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Abstract
Background and Objective: The endoscopic diagnosis of pathological changes in the 
gastroesophageal junction including esophagitis and Barrett’s mucosa is based on the visual detection 
of two boundaries: mucosal color change between esophagus and stomach, and top endpoint of gastric 
folds. The presence and pattern of mucosal breaks in the gastroesophageal mucosal junction (Z line) 
classify esophagitis in patients and the distance between the two boundaries points to the possible 
columnar lined epithelium. Since visual detection may suffer from intra‑ and interobserver variability, 
our objective was to define the boundaries automatically based on image processing algorithms, 
which may enable us to measure the detentions of changes in future studies. Methods: To demarcate 
the Z‑line, first the artifacts of endoscopy images are eliminated. In the second step, using SUSAN 
edge detector, Mahalanobis distance criteria, and Gabor filter bank, an initial contour is estimated for 
the Z‑line. Using region‑based active contours, this initial contour converges to the Z‑line. Finally, 
by applying morphological operators and Gabor Filter Bank to the region inside of the Z‑line, 
gastric folds are segmented. Results: To evaluate the results, a database consisting of 50 images 
and their ground truths were collected. The average dice coefficient and mean square error of Z‑line 
segmentation were 0.93 and 3.3, respectively. Furthermore, the average boundary distance criteria 
are 12.3 pixels. In addition, two other criteria that compare the segmentation of folds with several 
ground truths, i.e., Sweet‑Spot Coverage and Jaccard Index for Golden Standard, are 0.90 and 0.84, 
respectively. Conclusions: Considering the results, automatic segmentation of Z‑line and gastric 
folds are matched to the ground truths with appropriate accuracy.

Keywords: Adenocarcinoma, Barrett’s esophagus, demarcating Z‑line and gastric folds boundary, 
segmentation of lower esophageal sphincter endoscopy images

Demarcating Z‑line and Gastric Folds Boundary Based on the 
Segmentation of the Lower Esophageal Sphincter Images

Original Article

Rasoul Sharifian1, 
Behzad Nazari1, 
Saeed Sadri1, 
Peyman Adibi2

1Department of Electrical and 
Computer Engineering, Digital 
Signal Processing Lab., Isfahan 
University of Technology, 
Isfahan, Iran, 2Department of 
Internal Medicine, Faculty of 
Medicine, Isfahan University of 
Medical Science, Isfahan, Iran

How to cite this article: Sharifian R, Nazari B, 
Sadri S, Adibi P. Demarcating Z‑line and gastric 
folds boundary based on the segmentation of the 
lower esophageal sphincter images. J Med Sign Sens 
2023;13:73‑83.

Introduction
Today with the tendency of societies 
toward new diets, the prevalence of 
gastroesophageal reflux disease as a 
common digestive disorder has been on 
rise.[1] Fortunately, the development of 
various endoscopic imaging systems allows 
the diagnosis of these diseases. The most 
common methods used for the diagnosis 
and categorization of these diseases are 
based on the physician’s estimation from 
a suspected tissue length during the 
endoscopy process.[2]

As shown in Figure 1, the anatomical line 
indicates the gastroesophageal junction 
and the histological Z‑line reveals the 
gastrointestinal junction tissue. In normal 
cases, the transition region (i.e., where the 

stomach tissue ends and the esophagus 
tissue begins) is located right at the end 
of the esophagus. In the abnormal case, 
as shown in Figure 1, these two lines are 
separated from each other. Therefore, it is 
highly important to identify two regions in 
lower esophagus sphincter (LES):
1. The junction of gastroesophageal 

constructions, which marks the end of 
stomach folds.

2. The junction of gastrointestinal tissues, 
which is marked with the red‑pink 
line (Z‑line).

The distance between these two regions 
is so crucial for a clinician’s diagnosis. 
However, since physicians tend to estimate 
the tissue length without any benchmark, 
in many cases, the precise location of these 
two regions is determined erroneously.[2] On 
the other hand, common methods developed 
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to diagnose and categorize these diseases are based 
on measuring the length of these regions. Both Los 
Angeles (LA) classification for esophagitis[4] and Prague 
criteria for Barrett’s esophagus (BE)[5] are based on 
quantitative criteria to measure distances. Therefore, it 
is clear that increasing the accuracy of measurements 
improves the diagnosis quality of these two methods. For 
this purpose and after consultation with gastrointestinal 
clinicians, we introduced an image processing method 
to segment Z‑line and gastric folds to reinforce accurate 
diagnosis. In the following, we will first review the relevant 
literature.

