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ABSTRACT
Many studies have applied arterial spin labeling (ASL) to characterize cerebral 

perfusion patterns of Alzheimer’s disease (AD). However, findings across studies are 
not conclusive. A quantitatively voxel-wise meta-analysis to pool the resting-state 
ASL studies that measure regional cerebral blood flow (rCBF) alterations in AD was 
conducted to identify the most consistent and replicable perfusion pattern using seed-
based d mapping. The meta-analysis, including 17 ASL studies encompassing 327 AD 
patients and 357 healthy controls, demonstrated that decreased rCBF in AD patients 
relative to healthy controls were consistently identified in the bilateral posterior 
cingulate cortices (PCC)/precuneus, bilateral inferior parietal lobules (IPLs), and 
left dorsolateral prefrontal cortex. The meta-regression analysis showed that more 
severe cognitive impairment in the AD samples correlated with greater decreases of 
rCBF in the bilateral PCC and left IPL. This study characterizes an aberrant ASL-rCBF 
perfusion pattern of AD involving the posterior default mode network and executive 
network, which are implicated in its pathophysiology and hold promise for developing 
imaging biomarkers.

INTRODUCTION

Alzheimer’s disease (AD), the most prevalent type 
of dementia in the aging population [1–3], is featured 
by memory disturbance, attentional and executive 
deficits, and visuospatial and perceptual impairments 
[4]. The neuropathological hallmark of AD is the 
progressive accumulation of amyloid beta (Aβ) plaques 
and tau-related neurofibrillary tangles, and eventually 
accompanied by the damage and death of neurons in the 
brain [5]. The underlying neurobiology is far from being 
complete and no effective medications are available 
today for AD to slow or halt the damage and destruction 
of neurons [2]. This disorder has caused a substantial 
burden not only on the patients and their caregivers but 
also on the socioeconomic system [6]. Understanding the 

neural basis and early detection of AD are therefore very 
important.

Arterial spin labeling (ASL) MR imaging is a 
noninvasive technique that can quantitatively measure 
cerebral blood flow (CBF) by magnetically labelling the 
inflowing arterial blood water in vivo as an endogenous 
tracer [7–9]. ASL allows an automated voxel-by-voxel 
statistical analysis for regional CBF (rCBF) differences 
without any priori hypothesis [10–12]. Regional CBF 
is recognized as a reflection of intrinsic neural activity 
and brain physiology, which has been validated in 
normal aging and neuropsychiatric disorders [13–15]. 
18Fluorodeoxyglucose positron emission tomography 
(FDG-PET) imaging biomarkers have been proposed by the 
National Institute on Aging and the Alzheimer’s Association 
for detecting AD [16]. Perfusion pattern measured by ASL 
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in the AD brain is closely matched with the metabolism 
pattern measured using PET [10, 17–20]. In addition, 
ASL offers a similar diagnostic ability as PET in the 
detection of AD [18–21]. Owing to its ease of acquisition, 
non-invasiveness, non-radiation, and reliability, ASL is 
increasingly proposed as an alternative to PET and holds 
promise for developing imaging biomarkers [13, 15, 22].

In the last decade, a growing body of research 
has applied ASL to characterize cerebral perfusion 
patterns of AD [22]. Abnormalities of rCBF measured 
by resting state ASL in patients with AD in comparison 
with healthy controls have been frequently reported 
in the temporoparietal and posterior cingulate regions 
[10, 17, 19, 23–36]. However, the detailed findings 
typically varied across studies. Abnormalities of rCBF 
in the frontal [10, 12, 17–19, 23, 29–31, 35, 37–40] and 
occipital regions [11, 27, 36, 41], basal ganglia [39, 
42], thalamus [24, 41], and insula [24, 39, 42] have 
also been reported. Although majority of ASL studies 
in AD demonstrated hypoperfusion in the brain regions, 
some studies also showed hyperperfusion in several 
cerebral areas [11, 25, 39]. These inconsistences may be 
presumably attributed to the differences in sample sizes, 
heterogeneity in the demographic and clinical variables 
of the samples as well as the variations in the technical 
characteristics of image acquisition and analytical 
methodology.

