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ABSTRACT: The performance of six frequently used density functional
theory (DFT) methods (RPBE, OLYP, TPSS, B3LYP, B3LYP*, and
TPSSh) in the prediction of Mössbauer isomer shifts(δ) and quadrupole
splittings (ΔEQ) is studied for an extended and diverse set of Fe
complexes. In addition to the influence of the applied density functional
and the type of the basis set, the effect of the environment of the
molecule, approximated with the conducting-like screening solvation
model (COSMO) on the computed Mössbauer parameters, is also
investigated. For the isomer shifts the COSMO-B3LYP method is found
to provide accurate δ values for all 66 investigated complexes, with a
mean absolute error (MAE) of 0.05 mm s−1 and a maximum deviation of
0.12 mm s−1. Obtaining accurate ΔEQ values presents a bigger challenge;
however, with the selection of an appropriate DFT method, a reasonable
agreement can be achieved between experiment and theory. Identifying
the various chemical classes of compounds that need different treatment allowed us to construct a recipe for ΔEQ calculations;
the application of this approach yields a MAE of 0.12 mm s−1 (7% error) and a maximum deviation of 0.55 mm s−1 (17% error).
This accuracy should be sufficient for most chemical problems that concern Fe complexes. Furthermore, the reliability of the
DFT approach is verified by extending the investigation to chemically relevant case studies which include geometric isomerism,
phase transitions induced by variations of the electronic structure (e.g., spin crossover and inversion of the orbital ground state),
and the description of electronically degenerate triplet and quintet states. Finally, the immense and often unexploited potential of
utilizing the sign of the ΔEQ in characterizing distortions or in identifying the appropriate electronic state at the assignment of the
spectral lines is also shown.

1. INTRODUCTION

Mössbauer spectroscopy1−4 (MS, and its synchrotron deriva-
tives5,6) is a very powerful experimental tool in different fields
of chemistry, material science, and physics, as this technique
can obtain invaluable information on the local electronic
structure, symmetry, and magnetic properties. Although it can
be applied to more than 40 kinds of nuclide, the properties of
57Fe are by far the best suited for MS. Therefore, most
experiments focus on the measurement of iron, which is an
element that has a special importance due to its wide
occurrence and utilization. Since the demonstration of the
Mössbauer-effect,1 thousands of iron-bearing systems have been
investigated including simple inorganic salts,2,7,8 complexes
with chelating ligands,2−4,7,9 organoiron2,3,7 and intermetallic2,7

compounds, alloys,2,7 magnetic thin films,10 multilayers,11

biologically important heme- and metalloproteins,2,7,9 and so
on.
The interpretation of Mössbauer spectra is not straightfor-

ward, and the support of theory is essential for extracting all the
relevant physical/chemical information from the measured
data. A good agreement between experiment and theory can
lead to a suitable method to understand and predict
spectroscopic properties. State-of-the-art quantum chemical

methods have been applied to calculate spectroscopic
parameters for decades. The highest-level wave function-
based correlated methods, such as coupled-cluster (CC)
theory, can give a very accurate description of the electronic
structure.12 However, present computational resources strongly
limit these methods to molecules made up of 10−20 atoms;
hence they are hardly applicable to iron complexes. Density
functional theory (DFT) can provide acceptable results at less
cost; however, it utilizes approximate exchange-correlation
functionals which can lead to contradictory results. A careful
exploration of the application of the functionals to the studied
problem is, therefore, crucial to the successful application of
DFT. Nevertheless, this approach has been successfully used for
the calculation of 57Fe Mössbauer parameters by several
research groups.
The literature of these calculations is substantial; in what

follows we list a few relevant works from the last 15 years. First
of all, band structure DFT calculations has been successful to
compute the 57Fe Mössbauer parameters in solids;13 however,
the main scope of the present study is to describe molecular
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Table 1. Iron Complexes Investigated in the Present Study