Several methods have been proposed to help physicians 
diagnose esophagitis. A systematic review of recent studies 
is presented in.[6] It focuses on the automatic detection 
of the neoplastic region for classification purposes under 
different endoscopy modalities. Another study that 
discusses advances in esophagitis computer‑aided diagnosis 
systems is presented.[7] It starts with a brief introduction to 
endoscopy modalities used for esophageal examination and 
deals with the detection methods recently developed for BE 
detection. One of the first studies that directly employed 
image processing techniques for BE detection was 
proposed by Kim et al. in 1995.[8] The goal of this paper 
was to prepare a two‑dimensional map of the esophagus to 
demarcate Barrett’s metaplasia. The authors examined their 
method both in a cylindrical model of the esophagus and 
also in human samples. Seo et al.[9] classified esophagitis 
in four grades based on the LA classification criteria. 
Their algorithm separated these four grades with a success 
ratio of 96% using a neural network and texture analysis. 
Santosh et al.[10] attempted to classify the esophagitis by 
LA classification using low‑level image features and a 
neural network classifier. According to their results, as 
grades approach to level D, the texture changes grew more 
intense and therefore the features could be distinguished 
with greater accuracy. Hence, in grades like level A 
where there are small changes in the texture, the results 

are inaccurate. Thus, as the authors suggested, accurate 
segmentation of the Z‑line and stomach would improve the 
distinguishing ability of the LA classification. In a study by 
Serpa‑Andrade et al.,[11] an approach based on the analysis 
of esophageal irregularities (the Z‑line) was proposed. 
To analyze these irregularities, they applied the Fourier 
transform to the shape signature of the Z‑line and classified 
images into the healthy and the diseased categories. Yousefi 
et al.[12] proposed a hybrid algorithm that uses spatial fuzzy 
c‑mean and level set methods for BE segmentation. They 
concluded that this approach was suitable for the automatic 
segmentation of esophagus metaplasia. However, their 
method was only tested on four LES images and might not 
provide accurate results for different patients with almost 
different LES images. In a study by Van Der Sommen 
et al.,[13] a supportive automatic system was proposed to 
annotate early esophageal cancerous tissue in high‑definition 
endoscopic images. The proposed algorithm computes 
local color and texture features both in the original image 
and also in the Gabor‑filtered image. Then, by exploring 
the spectral characteristics of the image and by applying 
a trained support vector machine (SVM), the suspected 
tissue was segmented. Souza et al.[14] proposed a method 
to examine the feasibility of adenocarcinoma classification 
in endoscopic images. The algorithm starts with the 
extraction of speed‑up robust features (SURF), which are 
employed with SVM for training and testing purposes. 
Souza et al.[15] investigated the use of the optimum‑path 
forest (OPF) classifier for the automatic identification of BE. 
They consider describing endoscopic images using feature 
extractors based on key information, such as the SURF and 
scale‑invariant feature transform. They further designed 
a bag of visual words that is used to feed both OPF and 
SVM classifiers. The best results were obtained using the 
OPF classifier for both feature extraction methods. Mendel 
et al.[16] investigated the application of deep learning in 
specialist‑annotated images containing adenocarcinoma 
and BE’s disease. The convolutional neural network was 
applied to a set of images by adopting a transfer learning 
approach in a leave‑one‑patient‑out cross‑validation. The 
study demonstrated the generalizability of results to the 
BE’s segmentation domain.