Consequently, it would be of great interest for this 
study to conduct a timely meta-analysis of ASL studies 
to identify the most consistent and replicable perfusion 
pattern of AD. This voxel-wise meta-analysis utilized the 
anisotropic effect-size version of seed-based d mapping 

(SDM) software [43, 44], which has been extensively 
applied in previous meta-analyses of neuroimaging studies 
for neuropsychiatric disorders [44–49].

RESULTS

Included studies

According to the strategy of literature search and 
study selection, a total of 17 ASL studies that investigated 
rCBF differences between 327 AD patients and 357 
healthy controls were finally eligible for the meta-analysis 
[10, 11, 23–30, 37–42, 50]. Figure 1 presents a flow 
diagram of the studies that met the criteria for this meta-
analysis. Of these included studies, thirteen were published 
in English and the other four were in Chinese [30, 37, 40, 
41]. Fourteen out of the 17 studies were performed on the 
3.0T MRI scanning systems and the other three were on 
the 1.5T MRI systems. Regarding the techniques applied 
to measure resting-state CBF in these studies, ten studies 
used pulsed ASL (PASL); five used pseudocontinuous 
ASL (pCASL); and the remaining two used continuous 
ASL (CASL). The quality score of each included study 
was no less than 8.5 (total score = 10), which indicates 
that the quality is acceptable. Table 1 summarizes the 
demographic, clinical, and technical characteristics as 
well as the quality scores of the ASL studies included 
in the meta-analysis. Supplementary Table 1 presents 
the diagnostic criteria, disease stage, cognitive test, and 
vascular burden assessment for AD of the included studies 
in the meta-analysis.

Figure 1: Flow diagram of the study selection procedure for the meta-analysis. Abbreviations: AD, Alzheimer’s disease; ASL, 
arterial spin labeling, rCBF, regional cerebral blood flow.
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Regional CBF differences by pooling all included 
studies

The voxel-wise SDM analysis demonstrated that 
decreased rCBF in AD patients compared to healthy 
controls were mainly located in the bilateral posterior 

cingulate cortices (PCC)/precuneus, bilateral inferior 
parietal lobules (IPLs), and left dorsolateral prefrontal 
cortex (DLPFC). In contrast, no regions showed 
significant increases of rCBF in AD patients relative to 
healthy controls. The SDM results are described in Table 2 
and illustrated in Figure 2.

Table 1: Characteristics of ASL studies included in the meta-analysis

Study Sample (female) Mean Age (SD) MMSE (SD) Scanner 
Strength

Imaging 
technique Software FWHM Threshold Quality 

score#

Johnson et al.,
2005

AD 20 (7) 72.9 (10.8) 21.0 (NA) 1.5 T PASL SPM99 12 mm 0.05, corrected 9.0

HC 23 (13) 72.9 (8.2) 29.4 (NA)

Alsop et al.,
2008

AD 22 (12) 75.6 (9.2) 22.2 (5.9) 3.0 T CASL SPM2 8 mm 0.05, uncorrected 9.5

HC 16 (9) 72.6 (8.9) 27.9 (2.6)

Asllani et al.,
2008

AD 12 (5) 70.7 (8.7) 38.7 (11.1)* 1.5 T CASL SPM99 6 mm 0.05, corrected 9.5

HC 20 (12) 72.1 (6.5) 53.5 (2.8)*

Yoshiura et al.,
2009

AD 20 (10) 73.5 (9.6) 20.4 (4.3) 3.0 T PASL SPM2 12 mm 0.001, uncorrected 9.5

HC 23 (12) 72.9 (6.7) 29.3 (0.9)

Cantin et al.,
2011

AD 9 (5) 71.1 (6.7) 21.7 (2.2) 1.5 T PASL SPM5 12 mm 0.05, corrected 8.5

HC 11 (6) 65.4 (9.3) 29.5 (0.5)