entry system symm.a Fe ox.b Sc T/K δ/mm s−1d δ4.2K/mm s−1d ΔEQ/mm s−1e ref

1 Fe(phen)2(NCS)2 (LS) C2 2 0 77 0.34 0.37 0.34 48
2 Fe(LN4)(NCS)2 (LS) C1 2 0 80 0.44 0.47 0.77 49
3 {Fe[HC(3,5-Me2pz)3]2}I2 (LS) C1 2 0 4.2 0.46 0.46 0.21 50
4 Fe(OEP)(CO) C4v 2 0 4.2 0.27 0.27 1.84 51
5 Na2[Fe(CN)5(NO)] C4v 2 0 77 −0.18 −0.15 +1.72 52
6 Na2[Fe(CN)5(ON)] C4v 2 0 77 0.00 0.03 2.75 52
7 Na2[Fe(CN)5(η2-NO)] C1 2 0 77 0.01 0.04 2.86 52
8 Cp2Fe D5d 2 0 80 0.53 0.56 +2.38 53
9 [CpFe(CO)3]PF6 C1 2 0 78 0.05 0.08 1.88 53
10 [CpFe(CO)2]Cl C1 2 0 4.2 0.27 0.27 1.82 14
11 [CpFe(CO)2]Br C1 2 0 78 0.25 0.28 1.87 54
12 [CpFe(CO)2]Me C1 2 0 78 0.08 0.11 1.76 55
13 Fe(CO)3(butadiene) C1 0 0 77 0.03 0.06 −1.46 53
14 Fe(CO)3(cyclo-butadiene) C1 0 0 78 0.02 0.05 1.52 55
15 Fe(CO)5 D3h 0 0 143 −0.18 −0.12 +2.52 56
16 Et4N[Fe(CO)4H] C3v 0 0 77 −0.17 −0.14 1.36 57
17 [Fe(bipy)3](ClO4)2 D3 2 0 77 0.33 0.36 0.39 58
18 [Fe(phen)3](ClO4)2 D3 2 0 77 0.34 0.37 0.23 58
19 [Fe(terpy)2]Cl2 D2d 2 0 80 0.27 0.30 −1.00 59

20 Fe(phen)2(NCS)2 (HS) C2 2 2 77 1.01 1.04 2.82 48
21 Fe(LN4)(NCS)2 (HS) C1 2 2 80 1.10 1.13 2.51 49
22 {Fe[HC(3,5-Me2pz)3]2}I2 (HS) C1 2 2 190 1.02 1.09 3.86 50
23 (PPh4)2[Fe(DTSQ)2] D2d 2 2 4.2 0.67 0.67 −4.01 60
24 (PPh4)2[Fe(SPh)]4] C2 2 2 4.2 0.66 0.66 −3.24 60
25 Fe(phen)2Cl2 C2 2 2 77 1.07 1.10 3.27 55
26 FePy4Cl2 D4 2 2 4.2 1.10 1.10 −3.14 55
27 Na[Fe(TPpivP)(OAc)]f C1 2 2 4.2 1.05 1.05 +4.25 61
28 Na[(DBC)(THF)2][Fe(TPP)(OPh)] C1 2 2 4.2 1.03 1.03 +4.01 62
29 Fe(TMP)2(NCS)2 C2 2 2 90 1.07 1.11 3.27 63
30 Fe(LN4′)(NCS)2 C1 2 2 80 1.16 1.19 2.14 64
31 [Fe(H2O)6]SO4 D2h 2 2 5 1.39 1.39 3.38 65
32 (Et4N)2[FeCl4] Td 2 2 4.2 1.00 1.00 3.30 66
33 (Et4N)2[FeBr4] Td 2 2 4.2 0.97 0.97 3.23 67

34 Fe(OEP) Ci 2 1 4.2 0.59 0.59 +1.60 68
35 Fe(TPP) D2h 2 1 4.2 0.52 0.52 +1.51 68

36 Fe(thpu)(Hthpu) (LS) C1 3 1/2 80 0.28 0.31 3.09 69
37 [Fe(acpa)2]PF6 (LS) C2 3 1/2 78 0.25 0.28 2.24 70
38 [Fe(bipy)3](ClO4)3 D3 3 1/2 80 0.06 0.09 1.90 71, 72
39 [Fe(phen)3](ClO4)3 D3 3 1/2 80 0.10 0.13 1.84 71, 72
40 [Fe(terpy)2](ClO4)3 D2d 3 1/2 77 0.07 0.10 −3.43 72
41 [Fe-trans-(cyclam)(N3)2]PF6 Ci 3 1/2 80 0.28 0.31 −2.24 73
42 Fe(OEP)(PyMe2)2 D2h 3 1/2 4.2 0.26 0.26 2.15 74

43 Fe(thpu)(Hthpu) (HS) C1 3 5/2 241 0.47 0.57 0.81 69
44 [Fe(acpa)2PF6 (HS) C2 3 5/2 320 0.33 0.46 0.53 70
45 (n-Pr)4N[Fe(SEt)4] S4 3 5/2 4.2 0.25 0.25 0.62 75
46 FeCl(MBTHx)2 C1 3 5/2 4.2 0.43 0.43 0.98 76
47 K[Fe(EDTA)(H2O)] C2 3 5/2 4.2 0.60 0.60 0.76 77
48 Fe(acac)3 C3 3 5/2 78 0.53 0.56 0.64 78
49 Fe(tfa)3 C3 3 5/2 78 0.53 0.56 0.67 78
50 [Fe(H2O)6]Cl3 D2h 3 5/2 78 0.50 0.53 0.00 79
51 Et4N[FeCl4] Td 3 5/2 77 0.30 0.33 0.00 80
52 Et4N[FeBr4] Td 3 5/2 77 0.36 0.39 0.00 80
53 FeCl3 Oh 3 5/2 78 0.53 0.56 0.00 81
54 KFeF4 Oh 3 5/2 4.2 0.69 0.69 0.00 55