Following these studies, our contributions are as follows:

First, since there was no dataset for this study, we collected 
a dataset for this purpose. Therefore, we gathered and 
annotated LES images for both gastric folds and Z‑line 
by three physicians. Second, as we noticed there is a 
huge disagreement between physicians themselves for 
determining the annotation of gastric folds. Therefore, 
we collected three Ground Truths for each image and 
compared our algorithms with the intersection of them 
to handle inter‑observer variability. Third, we evaluate 
the feasibility of developing machine vision algorithms 
to assist physicians for a reliable segmentation the Z‑line 
and Gastric folds in disease diagnosis. For this purpose, 

Figure 1: Shematic Ilustration of abnormal LES image, adapted from 
Figure 1 of[3]



Sharifian, et al.: Demarcating Z-line and gastric folds based on LES image segmentation

Journal of Medical Signals & Sensors | Volume 13 | Issue 2 | April-June 2023 75

a classic image processing algorithm is developed and its 
results are compared with U‑Net,[17] which is a popular 
State‑of‑the‑Art convolutional neural network (CNN) 
architecture in semantic segmentation models.

Obviously, these automatic segmentations do not resolve 
all the problems, as we cannot decide whether mucus is 
cancerous or not. We only segment Z‑line and gastric 
folds and these segmentations indirectly lead to enhanced 
diagnosis of esophagitis. In Section 2, our suggested method 
for Z‑line and gastric folds segmentation is presented. In 
Section 3.1, we will explain the collected database. Finally, 
in Section 3, the results of our algorithm are compared to 
those presented by other gastroenterologists.

Methods
Figure 2 shows our proposed method consists of four major 
parts including preprocessing, extraction of the region 
of interest (ROI), Z‑line, and gastric folds segmentation. 
In the preprocessing step, noise, and nonuniform 
illumination (NUI) are removed using nonlinear 
diffusion (NLD) filtering and local normalization. In the 
next step, regions with no useful information (e.g., regions 
with an intense lightening), are omitted. In the last two 
steps, Z‑line and gastric folds are segmented using SUSAN 
edge detector, active contours, and Gabor filters. It should 
be noted that as gastric folds are usually inside the Z‑line, 
we first offer a rough estimation of Z‑line and then gastric 
folds are searched inside the Z‑line region.

Preprocessing

One major source of noise in the endoscopic images is 
noise induced by cables and imaging devices. To eliminate 
the noise while preserving the edges, the NLD filter was 
used. NLD which was proposed by Perona and Malik,[18] 
removes noise by diffusing the image gradient in the 
neighboring pixels. This diffusion could be suppressed at 
the boundaries by a proper selection of filter parameters. 
In each dimension, this process could be formulated 
mathematically as follows:
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In this equation, the diffusion strength is controlled by a 
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These gradients are computed and added to the current 
image intensity in each iteration after passing through the 
diffusion function fexp. The discussion for the selection of 
this function is as follows. Indeed, two different functions 
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Figure 3 shows these two functions for k = 5 and 
α = 1. As illustrated in this figure, for an equal gradient, the 
exponential function has a greater descent corresponding to 
the fractional one. Therefore, this function is more useful 
for preserving edges. In addition, by taking derivative 
from these two functions, it is obvious that their maximum 

happens at ∇li (x) = k for ffrac and ∇li (x) = 
2
k  for fexp 

(if α = 1) respectively.

According to this exponential function, we can effectively 
control the noise diffusion procedure and simultaneously 
preserve image edges by κ and α parameters. For our 
dataset, these two parameters are set to 0.125 and 1 
respectively. The result of our proposed denoising algorithm 
in a sample data is shown in Figure 4.

In the next step, the local NUI is corrected. Figure 5a 
shows a sample image with increased brightness from 
the left to the right. These NUI can influence the final 
results of image segmentation. One way to remove these 
effects is to normalize each pixel’s brightness based on 
its neighbor information. For this purpose, the average 
and standard deviation for a Gaussian window around 
each image pixel were calculated. Then, the brightness 
of this pixel is normalized according to the following 
equation:

( ) ( ) ( )
( )
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,  

,
I

I
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−
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where mI (x, y) and σI (x, y) are average and standard 
deviation of pixels in the window, respectively. The 
window size determines the neighbor information used for 
correcting the local NUI. As the window size is increased, 
more far pixels would influence the mean and variance, 
thereby making the algorithm nonlocal. For our data set, 
the window size was set to 55 pixel.

Figure 2: Proposed method
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Extracting region of interest

In the endoscopy images, there are usually areas that either 
do not contain any information or have false information, 
which affects the subsequent processing. As an example, 
when the lower LES is opened, there is a black region with 
no information in the image. In the following section, we 
attempt to identify these areas and then remove them from 
the ROI.