Chen et al.,
2011

AD 15 (9) 72.0 (6.3) 19.9 (5.9) 3.0 T pCASL SPM5 12 mm 0.005, uncorrected 9.5

HC 19 (12) 69.2 (7.6) 29.5 (1.0)

Dashjamts et al.,
2011

AD 23 (14) 74.6 (8.9) 21.1 (4.4) 3.0 T PASL SPM8 12 mm 0.001, uncorrected 9.5

HC 23 (12) 73.2 (6.9) 29.4 (0.9)

Alexopoulos 
et al.,
2012

AD 19 (8) 72.0 (9.4) NA 3.0 T PASL SPM5 12 mm 0.001, uncorrected 8.5

HC 24 (16) 67.1 (6.1) NA

Mak et al.,
2012

AD 20 (15) 75.4 (6.75) 16.3 (4.55) 3.0 T PASL SPM5 8 mm 0.001, uncorrected 9.0

HC 20 (17) 70.8 (5.99) 28.5 (2.00)

Grieder et al.,
2013

AD 14 (NA) 66.5 (9.6) 24.8 (3.9) 3.0 T pCASL SPM8 8 mm 0.05, corrected 9.0

HC 19 (NA) 69.5 (3.1) 28.7 (0.9)

Kim et al.,
2013

AD 25 (21) 70.9 (9.8) 17.2 (NA) 3.0 T PASL SPM5 12 mm 0.005, uncorrected 9.0

HC 25 (16) 68.4 (5.6) 27.3(NA)

Zhang and Fan,
2013

AD 16 (10) 76.00 (7.12) 19.25 (4.97) 3.0 T pCASL SPM8 NA 0.001, uncorrected 9.0

HC 16 (12) 70.75 (7.95) 28.75 (0.93)

Zhang et al.,
2013

AD 17 (12) 66.92 (8.91) 15.92 (4.32) 3.0 T PASL SPM8 NA 0.05, corrected 9.0

HC 17 (12) 66.07 (5.78) 28.00 (1.41)

Ding et al.,
2014

AD 24 (19) 74.58 (6.678) 16.0 (3.9) 3.0 T pCASL SPM8 6 mm 0.05, corrected 9.5

HC 21 (13) 69.64 (5.884) 29.4 (1.0)

Liu et al.,
2014

AD 16 (10) 75.3 (6.9) 18.69 (5.50) 3.0 T pCASL SPM8 6 mm 0.05, corrected 9.5

HC 19 (14) 69.7 (8.1) 28.84 (0.90)

Lyu et al.,
2015

AD 30 (15) 68 (10) 21.6 (1.6) 3.0 T PASL SPM8 8 mm 0.05, corrected 9.5

HC 30 (19) 52 (8) 29.0 (1.0)

Roquet et al.,
2016

AD 25 (17) 73.6 (9.1) 19.5 (3.4) 3.0 T PASL SPM8 8 mm 0.05, corrected 9.5

HC 21 (12) 64.8 (8.6) 28.9 (1.0)

Abbreviations: ASL, arterial spin labeling, AD, Alzheimer’s disease; HC, healthy controls; SD, standard deviation; MMSE, Mini-Mental State Examination; FWHM, full width at 
half maximum; NA, not available; PASL, pulsed arterial spin labeling; CASL, continuous arterial spin labeling; pCASL, pseudocontinuous arterial spin labeling; SPM, statistical 
parametric mapping; *, modified MMSE; #, a maximum score of 10 for each study.
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Reliability analysis

The whole-brain jackknife sensitivity analysis 
revealed that decreases of rCBF in the bilateral PCC/
precuneus and bilateral IPLs were the most robust 
findings, replicable in all 17 combinations. Decreases of 
rCBF in the left DLPFC remained highly replicable, as it 
was preserved in all but four in combinations of studies 
(Table 3).

Publication bias analysis

No publication biases for the identified brain 
regions with rCBF differences between AD patients and 
healthy controls were observed, which was revealed by 
the approximately symmetric funnel plots (Supplementary 
Figure 1) and the non-significant Egger’s tests (Table 2).

