be a potential strategy in the prevention and treatment of diabetes. The anti-diabetic effects of
probiotics have been extensively covered and demonstrated in animal studies [105–111]. Recently,
Li et al. [109] investigated the anti-diabetic effects of L. casei CCFM419 in mice with high-fat diet and
low dose streptozotocin-induced T2D. After four weeks, the probiotic group showed improved oral
glucose tolerance, already at 30 min, and the area under the glucose response curve (AUCGlucose) was
decreased compared to the diabetic control (DC) group. Also, after 12 weeks both the positive control
group, treated with pioglitazone, and the probiotic group had significantly reduced AUCGlucose values
(27% and 25%, respectively) compared to the DC (p < 0.05).

Furthermore, supplementation of L. casei CCFM419 ameliorated insulin sensitivity by insulin
tolerance test, reduced fasting insulin level and decreased HOMA-IR value compared to the DC.
The authors stated that L. casei CCFM419 contribute to an improvement in glycemic control over a long
period of time as indicated by lowered HbA1c. In addition to the described effects, administration of
L. casei CCFM419 was accompanied by reduced low-density lipoprotein cholesterol (LDL-C) level and
increased high-density lipoprotein cholesterol (HDL-C) level. The positive effects of L. casei CCFM419
on hyperglycemia and insulin resistance may be due to improvement of STZ-induced damage of islet
cells, PI3K/Akt signaling pathway, amelioration of systemic inflammation as indicated by improved
TNF-α, IL-6 and IL-10 level and SCFA/gut microbiota pathways. Thus, these results suggest that oral
administration of L. casei CCFM419 could delay the onset of hyperglycemia and improve impaired
glucose tolerance [109]. Eventually, L. lactis strain genetically modified to produce GLP-1 is capable of
improving glucose tolerance and stimulating insulin secretion in mice [112].

The efficiency of probiotics on diabetes has been linked to local changes of the gut environment
and microbiota, reduction of the intestinal permeability and preventing translocation of bacterial
lipopolysaccharides (LPS) in the systemic circulation [113] as well as stimulation of secretion of SCFA
such as butyric acid in the colon and increased incretin secretion [109] (Figure 1). Furthermore,
anti-oxidative, anti-inflammatory and immunomodulatory effects [106,108,110] are reported to be
involved in the regulatory mechanism, preventing diabetes progression (Figure 1). According to this,
in a study by Park et al. it was shown that administration of L. rhamnosus GG reduced infiltration
and activation of macrophages in the adipose tissue. Additionally, endoplasmatic reticulum stress in
skeletal muscle and lipotoxity, which is an important contributor leading to insulin resistance, was
alleviated in L. rhamnosus GG-treated mice [108].
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In contrast to the rather clear outcome of animal studies, there is controversial evidence from
clinical studies concerning the effect of probiotic supplementation and T2D. An overview of studies
which investigate the effect of probiotic supplementation in clinical trials in T2D patients is presented
in Table 1. In several different studies, it has been demonstrated that administration of probiotics
reduces insulin resistance, fasting blood glucose and HbA1c level [114–119].

A recent study conducted by Firouzi et al. [119] investigated the effect of multistrain probiotic
supplementation on glycemic control, inflammatory marker, lipid profile and blood pressure in 136
individuals with T2D and found that supplementation of Lactobacillus acidophilus, L. casei, L. lactis,
Bifidobacterium bifidum, B. longum and B. infantis (3 × 1010 cfu/g) for 12 weeks resulted in a modest
reduction in HbA1c levels in comparison to placebo. Furthermore, insulin levels decreased in the
probiotic group whereas insulin levels in the control group increased. The application of probiotics had
no effects on inflammatory markers or on the lipid profile and blood pressure. Similarly, in another
study by Ostadrahimi et al. [117] the administration of probiotic fermented milk containing L. casei,
L. acidophilus and B. lactis for 8 weeks was found to reduce HbA1c in diabetic patients.