Extracting image border

In endoscopy images, there is a black border that contains 
some information about the patient and imaging data. 
A simple approach to segment this border is thresholding. 
To this goal, 18,000 samples were selected randomly 
from different regions of gastrointestinal tissue. The same 
number of samples were extracted from the border of 
images. The histograms of these two groups of samples 
are simultaneously shown in Figure 6a. As illustrated in 
the figure, there is a clear distinction between these two 
regions in the R channel of RGB color space. By applying 
a threshold level of 30 to this channel, the main region of 
border was segmented. In the next step, the output of this 
binary image was expanded with the morphology operator 
dilation. As a result, the text information inside the image 
border was completely removed.

Removing specular reflections and intestinal juices

Due to the proximity of the endoscope lamp to the 
gastrointestinal tissue, SR usually appear in endoscopic 
images. In addition, there is usually some IJ leaving 
the stomach during the endoscopy, which impedes the 
direct vision of the tissue. For extracting these regions, 
2500 pixels were extracted from both SR and IJ areas. 
Furthermore, the same number of pixels were extracted 
from normal regions of gastric tissue. A comparison of 
the histograms of these two groups of pixels in different 
color spaces exhibits a clear discrimination between these 
two groups of pixels in S channel of HSV color space. 
As illustrated in Figure 6b, specular reflections (SR) and 
intestinal juices (IJ) regions belong to the lower bins 
of histogram; thus, a threshold level of 35 in S channel 
would be an appropriate choice to segment these regions. 
In the following, the extracted regions were expanded and 
denoised using dilation morphological operation.

Extracting lumen

Digestive tract is a dynamic organ that is in interaction 
with the physician during endoscopy. Moreover, its 
members are not rigid and exhibit mobility and activities. 
For example, in most of the LES images, the opened 
stomach sphincter makes a relatively large area of the 
image dark. This opened sphincter, which is called lumen, 
must be segmented and removed from the ROI. As shown 
in Figure 7, the lumen histogram is mostly in the lower 
bins of all three components of RGB color space. In 

this figure, the histogram of 41000 pixels collected from 
lumen is shown. The same number of samples is gathered 
from the gastrointestinal tissue. These two regions are 
more distinct in R channel as the gastrointestinal tissue 
is mostly red, orange, and pink. Hence, we use the R 
channel for lumen segmentation. Another challenge in 
segmenting the lumen is that the lightening conditions of 
imaging and the opening/closure state of the lumen alter 
the location and width of the lumen peak in the image 
histogram. Particularly, in images where the lumen is 
not entirely open, it would be more difficult to detect 
this peak. For these reasons, lumen segmentation is not a 
trivial task. The following method is used to segment the 
lumen:
1. All edges in the image are detected using SUSAN edge 

detector
2. The edges located in gastric folds (gastric folds are 

discussed in Section 2.3.3) are removed
3. A circle is fitted to the remainder of edges as a rough 

estimation of lumen. An example of this estimation is 
shown in Figure 8a

Figure 3: Exponential and fractional functions used in non-linear diffusion 
filters for k = 5 and α = 1

Figure 4: (a) Original image (b) Denoised image, artifacts and other highpass 
noises are removed but Z‑line edge is preserved

ba

Figure 5: (a) Original LES image, (b) Output of NUI correction
ba



Sharifian, et al.: Demarcating Z-line and gastric folds based on LES image segmentation

Journal of Medical Signals & Sensors | Volume 13 | Issue 2 | April-June 2023 77

4. In most cases, the first local maxima in the red channel 
histogram of this estimated region is a feature for lumen 
segmentation. More precisely, the histogram is smoothed 
by an averaging kernel with length 7. Figure 8c shows 
an image with a lumen peak intensity of 53

5. The corresponding pixels of the detected peak are fed 
as an initial seed to a region‑growing algorithm. The 
output of this region growing is the whole lumen.

Figures 8b and 9 show the extracted lumen and final ROI, 
respectively.