Meta-regression analysis

The meta-regression analysis showed that lower 
Mini-Mental State Examination (MMSE) scores in the 
AD samples were associated with greater decreases of 
rCBF in the bilateral PCC (Peak Montreal Neurological 
Institute (MNI) coordinate at x = −4, y = −22, z = 28; p 
= 0.0000036; SDM-Z = −1.97; 1149 voxels) and left IPL 
(Peak MNI coordinate at x = −38, y = −52, z = 50; p = 
0.0000052; SDM-Z = −1.92; 761 voxels) (Figure 3).

DISCUSSION

To the best of our knowledge, this is the first 
quantitative meta-analysis to pool the resting-state ASL 
studies to identify the most consistent pattern of rCBF 
and to explore its clinical correlation in AD. A total of 

17 studies as measured with ASL in 327 AD patients and 
357 healthy controls were included in this voxel-wise 
meta-analysis. Decreases of rCBF in AD patients relative 
to healthy controls are consistently identified in the 
bilateral PCC/precuneus, bilateral IPLs, and left DLPFC. 
Furthermore, the meta-regression analysis indicates that 
more severe cognitive impairment in the AD samples was 
associated with greater decreases of rCBF in the bilateral 
PCC and left IPL.

The bilateral PCC/precuneus and bilateral IPLs, 
where this study observed the most consistent brain 
regions of decreased rCBF in AD, are key nodes of the 
posterior default mode network (DMN) [51, 52]. The 
DMN, which is comprised of highly interconnected 
brain areas involved in higher cognitive functions, is 
the most active brain system at rest in healthy subjects 
[51]. There is compelling evidence suggesting that the 
DMN, especially the posterior part is functionally and 
structurally impaired in AD patients [53–59] and at-
risk subjects [12, 59–61]. Dysfunction of the DMN, 
a hallmark of AD, has been linked to core memory, 
attentional, and visuospatial deficits [62, 63]. The 
DMN nodes, such as the PCC/precuneus, parietal and 
temporal lobes were confirmed to be more vulnerable 
to early amyloid deposition [54, 55, 64]. High amyloid-
beta deposition in the DMN was demonstrated in AD 
patients [54, 65–68]. In addition, some studies suggest 
that decreases of rCBF in these regions, especially in the 
PCC/precuneus, may reflect a remote functional deficits 
caused by the neuronal damage in the medial temporal 
structures [10, 28, 69–72]. As such, decreases of rCBF in 
the bilateral PCC/precuneus and bilateral IPLs observed 
in this study may be a reflection of pathophysiological 
process that involves vascular dysfunction and neuronal 
degeneration underlying AD [14].

Figure 2: Brain map for the meta-analytic results of the 17 ASL studies comparing rCBF differences between AD 
patients and healthy controls. Abbreviations: ASL, arterial spin labeling, rCBF, regional cerebral blood flow; AD, Alzheimer’s 
disease; L, left; R, right, IPL, inferior parietal lobule; DLPFC, dorsolateral prefrontal cortex; PCC, posterior cingulate cortex; SDM, Seed-
based d Mapping; The color bar indicates the maximum and the minimum absolute SDM-Z values.
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The perfusion pattern identified in the current meta-
analysis is largely in line with the metabolism pattern 
from the voxel-wise meta-analyses of FDG-PET studies 
in AD patients [49, 73]. In addition, the perfusion pattern 
using ASL in AD are concordant with the perfusion 
pattern using other MRI modalities, such as H2