55 Fe(dtc-Et2)2Cl Cs 3 3/2 4.2 0.50 0.50 2.70 82
56 (Et4N)2[Fe(η4-MAC*)Cl] C1 3 3/2 4.2 0.25 0.25 +3.60 83

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct4007585 | J. Chem. Theory Comput. 2013, 9, 5004−50205005



systems. E. Oldfield et al. calculated the isomer shifts and
quadrupole splittings of numerous iron-containing compounds
including organometallic molecules,14 protein model sys-
tems,14−17 and two- and three-coordinated18 Fe(II) and spin-
crossover complexes.19 Several researchers including L. Noodle-
man and co-workers applied DFT to compute the Mössbauer
properties of the active and intermediate sites of biologically
important proteins.20−22 The Mössbauer spectral properties of
high-valent Fe complexes were also computed with DFT.23−27

In all these previous efforts a good overall performance of DFT
methods was achieved in the estimation of the Mössbauer
parameters, even when different selected classes of iron
complexes were considered.21c,28−32 In particular, important
achievements were reported by R. Friesner et al., who
investigated the influence of the applied density functionals
and geometries on the computed Mössbauer parameters for a
large set of Fe complexes.31 However, in this and also in several
other works, DFT failed for certain systems, leading to large
deviations from the experimental values, particularly for the
quadrupole splitting parameter.18,28a,30b,31,33,34 Furthermore, it
is not yet clear which computational method (i.e., density
functional, basis set, inclusion of solvent effects, etc.) is to be
applied in case of an arbitrarily selected Fe complex. With the
present work, we aim to address these issues by investigating
the applicability of various density functional techniques to a
very extended and diverse set of iron complexes. We also test
the performance of the DFT approach in some chemically
relevant issues (isomerism, transformations, etc.). Our
motivation is to provide benchmarks, as well as a recipe for
predictive calculations, and show how problematic cases can be
recognized and treated.
The present paper is organized as follows. Section 2

describes the details of the applied DFT calculations. In
section 3.1, we present the studied set of Fe complexes, as well

as their main electronic structure-related and experimental
Mössbauer parameters. Section 3.2 describes the origin of the
isomer shift (δ) and quadrupole splitting (ΔEQ) parameters.
Sections 3.3 and 3.4 report the results obtained for δ and ΔEQ,
respectively. In section 3.5 we present the case studies of
geometric (cis-trans) isomerism, phase transitions (spin-cross-
over and inversion of the orbital ground state), and the
prediction of the sign of quadrupole splittings of Fe complexes.
Also, we discuss the problematic cases of electronically
degenerate triplet and quintet states. Finally, the most
important conclusions are summarized in section 4. The
tabulated computational results and further details of the work
are given in the Supporting Information (SI).

2. COMPUTATIONAL DETAILS

The ORCA2.8 program package35 is a suitable software for the
geometry optimizations and the calculation of isomer shifts and
quadrupole splittings of the investigated iron compounds. The
program uses Gauss-type atomic orbitals (GTOs) for the
construction of molecular orbitals. In order to study the
influence of the type of the primitive basis set (GTOs or Slater-
type orbitals, STOs) on the computed Mössbauer parameters
as well as to treat the electronically degenerate states of certain
special Fe(II) complexes, we also utilized the ADF2012.01
code.36

2.1. ORCA Calculations. The geometries of all investigated
Fe complexes were fully optimized at the BP8637/TZVP level
of theory. This method provided reliable structures for
previously studied transition metal compounds.38 The electron
density and the electric field gradient (EFG) tensor at the 57Fe
nucleus were computed with the gradient-corrected (GGA)
exchange-correlation functionals RPBE39 and OLYP,40 the
hybrid functionals B3LYP40b,41 and B3LYP*42 (with 15%
amount of exact exchange), the meta-GGA functional TPSS,43

Table 1. continued

entry system symm.a Fe ox.b Sc T/K δ/mm s−1d δ4.2K/mm s−1d ΔEQ/mm s−1e ref

57 Fe(mnt)2(idzm) C2 3 3/2 77 0.36 0.39 2.64 84

58 trans-[Fe(TMC)(O)(NCCH3)](OTf)2 C1 4 1 4.2 0.17 0.17 1.24 85
59 [Fe(N4Py)(O)](ClO4)2 Cs 4 1 4.2 −0.04 −0.04 +0.93 86
60 Et4N[Fe(η4-MAC*)Cl] C1 4 2 4.2 −0.04 −0.04 −0.89 83
61 Fe(PPh3)2(″S2″)2 C2v 4 1 4.2 0.16 0.16 1.52 87
62 Fe(PPh3)(″S2″)2 Cs 4 1 4.2 0.12 0.12 3.03 87