B. animalis subsp. lactis Bb12 and L. acidophilus La5 have been shown to improve glycemic control
in T2D patients [115,116]. Mohamadshahi et al. [116] reported a significant decrease in HbA1c after
ingestion of probiotic yogurt for 8 weeks. The reduction in HbA1c was accompanied by decreased levels
of proinflammatory cytokine TNF-α. Similarly, in a study by Ejtahed et al. [115], the ingestion of probiotic
yogurt containing B. animalis subsp. lactis Bb12 and L. acidophilus La5 for 6 weeks reduced fasting blood
glucose (8.68%, p < 0.001) and HbA1c, and increased the erythrocyte superoxide dismutase and glutathione
peroxidase activities, as well as total anti-oxidative status compared with the control group who received
conventional yoghurt. Additionally, the probiotic yogurt decreased total cholesterol (4.45%), LDL-C
(7.45%) and the total-cholesterol:HDL-C and LDL-C:HDL-C as atherogenic indices in the intervention
group [120]. Tonucci et al. [118] investigated the impact of administration of B. animalis subsp. lactis Bb12
and L. acidophilus La5 as probiotic fermented goat milk vs. conventionally fermented goat milk on glycemic
control, lipid profile, marker of oxidative stress, cytokine level and fecal SCFA. Although the ingestion of
fermented milk significantly reduced TNF-α and resistin level and increased acetic acid in fecal samples in
both the probiotic and the control group, only the probiotic intervention group showed an improvement in
glycemic control as indicated by reduced fructosamin levels and a trend in decreased HbA1c. The aforesaid
findings indicate that B. animalis subsp. lactis Bb12 and L. acidophilus La5 could ameliorate glycemic control
and improve some risk factors such as oxidative stress and dyslipidemia in diabetic patients.

In contrast to these findings, Ivey et al. [121] observed no effects on glycemic control parameters in
overweight participants by using the same probiotic strains applied as a yogurt alone or in combination
with a probiotic capsule (containing additional 3 × 109 cfu) for 6 weeks. Moreover, administration of
L. reuteri induced increased GLP-1 and insulin secretion without altering glucose tolerance and insulin
sensitivity in metabolically healthy overweight participants [122]. In another study, Mobini et al. [123]
investigated the impact of supplementation with L. reuteri DSM 17938 in high (1010) or low (108) dosage
for 12 weeks in diabetic patients. It was shown that supplementation with L. reuteri DSM 17938 had no
effect on HbA1c, liver steatosis, adiposity or microbiota composition. Even type 2 diabetes patients
receiving the highest dose, presented only a trend to an increased insulin sensitivity-index (ISI) and
a rise in secondary bile acid (deoxycholin acid). Additionally, it was shown that individuals who
respond with improved ISI exhibited higher microbial diversity at baseline.

However, the inconsistency in results obtained from clinical trials might be attributed to
heterogeneity of the studied collective, including ethnicity, metabolic state, treatment and diabetes
duration as well as intervention period and probiotic strains. Thus, there is large inter-individual
variation in the response to dietary intervention in general and probiotic supplementation in particular.
Reported studies support the hypothesis that the baseline microbial composition is of relevance for the
successful stratification of patients and should be used to identify subjects who will respond to dietary
intervention such as probiotic supplementation [100,123–125]. This should be taken into consideration
in future studies.
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Table 1. Characteristics of randomized clinical trials.

Reference Country Patients Sample Size
(Intervention/Control) Probiotics Probiotic Source Dose (cfu/g) Duration

(Weeks) Results

Andreasen et al.
2010 [114] Denmark T2D 21/24 Lactobacillus acidophilus

NCFM capsules 1010 4 preserved insulin sensitivity

Ejtahed et al. 2012 [115] Iran T2D 30/30
L. acidophilus La5 and
Bifidumbacterium lactis

Bb12
300 g/d probiotic or conventional yogurt 7.23 × 106

6.04 × 106 6 FBG and HbA1c ↓, insulin↔

Asemi et al. 2013 [126] Iran T2D 27/27

L. acidophilus, L. casei,
L. rhamnosus, L. bulgaricus,

B. breve, B. longum and
Streptococcus thermophilus

capsules

2 × 109

7 × 109

1.5 × 109

0.2 × 109

20 × 109

7 × 109

1.5 × 109 + 100 mg
fructo-oligosaccharides

8 prevented rise in FBG, HOMA IR
↑, trend in hs-CRP ↓, GSH ↑

Mazloom et al. 2013 [127] Iran T2D 16/18
L. acidophilus, L.

bulgaricus, L. bifidum and
L. casei

capsules 6 FBG, insulin, QUICKI, HOMA IR,
MDA, IL-6 and lipid profile↔

Ivey et al. 2014 [121] Australia OW Yogurt 40/37 Milk 39/40 L. acidophilus La5, B.
animalis subsp lactis Bb12

Probiotic yogurt (+) probiotic capsule
control milk (+) probiotic capsule 3.0 × 109 6

probiotic yogurt vs. control milk:
HOMA IR ↑, FBG, insulin or

Insulin or HbA1c↔ probiotic
capsules vs. placebo: FBG ↑, other
parameters of glycemic control↔