15O-PET, 
99mTc-hexamethylpropyleneamine oxime (HMPAO)-single 
photon emission computed tomography (SPECT),  and 
99mTc-ethyl cysteinate dimmer (ECD)-SPECT [73]. These 
data suggest that ASL provides information comparable 
to above invasive imaging techniques and shows potential 
as a reliable and safe alternative. The findings identified 
in the present voxel-wise meta-analysis are also consistent 
with the ASL studies using ROI analyses [10, 27, 34, 74, 
75]. Decreases of rCBF in these areas could serve as 
specific regions of interest for a further diagnostic utility. 
Decreases of normalized rCBF in the bilateral PCC/
precuneus had an accuracy of 86.0% (91.3% sensitivity 
and 80.0% specificity) in distinguishing AD patients 
from healthy controls [26]. Brain activity changes in the 
DMN may be an early marker for AD. Alexopoulos et al 
identified hypometabolism/hypoperfusion consistently in 
the DMN, especially the posterior part, such as the PCC/

precuneus and IPLs in amnestic mild cognitive impairment 
(aMCI) converters [73]. They further demonstrated 
that hypometabolism/hypoperfusion in the IPLs was the 
most reliable predictor of the progression from aMCI to 
AD [73]. A recent study observed a continuing decrease 
of CBF in the PCC/precuneus and other related regions in 
the continuum of AD [76]. Moreover, our meta-regression 
analysis shows that the severity of cognitive impairment in 
the AD samples was associated with the rCBF changes in 
the bilateral PCC and left IPL, which suggests that altered 
rCBF in these regions may act as an imaging marker for 
tracking disease progression.

Besides the areas of rCBF changes observed in the 
DMN in AD patients compared with healthy controls, we 
also identified the regions of decreased rCBF belonging to 
the central executive network (CEN), such as the DLPFC and 
posterior parietal areas [77, 78]. The CEN is another intrinsic 
brain network that is known to be involved in executive 
functioning, particularly important for maintaining high-
level cognition [78, 79]. Aberrant functional connectivity in 
the CEN was observed in AD [80–85]. Decreases of rCBF in 
the regions of the CEN probably account for the executive 
deficits in AD patients [79].

Figure 3: Brain map of the voxel-wise meta-regression analysis of MMSE scores in the AD samples. Abbreviations: 
MMSE, Mini-Mental State Examination; AD, Alzheimer’s disease; L, left; R, right, IPL, inferior parietal lobule; PCC, posterior cingulate 
cortex; SDM, Seed-based d Mapping; The color bar indicates the maximum and the minimum absolute SDM-Z values.

Table 2: Clusters of regional CBF differences in patients with AD relative to healthy controls

Anatomical label Peak MNI coordinate
(x, y, z)

Number 
of voxels

SDM-Z 
value

p value
(SDM)

 p value
(Egger’s test)

Decreased regional CBF Bilateral PCC/precuneus (BAs 23, 7, and 26) -2, -54, 30 4215 -4.46 ~0 0.051

Left IPL (BAs 40, 39, and 7) -50, -54, 40 2427 -3.37 ~0 0.15

Right IPL (BAs 40, 39, and 7) 50, -60, 38 1161 -2.89 0.0000041 0.29

Left DLPFC (BAs 9, 10, and 46) -18, 52, 30 128 -1.89 0.0021 0.070

Increased regional CBF None

Abbreviations: CBF, cerebral blood flow; AD, Alzheimer’s disease; MNI, Montreal Neurological Institute; SDM, Seed-based d Mapping; PCC, posterior 
cingulate cortex; IPL, inferior parietal lobule; DLPFC, dorsolateral prefrontal cortex; BA, Brodmann area.
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Atrophy of gray matter [86] and white matter [87] 
in the medial temporal lobe (MTL) is a characteristic and 
could serve as a neurostructural predictor of AD [88]. 
Interestingly, we did not observe consistent rCBF changes 
in MTL in AD patients relative to healthy controls in 
the present meta-analysis. This structural-functional 
discordance has been frequently detected in previous 
studies [10, 28, 69–71, 89], which is interpreted as a 
compensatory response to morphologic alterations [71]. 
Therefore, rCBF changes in the MTL may not be sensitive 
enough to distinguish healthy elders from AD patients, 
as aging-related tau pathology, hypometabolism, and 
hypoperfusion in the MTL were also observed in normal-
aged individuals [68, 90–92].