Z‑line segmentation

After extracting the ROI, we focus on the Z‑line and gastric 
folds segmentation. Our approach involves segmentation 
of the Z‑line and then searching the folds inside its region. 
We used active contours for Z‑line segmentation. Since 
active contour segmentations are sensitive to their initial 
contours, we developed the following procedure to find an 
initial contour that was as close as possible to the Z‑line. 
The general idea behind finding this initial contour is 
shown in Figure 10. Therefore, Our approach consists of 
four steps:
1. Extracting image edges using SUSAN edge detector
2. Removing edges that are not located on the Z‑line using 

Mahalanobis distance
3. Removing gastric folds edges
4. Interpolating a curve to the remainder of edge pixels 

and use it as an initial contour

In the following, we will explain these four steps.

Extracting edges using smallest univalue assimilating 
nucleus edge detector

The basic idea behind the smallest univalue assimilating 
nucleus (SUSAN) edge detector,[19] is to compare each pixel 
similarity with its neighboring pixels. For this purpose, 
SUSAN puts a mask on each image pixel and compares 
its central pixel (called nucleus) to other pixels inside 
the mask. An example of SUSAN edge detector output is 
illustrated in Figure 11a.

Removing edges that do not belong to the Z‑line using 
Mahalanobis distance criteria

A careful analysis of edge pixels located on the Z‑line 
reveals that when we move perpendicular to the edge, we 
will find two different groups of pixels. The group of pixels 
inside the Z‑line, which are closer to red and orange, and 
pixels that are outside the Z‑line and are closer to white 
and pink. Considering these color features, Mahalanobis 
distance criteria are used to

Mahabalonis distance of an arbitrary point P to a cluster C 
is defined as:

( )2 1( )P M P M−∆ = − Σ −ú  (4)

where M and Σ−1 are mean and covariance of cluster C 
respectively. Using these distance criteria, the following 
method is used to remove undesirable edges:
1. Two clusters of 1200 sample pixels (one cluster 

inside and another outside the Z‑line) are randomly 
collected from 85 LES images. We call them C1 and 

Figure 7: Comparison of red, blue and green histograms for lumen and tissue (a) red channel (b) green channel (c) blue channel

cba

Figure 6: (a) Histogram of Red channel, taken from border (mean = 20, variance = 15.48) and from normal tissue (mean = 184.13, variance = 50.37), 
(b) Histogram of saturation channel, taken from SR and IJ (mean = 7.69, variance = 19.91) and normal tissue (mean = 101.52, variance = 19.68)

ba
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C2, respectively. To display the distinction between C1 
and C2, their green and blue components are shown in 
Figure 12

2. Considering each edge pixel direction, two foursome 
groups of pixels are chosen around each edge pixel 
using masks, as displayed in Figure 13. For both 
of these two groups, we first calculate the average 
intensity and then measure the Mahalanobis distance of 
these averaged intensities from C1 and C2. We call these 
two distances MD1 and MD2, respectively. Using these 
two distances, the procedure of removing or preserving 

edges was as follows: To preserve an edge pixel, it is 
checked that if the pixels on one side of the pixel edge 
belong to C1, the other side pixels must belong to C2. 
In fact, in this case, pixels of one side of the edge are 
related to the interior side of Z‑line and pixels of other 
side are related to the exterior side of Z‑line. Therefore, 
we expect that the current edge pixel is located on the 
Z‑line. Figure 11b shows a sample of this subsection 
output.

Removing gastric folds edges

Most of the remained edge pixels belong to the Z‑line and 
gastric folds. Thus, if gastric folds edges are removed, it 
is possible to fit a curve to the remaining edge pixels and 
use it as an initial contour to segment Z‑line. This could be 
implemented in four steps:

1. To extract the ROI a circle is fitted to the remaining 
pixel edges using Pratt method.[20] In this method, a 
circle is fitted to a collection of 2D data by minimizing:

 2 2

1

( ( ) )
N

p i i i i
i

F A x y Bx Cy D
=

= + + + +∑  (5)

 where B, C, and D are parameters corresponding to the 
center and radius of this circle and (xi, yi) is the position 
of any arbitrary data observation. An example of this 
estimated circle is illustrated in Figure 11c.

2. Using the bottom hat morphology operator, the contrast 
between gastric folds and gastrointestinal tissue is 
increased.