63 PPh4[Fe(B*)(O)] C1 5 1/2 4.2 −0.42 −0.42 +4.25 88
64 [Fe(cyclam-acetate)(N)]PF6 C1 5 1/2 4.2 −0.02 −0.02 −1.60 26, 89

65 [Fe(Me3cyclam-acetate)(N)](PF6)2 C1 6 0 4.2 −0.29 −0.29 +1.53 27
66 K2FeO4 Td 6 1 78 −0.85 −0.82 0.00 90

aApproximate point group symmetry of the molecular structure. bFe oxidation state. cFe spin state. dReferred to α-iron at room temperature. eIf
available, the experimental sign of ΔEQ (+ or −) is given; in all other cases, we show the absolute value of quadrupole splittings. fIn the computation,
the large TPpivP ligand was substituted with porphine. The following abbreviations are used in the table: LS = low spin state, HS = high spin state,
phen = 1,10-phenanthroline, LN4 = N-[(1-H-imidazol-4-yl)methylene]-N′-(1-pyridin-2-yl-ethylidene)-2,2-dimethyl-propane-1,3-diamine, pz =
pyrazolyl ring, OEP = dianion of octaethylporphyrin, bipy =2,2′-bipyridine, terpy = 2,2′:6′2″-terpyridine, DTSQ = bis(dithiosquarato-S,S′) dianion,
TPpivP = ″pivalamide-picket-fence″ porphyrin, DBC = dibenzo-18-crown-6), TPP = tetraphenylporphyrinate, TMP = 3,4,7,8-tetramethyl-1,10-
phenanthroline), LN4′ = N,N′-bis[(1H-imidazol-4-yl)methylene]-2,2-dimetyl-propane-1,3-diamine, cyclam = 1,4,8,11-tetraazacyclotetradecane, thpu
= dianion of pyruvic acid thiosemicarbazone, acpa = anion of N-(1-acetyl-2-porpylidene)(2-piridylmethyl)amine), MBTHx = bis(N-
methylbenzothiohydroxamato) anion, EDTA = tetra-anion of ethylenediaminetetraacetic acid, acac = acetylacetonate, tfa = trifluoroacetylacetonate,
dtc-Et2 = diethyldithiocarbamate, MAC* = tetra-anion of 1,4,8,11-tetraaza-13,13-diethyl-2,2,5,5,7,7,10,10-octamethyl-3,6,9,12,14-pentaoxocyclote-
tradecane, mnt = cis-1,2-dicyano-1,2-ethylenedithiolato, idzm =2-(p-pyridyl)-4,4,5,5-tetramethylimidazolinium, TMC = 1,4,8,11-tetramethyl-1,4,8,11-
tetraazacyclotetradecane, ″S2″ = 1,2-benzenedithiolato-S,S′ dianion, B* = tetra-anion of 3,3,6,6,9,9-hexamethyl-3,4,8,9-tetrahydro-1H-1,4,8,11-
benzotetraazacyclotridecine-2,5,7,10(6H,11H)-tetraone. Note that counterions were not included in the computations.
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and the meta-hybrid density functional TPSSh43 at the BP86-
optimized geometries. These functionals have been frequently
used before to calculate Mössbauer parameters14−34 and/or
other important properties (e.g., spin-state energy split-
tings38d,44) of iron complexes. Note that DFT-optimized
geometries, which are good approximations to the experimental
structure, have been successfully applied previously in the
accurate computation of Mössbauer parameters using different
density functionals.14,29,30b,c,31 The computed electron densities
and EFGs were used to evaluate the isomers shifts and
quadrupole splittings, as described in sections 3.3 and 3.4,
respectively. We also mention that counterions and solvent
molecules were not included in the calculations, as previous
results suggest that they have only a minor effect on these
quantities.18,31 Since calculations utilizing regular GTO basis
functions for Fe would surely fail,30c for the accurate
description of the electron density and the EFG at the 57Fe
nucleus we used the core-polarized CP(PPP)30 basis function
for the iron atom. For the other atoms the TZVP basis set was
used; nevertheless for the sake of simplicity, this combined
basis will be referred to as CP(PPP). Relativistic effects were
not included in the computations, since it was shown that they
do not improve the quality of the computed Mössbauer
parameters.30b The integral accuracy parameter was increased
to 7.0 at the Fe center in order to provide more accurate core
properties. Two-electron integrals were approximated by the
resolution of identity (RI) for GGA and by the method of chain
of spheres (RIJCOSX) for hybrid exchange-correlation func-
tionals.45 Since the calculation of Mössbauer properties in gas
phase might be far from realistic, the geometry optimizations
and the calculation of Mössbauer parameters were repeated by
approximating the solid-state effects of the molecular environ-
ment with the conducting-like screening model46 (COSMO)
with a dielectric constant for methanol (ε = 32.7). This is of
course arbitrary, but − probably due to the intermediate
dielectric constant of methanol − it is a frequent choice for
modeling the effect of the molecular environment in the
condensed phase.21c,28