Limitations and future perspectives

Several limitations in this study should be 
acknowledged. First, a huge body of ASL studies in 
AD was excluded because of the chosen voxel-wise 
approach and this approach was based on summarized 
coordinates and their effect sizes rather than on raw 
imaging data or statistical brain maps, which might 
limit its accuracy [93]. In addition, the patients in the 
included studies were the clinical samples, who compared 

with community-based normal control volunteers. In 
this context, although they were matched or adjusted 
regarding age, sex ratio and education, some other critical 
factors, such as socioeconomic status, vascular risk 
burden, cognitive reserve, racial/ethnic make-up, and 
genetic vulnerability were not addressed in most of the 
original studies, which might lead to some heterogeneity 
in the conclusions and remains to be further addressed. 
Further analysis of multicenter raw imaging data in large 
homogeneous samples, like ASL-MRI scans from the 
Alzheimer’s disease Neuroimaging Initiative (ADNI) 
subjects [94], would confirm the present findings. Second, 
our meta-analysis that synthesized the findings from the 
cross-sectional studies could not determine whether 
decreases of rCBF in the identified brain areas are the 
cause or consequence of AD [14]. Longitudinal studies 
could provide further insights. Third, ASL acquisition 
parameters, pre- and post-processing steps, such as scanner 
field-strength, inversion time, labeling duration, post label 
time delay, volume coverage, readout approaches, partial 
volume correction, and GM correction, may bias the 
results that warrant careful consideration by investigators. 
Further investigations in high field-strength MRI scanners 
with optimized and standardized imaging acquisition and 
analytical methodology are recommended [15].

Table 3: Jackknife sensitivity analysis
All studies but … Bilateral PCC/precuneus Left IPL Right IPL Left DLPFC

Johnson et al., 2005 yes yes yes no

Alsop et al., 2008 yes yes yes yes

Asllani et al., 2008 yes yes yes yes

Yoshiura et al., 2009 yes yes yes yes

Cantin et al., 2011 yes yes yes yes

Chen et al., 2011 yes yes yes yes

Dashjamts et al., 2011 yes yes yes yes

Alexopoulos et al., 2012 yes yes yes yes

Mak et al., 2012 yes yes yes no

Grieder et al., 2013 yes yes yes yes

Kim et al., 2013 yes yes yes yes

Zhang and Fan, 2013 yes yes yes yes

Zhang et al., 2013 yes yes yes yes

Ding et al., 2014 yes yes yes yes

Liu et al., 2014 yes yes yes no

Lyu et al., 2015 yes yes yes yes

Roquet et al., 2016 yes yes yes yes

Total 17 out of 17 17 out of 17 17 out of 17 14 out of 17

Abbreviations: PCC, posterior cingulate cortex; IPL, inferior parietal lobule; DLPFC, dorsolateral prefrontal cortex; yes, 
the region(s) reported; no, the region(s) not reported.
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MATERIALS AND METHODS

Literature search and study selection

A comprehensive literature search was performed in 
the PubMed, Web of Science, and Embase databases up 
until 16 December, 2016, using the keywords “Alzheimer’s 
Disease” AND “arterial spin labeling”. The China National 
Knowledge Infrastructure (CNKI) database was searched 
for additional studies published in Chinese. Reference lists 
from relevant studies were manually reviewed for further 
eligible studies. Studies were included in the meta-analysis 
if they met the following criteria: 1) the study used the 
standard diagnostic criteria for Alzheimer’s Disease [95–
99]; 2) the study utilized resting-state ASL MR imaging to 
measure rCBF differences between Alzheimer’s Disease 
and healthy controls; 3) the study applied a voxel-based 
statistical analysis; 4) the study reported three-dimensional 
coordinates in Talairach or MNI space; and 5) the study 
was published as an original article (not as a letter or 
a meeting abstract or a comment) in a peer-reviewed 
journal. Studies were excluded if they specifically used 
region of interest (ROI) approaches. Studies were also 
excluded if they did not report significant results with 
three-dimensional peak coordinates. To avoid duplication, 
only the study with a larger sample size was included in 
case that the patient populations overlapped. The quality 
of each eligible study was evaluated with a 10-point 
checklist (Supplementary Table 2) based on previous 
neuroimaging meta-analyses [100, 101]. This study 
followed the MOOSE guidelines for the meta-analyses of 
observational studies [102].