3. Gastric folds are bulges that originate from the stomach 
and spread in different directions of the esophagus. 
These folds are reminiscent of a Gabor filter bank 
with a small modulation frequency and varying widths. 
Using an appropriate Gabor filter bank, we can detect 

Figure 8: (a) Rough estimation of lumen, (b) detected lumen, (c) Locating 
the intensity of the initial seed in the histogram of estimated region

c

ba

Figure 10: Initial contour extraction

Figure 9: Procedure of automatic extraction of ROI, (a) Original image (b) Border extraction, (c) Part b, plus SR and IJ regions excluded, (d) Part c, plus 
lumen region excluded

dcba
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Figure 12: Two clusters formed by pixels inside (Orange) and outside 
(Pink) of Z‑line

several folds in different directions. The spatial form of 
Gabor filter is defined as:

 ( ) ( )
2 2

2 2
0 021, .

2

x y
j xu yvg x y e e πσ β

πσβ

 
− +   − + =  (6)

 In this equation, σ and β are standard deviation of 
the elliptic Gaussian function in x and y directions, 
respectively. In addition, u0 and v0 are Gabor filter 
frequencies in 2D space, which are defined as:

 0 0 0 0 0 0cos , sinu F v Fθ θ= =  (7)
 These two frequencies could be defined in Polar 

coordinates as:

 2 2 0
0 0 0 0

0

, arctan
v

F u v
u

θ
 

= + =  
 

 (8)

 Therefore, F0 is the amplitude of these frequencies and 
θ0 is their direction. By changing these two parameters, 
it is possible to create a filter bank, which could be 
applied to an image for extracting objects in various 
directions. An example of this filter bank is illustrated 
in Figure 14e. To localize gastric folds, the output of 
these 24 Gabor filters is summed together and then 
thresholded by applying a global threshold obtained 
using  Otsu method [Figure 11d].

4. A convex hull polygon is fitted to the output of 
the previous step, as illustrated in Figure 14e. The 
edge pixels in this area are considered as folds and 
are removed from desirable Z‑line edge pixels. The 
remained edge pixels are expected to be mainly located 
on the Z‑line. Thus, as it is shown in Figure 11f, a 
curve is fitted to the remaining edge pixels and used as 
our initial contour to segment the Z‑line.

 After determining this initial contour, the LES images 
are then expanded to prevent active contour segmenting 
border instead of the Z‑line. An example of this 
expansion is illustrated in Figure 15. Furthermore, to 
increase the segmentation speed, images are down‑
sampled with a rate of four.  Finally, the images are 
segmented using the obtained initial contour and local 
active contours method introduced by Lankton et al.[21] 
Figure 16 shows the results of this automatic annotation 
and its ground truth for three sample images.

Gastric folds segmentation

Since gastric folds are always inside the Z‑line, the 
following steps are used for gastric folds segmentation:
1. Z‑line interior is considered as ROI
2. Steps two, three, and four are again incorporated as 

described in Section 2.3.3
3. In images with a visible lumen, the output of the 

previous step would be the union of lumen and folds.

Figure 11: Procedure of removing unwanted edges: (a) SUSAN edge detector output, (b) Removing unwanted edges using Mahalonobis distance, 
(c) Circle fitting for a rough estimation of gastric folds, (d) Output of Gabor filter bank, (e) First estimation of gastric folds, (f) Final initial contour 
for Z‑line segmentation

d

cb

f

a

e
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Two samples of gastric folds segmentation are shown in 
Figure 17 along with the ground truth results from three 
clinicians. As it can be seen, there are significant differences 
even between clinicians in demarcating the region of gastric 
folds. This poses a challenge in the evaluation section that 
we will discuss later.

Results
Dataset

As there was no standard dataset for our defined problem, 
LES images were collected under the supervision of 
gastroenterologists in two independent clinics of digestive 
diseases. The endoscope device was a Fujinon EG‑530FP 
with a resolution of 320 × 240 pixels per image. The 
following points were considered during the data 
collection:
1. Given the pencil‑shaped structure of esophageal, its 

lower section linked to the stomach is smaller than 
other sections. As a result, gastric folds may cause some 
wrinkles in the esophageal tissue. During the endoscopy, 
the clinician needs to stretch the esophagus tissue to 
prevent these wrinkles. As a result, gastric folds and 
their wrinkles are limited to the inside of Z‑line.

2. Since LES images have various structures in the pull 
and push endoscopy, all of the images were collected in 
the pull stage.