2.2. ADF Calculations. The electron densities and EFGs
were also computed with the functionals introduced above in
combination with the Slater-type (STO) TZP all-electron basis
set at the BP86-optimized geometries. The calculations were
also repeated with the application of the COSMO model. We
note that while ORCA computes the electron density directly at
the 57Fe nucleus, ADF evaluates this property on a small
sphere; however, this barely affects the calculated isomer shifts,
as was shown in ref 28b. For the case studies described in
section 3.5 we retain the best-performing functionals only: the
COSMO-TPSSh method for the investigation of low-spin
octahedral Fe(II) cis-trans isomers and the B3LYP functional
for the study of electronically degenerate triplet/quintet states,
spin-crossover complexes, and orbital singlet and doublet states
of Fe(II) compounds. We mention that in the case of these
B3LYP computations, we assessed the triplet states of Fe(TPP)
and the quintet states of [Fe(DTSQ)2]

2−, [Fe(H2O)6]
2+, and

[Fe(DCTU)6]
2+ (for the abbreviations, see Table 1) by

imposing the corresponding occupations of the Fe-3d orbitals
within the D2h, D2d, and D3d point group symmetries,
respectively. Additionally, for [Fe(DCTU)6]

2+ we substituted
the large cyclohexyl groups with methyls, in order to reduce
computational cost. For the evaluation of the sign of the EFG
we selected the COSMO-TPSSh method, which was identified
as one of the best-performing methods for the calculation of

quadrupole splittings over the whole investigated data set. All
these computations were also carried out at the BP86-
optimized geometries, with the application of the STO-TZP
basis set.

3. RESULTS AND DISCUSSION
3.1. The Studied Iron Complexes. The data set

describing the studied Fe complexes and their experimental
Mössbauer parameters is given in detail in Table 1. Although
many of the investigated compounds have been studied in
previous computations focusing on the Mössbauer properties,
several complexes included in our data set are new in this
respect. The diversity of the studied systems was set by
choosing from inorganic salts, covalent compounds and
complexes with chelating ligands various systems with different
local symmetries, oxidation and spin states of the Fe center.
The selected set provides wide, (−0.82) − (+1.38) and
(−4.01) − (+4.25) mm s−1, ranges for the isomer shift and
quadrupole splitting parameters, respectively. To the best of
our knowledge, this is the largest and the most diverse data set
investigated in Mössbauer spectral studies. Note that the
conception for constructing this set for such a study is rather
complementary to the one applied in the recent work of R.
Friesner et al.31 While the authors of that work restricted their
investigation to compounds with available crystallography and
low-temperature (measured at 4.2 K) Mössbauer data, we wish
to address a chemically very diverse set of Fe complexes, and
for many systems only higher temperature experimental data is
available. To overcome this drawback, for the isomer shifts we
corrected all measured values to 4.2 K by an approximation of
the shift due to the second-order Doppler effect.2 The
correction was approximated by a shift of 0.12 mm s−1 for
δ4.2K − δ300K, which was reported to be linear with the
temperature.21a,47 For the quadrupole splittings, the temper-
ature dependence cannot be expressed in an explicit general
form; therefore, we can only keep in mind that the calculated
value corresponds to the low-temperature measurement. Also,
we did not follow the approach of only choosing systems with
known X-ray structures, partly because the applicability of using
these geometries for the predictive calculation of Mössbauer
parameters is limited, and more importantly, because a
combined spectroscopy-theory approach should be sufficient
and successful in itself and is also more easily available for a
larger community. Finally, we did not consider antiferromag-
netically coupled systems (such as nitrosyls and polynuclear Fe
complexes), since the calculation of their Mössbauer properties
with a broken-symmetry approach has already been discussed
in several previous works.21,28,31 On the other hand, we
included three Fe(II) and two Fe(III) spin-crossover systems,
which were not considered in the above-mentioned study.31

3.2. The Origin of the Isomer Shift and Quadrupole
Splitting. The isomer shift and quadrupole splitting
parameters are a result of the electric hyperfine interaction
between the nuclear charge density ρn(r) and the electric
potential Φ(r) of the surrounding charges:

∫ ρ= Φr r rE d( ) ( )nint
3

(1)