Data analysis

Main voxel-wise meta-analysis

A meta-analysis of rCBF differences between AD 
patients and healthy controls was performed using the 
SDM software package (www.sdmproject.com). The 
SDM approaches have been described in detail previously 
[44–47, 93, 103–105]. We briefly summarized here. 
Peak coordinates and effect sizes (e.g., t-values) of rCBF 
differences between AD patients and healthy controls were 
firstly extracted from each study [103, 105]. The SDM 
software then separately recreated a standard MNI map 
of rCBF for each study applying an anisotropic Gaussian 
kernel (full width at half maximum [FWHM] = 20 mm) 
[44, 103, 105]. The mean map was generated by voxel-
wise calculation of the mean of the study maps with a 
standard random-effects model, taking into account the 
sample size, the intra-study variability, and the between-
study heterogeneity [44, 103, 105]. To generate significant 
results and the final map of rCBF, we applied the default 
SDM kernel size and threshold (uncorrected voxel p 
= 0.005, peak height Z = 1, cluster extent = 10 voxels), 
which is equivalent to a corrected p value of 0.05 and is 

found to optimally balance false positives and negatives 
[103, 105]. Results were visualized with the BrainNet 
Viewer [106].

Reliability analysis

To test the reliability of the findings identified in the 
main voxel-wise meta-analysis, a whole-brain voxel-based 
jackknife sensitivity analysis was performed by iteratively 
repeating the same analysis, excluding one study at a time 
[44, 46, 93, 103].

Analysis of publication bias

Possible publication bias was examined with a 
standard meta-analysis using the Stata 12.0 software (Stata 
Corp LP, College Station, TX, USA) by extracting the 
values from the relevant peaks from the main voxel-wise 
meta-analysis. An asymmetric funnel plot and a p-value 
less than 0.05 for Egger’s test were considered significant.

Meta-regression analysis

A meta-regression analysis was conducted to assess 
the severity of cognitive impairment examined by MMSE 
scores that correlate with the ASL results. A stringent 
threshold of p = 0.0005 and a cluster extent of 10 voxels 
were used for the meta-regression analysis [103, 104].

CONCLUSIONS

Our study shows the most consistent and replicable 
decreases of rCBF in the bilateral PCC/precuneus, bilateral 
IPLs, and left DLPFC in AD patients compared with 
healthy controls via the voxel-wise meta-analysis of ASL 
studies. These aberrant regions predominantly involve 
in the default mode and central executive networks that 
are implicated in the AD pathophysiology. This study 
further demonstrates that reduced rCBF in the bilateral 
PCC/precuneus and left IPL was related to the severity 
of cognitive impairment in AD patients, which suggests 
that altered rCBF in these regions may act as an objective 
imaging marker for tracking AD progression.

Abbreviations

AD, Alzheimer’s disease; ADNI, Alzheimer’s 
disease Neuroimaging Initiative; aMCI, amnestic mild 
cognitive impairment; ASL, arterial spin labeling; 
BA, Brodmann area; CASL, continuous arterial spin 
labeling; CBF, cerebral blood flow; CEN, central 
executive network; ECD-SPECT, 99mTc-ethyl cysteinate 
dimmer-single photon emission computed tomography; 
DLPFC, dorsolateral prefrontal cortex; DMN, default 
mode network; FDG-PET, 18Fluorodeoxyglucose 
positron emission tomography; FWHM, full width at 



Oncotarget93203www.impactjournals.com/oncotarget

half maximum; HC, healthy controls; HMPAO-SPECT, 
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cortex; pCASL, pseudocontinuous arterial spin labeling; 
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rCBF, regional cerebral blood flow; ROI, region of 
interest; SDM, Seed-based d Mapping; SD, standard 
deviation; SPM, statistical parametric mapping; CNKI, 
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