Mohamadshahi et al.
2014 [116] Iran T2D, OW 22/22 B. animalis subsp. lactis

Bb12 L. acidpophilus La5 300 g/d yogurt or conventional yogurt 3.7 × 106 8 HbA1c and TNF-α ↓, FBG, hs-CRP
and IL-6↔

Ostadrahimi et al.
2015 [117] Iran T2D 30/30 L. casei, L. acidophilus,

B. lactis
600 mL/d probiotic fermented milk (kefir)

vs. conventionally fermented milk 15 × 106/25 × 106/8 × 106 8 FBG, HbA1c ↓, lipid profile↔

Simon et al. 2015 [122] Germany H, OW 11/ 10 L. reuteri SD5865 capsule 2 × 1010 8

GLP-1, GLP-2 release ↑, insulin
and C-peptide secretion ↑, insulin

sensitivity, ectopic fat content,
inflammation↔

Firouzi et al. 2017 [119] Malaysia T2D 48/53
L. acidophilus, L. casei,

L. lactis, B. bifidum,
B. longum and B. infantis

powder 3 × 1010 12
HbA1c and insulin ↓, HOMA IR ↓,

hs-CRP, lipid profile and blood
pressure↔

Mobini et al. 2017 [123] Sweden T2D LD 15/HD 14/C 15 L. reuteri DSM 17938 powder 108/1010 12 s
HbA1c, blood pressure, heart rate,

lipid profile, liver fat, liver
enzymes, leptin, adiponectin↔

Tonucci et al. 2017 [118] Brazil T2D 25/25
L. acidophilus La5 and
B. animalis subsp. lactis

BB12

120 g/d probiotic goat milk vs.
conventionally fermented goat milk 109/109 6 Fructosamin levels, TNF-α,

Resistin ↓ trend in HbA1c ↓,

T2D, type 2 diabetes; FBG, fasting blood glucose; HbA1c, glycated hemoglobin, hs- CRP, high-sensitivity C-reactive Protein; GSH, glutathione; MDA, malondialdehyde; Il, interleukin;
HOMA-IR, homeostatic model assessment; QUICKI, quantitative insulin sensitivity check index; GLP, glucagon-like peptide.
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6. Genetic Background Affects Microbiota

Several other aspects, including genetic factors, have been described to contribute to alterations
of insulin resistance [32–40,128]. It has been demonstrated that first-degree relatives of type 2 diabetic
subjects have a higher risk to develop insulin resistance and subsequent type 2 diabetes [41–44].

Arising from a complex set of interactions between genetic risk factors and environmental
influences, obesity, metabolic syndrome and T2D present as a spectrum of overlapping phenotypes
from metabolically healthy obese individuals to those with full-blown T2D. In both humans [129,130]
and rodents [131–133], genome-wide association studies have identified multiple loci that may
contribute to obesity and its associated metabolic abnormalities, each with a small effect [134].

Furthermore, the microbiota contributes to metabolic disorders as indicated in recent studies in
both rodents and humans [49,135]. Obese humans and rodents have less diverse gut communities than
their lean counterparts [58,136,137], and likewise, metagenomic studies have documented differences
in the microbiota represented in the gut communities of individuals with obesity and T2D [65,138,139].
Additionally, evidence for a causal relationship between the gut microbiota and metabolic dysfunctions
has been shown by co-housing studies [140,141] and antibiotic treatment experiments [142,143] which
can modify obesity and metabolic phenotype in rodents.

Transplantation of fecal microbiota from obese versus lean mice, obese versus lean humans,
and human twin pairs stably discordant for obesity into germ-free mouse recipients transmits
donor adiposity and metabolic phenotypes [144–146]. However, much less is known about the
relationship between microbiota and type 2 diabetes. Additionally, in permissive genetic backgrounds,
environmental reprogramming of microbiota can ameliorate development of metabolic syndrome, as
shown by conducting longitudinal analyses of the responses of three commonly used inbred strains
of mice to long-term environmental conditioning as well as to shorter-term dietary challenges. Thus,
there is a strong relationship between specific metabolic phenotypes and specific bacterial communities,
indicating the strong, complex and dynamic interactions between the microbiota, diet, environment
and host genetics [134].

7. Conclusions

The discovery of the differences in the composition of the microbiota in obesity and T2D was a
crucial step in this research field. While cross-sectional studies and short-term experiments, mainly
in rodents, have provided important insights into the role of gut microbiota in metabolic syndrome,
additional approaches are needed to assess the nature of the complex interaction between host genetics,
diet and the microbiota in the regulation of metabolism. Furthermore, a better and more detailed
understanding of the interactions between the gut microbiota and peripheral and hepatic insulin
resistance is needed.
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