We can expand Φ(r) in a Taylor series around the 57Fe
nucleus at r = 0 and substitute it into eq 1;9,91 after applying the
algebra described in the SI (eqs S1−S7), we realize that for
nuclear transitions the relevant interactions stem from the
second derivative of the potential:
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is the electric field gradient (EFG) tensor, which is made
traceless. It can be shown that the first term of eq 2 describes an
electric monopole interaction (EM), which depends on the
electron density at the nucleus (ρe(0)) and can be expressed as

ε
ρ= −E

Ze
R

10
(0)eM

0

2

(4)

where R2 is the mean square radius of the nucleus (regarded as
a homogeneous sphere), and ε0 is the permittivity of the
vacuum. (Note that here we applied the first Maxwell Equation:

ρ
ε

= − Φ = −ΔΦ =E r r r
r

div ( ) div( grad ( )) ( )
( )e

0 (5)

thus second derivatives of the Φ(r) potential are replaced by
the more easily calculable electron density).
The isomer shift is a consequence of the fact that the nucleus

has a finite size (which changes during the Mössbauer-
transition) and is determined by the difference of two EM
terms, evaluated for the absorber (A) and the source (S):

δ
ε

ρ ρ= − = − − ΔE E
Ze

R(A) (S)
10

( (0) (0) )e eM M
0

A S
2

(6)

The second term of eq 2 describes the electric quadrupole
interaction (EQ) between the nonspherical nucleus (i.e., a
nucleus with a quadrupole moment) and the asymmetry of the
electron distribution represented by the EFG at the 57Fe
nucleus

∑= −
α

αα αα
=

E
e

V Q
6Q

1

3

(7)

where Qαα is the quadrupole moment tensor of the nucleus.
The diagonalized traceless EFG matrix Vαα (which can be
obtained by the transformation to a principal axis system with z
on the axis of the largest distortion of the electron distribution)
can be characterized by two independent parameters: the main
tensor component Vzz and the asymmetry parameter η = (Vxx −
Vyy)/Vzz (with |Vzz| ≥ |Vyy| ≥ |Vxx|). The correct negative sign in
the definition of Vαα is usually omitted in the Mössbauer
literature; therefore, from this point on we shall adapt to this
convention, and thus we do not consider it for Vzz (and also for
Vxx and Vyy). Note that in many cases it suffices to take into
account the Vzz term only, since the contribution of η is small
and thus can be neglected. The quadrupole interaction splits
the I = 3/2 excited state of 57Fe into two sublevels, with mI =
±3/2 and ±1/2, while the I = 1/2 ground state remains unsplit.
The quadrupole splitting (ΔEQ) is defined as the energy
separation of the two I = 3/2 substates.
3.3. Calculated Isomer Shifts Results: Correlation with

Experiment. In a typical Mössbauer experiment, the spectrum

is recorded by moving a single-line (i.e., unsplit) source with
respect to a 57Fe-containing absorber with different velocities
and recording the transmitted intensity. When the differences
in the nuclear transition energies in the source and the absorber
are compensated by the Doppler-effect, the transmission
decreases (this is why in the Mössbauer literature the nuclear
energy is measured in the mm s−1 unit of Doppler velocity).
The detected resonance absorption is characterized by the
isomer shift (δ), which arises due to the different electron
densities at the 57Fe nuclei in the absorber and the source (eq
6). Since ρe(0)S can be taken as a constant (as the same source
can be used for taking all Mössbauer spectra), the isomer shift
can be expressed as

δ αρ β= +(0) (8)

where ρ(0) is the electron density at the absorbing Fe nucleus
and α, β are calibration constants. As ρ(0) can be readily
determined with DFT calculations, α and β can be evaluated by
the linear fit to the experimental isomer shifts versus the
computed electron densities. This technique has been widely
applied for the calculation of isomer shifts of various iron
compounds.14−34 An alternative approach was suggested by R.
Kurian and M. Filatov, who calculated 57Fe isomer shifts by the
differentiation of electronic energy with respect to the nuclear
radius; however, in several cases the results showed large
deviations from the experimental values.92

We have fit the above eq 8 to the electron density
determined with the different DFT theories using 6 functionals
and 2 type of basis sets for all the 66 investigated molecules.
The large set of ρ(0) and δ values are presented in Tables S4−
S7 and Figures S2−S5 in the SI, while the fits are described in
Table 2. All results were obtained by fitting the full data set with

a single line; therefore, in contrast to certain previous
fits,21c,28,31 our parametrization does not depend on the Fe
oxidation state or other parameters. The linear fits obtained for
the RPBE and B3LYP density functionals are presented in
Figures 1 and 2 (these two functionals are representatives of
the pure (GGA) and hybrid DFT methods, respectively). The

Table 2. R2, MAE, and Maximum Deviation Parameters
Obtained for the Calculation of Isomer Shiftsd

method R2a MAEb (mm s−1) max. dev.c (mm s−1)