 Depending on the patient’s request, endoscopy was 
conducted either with complete or local anesthesia. 
Finally, 50 images taken from 20 patients were selected 
as our dataset. The Z‑line of all images was demarcated 
by one clinician and the gastric folds were segmented 
by three clinicians.

 To evaluate the proposed algorithm, the dataset is 
divided randomly into three sets of train, validation, 
and test with the ratio of 0.3, 0.3, 0.4, respectively. 
To compare this method with a modern deep learning 
neural network, we selected the U‑Net architecture, 
which is a popular CNN model in medical image 
segmentation tasks. Furthermore, as the deep neural 
networks are usually data‑hungry, and preparing more 
data could increase the efficiency of the architecture 
dramatically, a bunch of data augmentations including 
rotation, vertical and horizontal filliping, zooming, 
and shearing (all of them with the probability of 0.2) 
performed. In addition, the dataset is again divided into 
three sets randomly, but this time with the ratio of 0.5, 
0.25, 0.25 respectively. For this method, this random 
selection is repeated ten times and the final results are 
the average of these ten experiments. Furthermore, 
gastric folds training labels are collected randomly from 
three clinicians’ annotations.

Evaluation of Z‑line segmentation

As there was no significant difference between clinicians 
in Z‑line demarcating, just one ground truth is considered 
for each image. Thus, to measure the quality of the 
segmentation method, we first calculated the dice coefficient 

Figure 14: Real parts of Gabor filter for 0° (a) to 157.5° (h) with step of 22.5°, (F0 = 4cycle/pixel, σ= β= 2)
d hc gb fa e

Figure 15: (a) Original image, (b) Border expansion
ba

Figure 13: Masks used for choosing pixels around each edge. Yellow square shows the detected edge, orange and pink squares denote chosen pixels 
around each edge. (a) 0° mask, (b) 45° mask, (c) 90° mask, (d) 135° mask
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and Mean Squared Error (MSE) of the automatically 
annotated images.

In addition, we computed the average boundary 
distance (ABD). To do so, we compared the boundaries 
of our segmentation and the ground truth. That is, for 
each pixel on the boundary of our segmented image, we 
identified the nearest pixel in the ground truth and then 
the Euclidean distance between these two pixels was 
calculated. This process was repeated for all pixels on the 
boundary. Finally, the average of these distances indicates 
ABD. Table 1 shows the average and standard deviation of 
these three metrics for our dataset. The U‑net segmentation 
architecture is also used as a well‑known state‑of‑the‑art 
alternative to segment Z‑line. We used the U‑Net 
architecture as it was proposed.[17] with a single exception 
that we resized our images to 512 × 512. LES images are 
fed to the neural network once with preprocessing and once 

without passing through this step. The results are shown in 
Table 1 separately. Accordingly, based on these results, the 
segmented Z‑line matches the ground truth with reasonable 
accuracy in both the classical and the U‑Net methods. It is 
also clear that the preprocessing step greatly increased the 
segmentation results. Indeed, this step thoroughly increased 
the performance of the neural network by removing the 
artifacts, extracting the informative ROI, and also by 
increasing the contrast between esophageal tissue and the 
z‑line.

Evaluation of gastric folds segmentation

The evaluation and interpretation of gastric folds 
segmentation results are not a straightforward issue. That 
is because the region determined by one clinician could 
be significantly different from another one. One way to 
address this issue is to obtain various ground truths from 
different clinicians and use all of them to evaluate the 

Figure 16: Four examples of automatic Z‑line segmentation. Columns 1 (a and e) and 3 (c and g) are our output and columns 2 (b and f) and 4 (d and h) 
are clinicians ground truths
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Figure 17: Two examples of automatic gastric folds segmentation. Left column (a and e) shows our output and three next columns (b, c, d, f, g, and h) 
show the ground truth of three different clinicians
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algorithm results. Columns 2 to 4 in Figure 16 show ground 
truths for an LES image. As can be seen, clinicians had 
significantly divergent views about locating the boundary 
of gastric folds. Hence, two metrics introduced[22] were used 
to compare our results with ground truths obtained from 
the three clinicians. The first metric is called Sweet‑Spot 
Coverage (SSC), which is defined as:

( ),
i

i

i
i

M A
SSC A M

M

 
 
 =
 


 (9)

In this equation, A is the result of image processing 
algorithm and M is a set of binary masks, where each 
binary mask Mi contains ground truth of clinician number 
i. As it is clear, this metric compares the results of our 
algorithm with those approved by all clinicians. This metric 
was computed also between the clinicians themselves. 
To do so, we put one clinician aside and used the other 
two clinicians as ground truth to compute SSC. This was 
repeated three times and each time another clinician was 
set aside. Finally, the average of these three SSCs was 
considered as the SSC between clinicians. The average and 
standard deviation of SSC for both of the classic and the 
U‑Net architecture are shown in Table 2.

Another metric used to evaluate the results was Jaccard 
Index for Golden Standard (JIGS), which is defined as:
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 
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As it is clear, JIGS would be one when the algorithm 
segmentation is between the intersection and the union of 
all three ground truths annotations. This metric was once 
again computed between the clinicians themselves as 
described above. The average and standard deviation of 
JIGS for both of the classic and the U‑Net architecture are 
computed and shown in Table 2. Based on these results, 
the output of our segmentation algorithms confirms the 
clinician’s annotations.

Discussion
In this research, an automatic method was developed 
for Z‑line and gastric folds segmentation. It was shown 
that Z‑line segmentation is in good agreement with the 
ground truth. All of the classical pixel‑based metrics had 
averages above 90% with standard deviations less than 
1%. Furthermore, ABD had an average of 4.18 pixels with 
a standard deviation of 2.93. It means that on average, the 
segmented Z‑line had just 4 pixels distance to the ground 
truth. As there is a disagreement between clinicians for 
boundary of folds, three different ground truths were 
gathered for each image of our data set. Then, SSC and JIGS 

metrics were used to compare our results with the three 
ground truths. Based on Table 3, the average of SSC was 
90% with a standard deviation of just 1%. A comparison of 
this average with the SSC between clinicians showed that our 
gastric folds segmentation resembles that of clinicians. This 
is also true for JIGS metric where our algorithm results are 
comparable to that of clinicians. To evaluate the performance 
of deep learning approaches the U‑Net architecture is used. 
The advantage of using these methods is that we get free of 
choosing a number of parameters that must be determined in 
classical approaches, but on the other hand, these approaches 
are usually data‑hungry. To overcome this, we applied 
augmentation methods to increase data samples. Note that 
this study aims to evaluate the feasibility of machine vision 
algorithms in segmenting the Z‑line and gastric folds. This 
is clear that for a more robust and reliable algorithm, more 
amount of LES images collected from a variety of clinics is 
needed. According to gastroenterologists, results show that it 
is feasible to accurately segment the Z‑line and gastric folds 
using image processing algorithms and this leads to a more 
accurate diagnosis of the disease.
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Table 2: Mean and standard deviation of gastric folds 
segmentation results

Mean–SD
Classic 
method

U‑Net 
(with preprocessing)

U‑Net 
(without preprocessing)

SSC 0.90‑0.09 0.85–0.11 0.78–0.19
JIGS 0.85‑0.09 0.82–0.12 0.76–0.19
SCC ‑ Sweet‑Spot Coverage; JIGS ‑ Jaccard Index for Golden 
Standard; SD ‑ Standard deviation

Table 1: Mean and standard deviation of pixel based 
evaluation metrics

Mean‑SD
Classic 
method

U‑Net (with 
preprocessing)

U‑Net (without 
preprocessing)

Dice coefficient 0.9310‑0.067 0.9334‑0.053 0.87‑0.18
ABD 8.6‑5.93 16.035‑14.5 31.1‑26.5
MSE 4.3‑3.15 2.25‑3.5 14.1‑12.3
ABD ‑ Average boundary distance; MSE ‑ Mean square error; 
SD ‑ Standard deviation

Table 3: Mean and standard deviation of gastric folds 
segmentation results

Mean‑SD
Between algorithm and 

clinicians
Between clinicians 

themselves
SSC 0.90‑0.09 0.89‑0.05
JIGS 0.85‑0.09 0.82‑0.07
SCC ‑ Sweet‑Spot Coverage; JIGS ‑ Jaccard Index for Golden 
Standard; SD ‑ Standard deviation
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