GTO-CP(PPP) Basis
RPBE 0.919; 0.944 0.10; 0.08 0.30; 0.21
OLYP 0.900 ;0.940 0.11; 0.09 0.28; 0.22
B3LYP 0.975; 0.983 0.06; 0.05 0.15; 0.14
B3LYP* 0.964; 0.979 0.07; 0.05 0.20; 0.15
TPSS 0.937; 0.958 0.09; 0.07 0.25; 0.19
TPSSh 0.965; 0.979 0.06; 0.05 0.21; 0.15

STO-TZP Basis
RPBE 0.910; 0.940 0.10; 0.08 0.33; 0.24
OLYP 0.840; 0.881 0.14; 0.13 0.37; 0.28
B3LYP 0.976; 0.984 0.05; 0.05 0.17; 0.12
B3LYP* 0.967; 0.979 0.06; 0.05 0.21; 0.15
TPSS 0.932; 0.945 0.09; 0.08 0.30; 0.25
TPSSh 0.954; 0.966 0.07; 0.06 0.25; 0.17

aSquare of the correlation coefficient obtained for the linear fits.
bMean absolute error. cMaximum deviation from the corrected
experimental values. The corresponding α, β fit parameters are
presented in the SI. dThe values given after the semicolon correspond
to results obtained with the COSMO solvation model.
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results presented in these figures and Table 2 indicate that the
hybrids (B3LYP, B3LYP*, and TPSSh) provide better linear
fits than the GGA functionals, in agreement with previous
studies.30b,c,31,93 This is due to the fact that while the potential
generated by GGA functionals is in most cases unsatisfactory in
the vicinity of the 57Fe nucleus, the inclusion of the nonlocal
corrections in global hybrid functionals results in a more
accurate potential and electron density.92b Although the very
popular B3LYP functional is often inadequate for many
properties of transition metal complexes (e.g., for the
calculation of spin-state splitting energies, see refs 38d and
44), in this case it gives excellent results, somewhat out-
performing B3LYP* and TPSSh. Comparing the results
obtained with the three GGA functionals, we found only
small differences in their performance indicating that the
Hartree−Fock exchange (HFx) included in hybrid density
functionals has a vital role for the correct description of the
electron density around the Fe nucleus.
We have also tested whether the results can be improved by

employing an approximation for the effects of the host solid
matrix. The application of the COSMO solvation model
improves the mean absolute errors (MAE) obtained for the
isomer shifts by 0.01−0.02 mm s−1 for all density functionals; it
also reduces the maximum deviation values in several cases by
up to 0.09 mm s−1. In particular, the COSMO-B3LYP method
gives a value of R2 = 0.984, similar to the one reported by F.
Neese et al.;30c however, our results were obtained on a much

larger and more diverse test set. Note that previous results30c,32

suggest that similarly accurate isomer shifts can be obtained
with the double hybrid B2PLYP94 method; however, the
computational cost of this functional is higher than the one of
B3LYP due to the included correction of second-order
perturbation theory.
Furthermore, we also compared the performance of the STO

and the GTO basis sets. It is well-known that the electron
density shows a cusp at the nucleus, which is better reproduced
by STO basis functions, than GTOs.95 This drawback can be
overcome by using a core-polarized basis set for Fe (e.g.,
Partridge96 or Watchers97 basis functions, or the CP(PPP) basis
developed by F. Neese,30 which we used in our calculations);
without this, GTO-based calculations could not compete with
those using STOs. Our results show that the application of the
STO-TZP basis set barely improves the quality of the
computed isomer shifts for the B3LYP and B3LYP* methods.
For the other four functionals, the performance of the GTO-
CP(PPP) basis set is even superior when compared to the one
of the STO-TZP basis (Table 2). To conclude this section we
claim that the COSMO-B3LYP is a very reliable method for the
calculation of Mössbauer isomer shifts for the different types of
Fe compounds covered in the present work. COSMO-B3LYP
provides accurate results (with a MAE of 0.05 mm s−1 and a
maximum deviation of 0.12 mm s−1); therefore, it can become a
first choice for predictions.

Figure 1. Linear correlations between the (a) RPBE, (b) B3LYP, (c) COSMO-RPBE, (d) COSMO-B3LYP (in combination with the GTO-
CP(PPP) basis set) calculated electron density (ρ0) at the

57Fe nucleus and the corrected experimental isomer shift (δ4.2K). The fitting parameters
are indicated for the B3LYP method; for all other applied DFT methods the results are shown in the SI.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct4007585 | J. Chem. Theory Comput. 2013, 9, 5004−50205009



3.4. Calculated Quadrupole Splittings Results: Corre-
lation with Experiment. As was discussed in section 3.2, the
quadrupole splitting (ΔEQ) observed in the Mössbauer
experiment originates from the electric quadrupole interaction
between the nuclear quadrupole moment and the electric field
gradient. Rewriting eq 7 for the case of 57Fe, the expression that
describes the energy splitting for the case of the 57Fe nucleus is

ηΔ = +E eQV
1
2

1
1
3zzQ

2

(9)

Since Q, the nuclear quadrupole moment can be taken as a
constant (0.16 barn for 57Fe),30b the EFG uniquely determines
ΔEQ. The EFG describes the asymmetry of the charge
distribution around the Fe center, which is influenced by
both the local electronic structure and the coordination of the
ligands. The values of Vxx, Vyy, and Vzz are obtained by the
diagonalization of the traceless EFG matrix (see section 3.2).
The EFG is determined as a second derivative of the potential
arising from the charge distribution around the nucleus in a full
ab initio manner using
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The task of the DFT calculations is thus to provide a rather
accurate charge distribution.

We have performed the ΔEQ calculation for the same set of
Fe compounds with the same conditions as before. (Note that
in this section we only consider the magnitude of ΔEQ, since
experimentally its sign has only been determined for a limited
number of Fe compounds. The results obtained for those cases
with a known sign will be presented at the end of section 3.5.)
The calculated ΔEQ and η values are presented in Tables S8−
S14 in the SI, and the comparison between calculations and
experiments for a GGA (RPBE) and a hybrid (B3LYP) method
is shown in Figures 3 and 4. The results exhibit a good overall
agreement with the experiment. However, the deviations from
the experimental values are larger than those of the isomer
shifts: the observed MAE values are between 0.20 and 0.35 mm
s−1 for the different functionals, which correspond to 10−18%
absolute error. This has several contributing factors, which
include the experimental error in the determination of ΔEQ, its
possible dependence on the temperature and the molecular
structure, and the fact that it is a second derivative and its
calculated value is determined fully ab initio, while experimental
δ values are used for the calibration of isomer shifts.
Furthermore, while with the isomer shifts the best-performing
methods provide accurate δ values over the whole investigated
data set, this is not the case for ΔEQ. In fact, even the best-
performing functionals can produce maximum deviations up to
0.7−1.1 mm s−1 (corresponding to 48−66% absolute error)

Figure 2. Linear correlations between the (a) RPBE, (b) B3LYP, (c) COSMO-RPBE, (d) COSMO-B3LYP (in combination with the STO−TZP
basis set) calculated electron density (ρ0) at the

57Fe nucleus and the corrected experimental isomer shift (δ4.2K). The fitting parameters are indicated
for the B3LYP method; for all other applied DFT methods the results are shown in the SI.
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between the experimental and calculated values of ΔEQ (Table
3).
Concerning the effect of the type of the basis set, we recall

that the application of the CP(PPP) basis set on the Fe atom is
essential for the reproduction of the cusp at the nucleus;
without this the performance of the GTOs would be inferior,
compared to those of the STO basis functions. For the
prediction of quadrupole splittings, the general performance of
the STO-TZP basis set is slightly better than that of the GTO-
CP(PPP) basis (Table 3), but in several cases, CP(PPP)
provides more accurate results (e.g., for complexes 56 and 57,
see Figures 3a,c and 4a,c). Therefore, in agreement with
previous computational Mössbauer spectral results,18,28b we did
not observe the clear preference for the use of the STO basis
over the core-polarized GTO basis set.
In order to assess the applicability of different exchange-

correlation functionals, we investigated their influence on the
calculated quadrupole splittings. In general, the application of
hybrid functionals results in more accurate ΔEQ values, thus the
inclusion of the HFx improves the theoretical description.
Moreover, we found systematic variations in the comparison of
results obtained with GGA- and hybrid-type functionals. For
instance, B3LYP provides significantly larger ΔEQ values (up to
1.7 mm s−1) than RPBE, for the high-spin (S = 2) Fe(II) and
intermediate-spin (S = 3/2) Fe(III) complexes, and also slightly
larger ΔEQ values than the other two hybrid functionals,
B3LYP* and TPSSh. On the other hand, for low-spin (S = 0)

Fe(II) compounds, only small differences are seen between the
ΔEQ values calculated with GGA and hybrid functionals. As is
well-known, the exchange interaction increases with the value
of the spin angular momentum.44c Hence the above effect is
obviously due to the fact that the influence of the HFx to the
EFG is more dominant for intermediate- and high-spin
complexes than for the low-spin ones.
Our results give evidence that pure functionals substantially

underestimate ΔEQ for the S = 2 Fe(II) and S = 3/2 Fe(III)
complexes (see Figures 3a and 4a), which may stem from the
inadequate description of the exchange interaction. These cases
are better described with the hybrid methods due to the
inclusion of HFx. Furthermore, we point out that the 20%
amount of HFx included in the B3LYP functional is required to
better reproduce the quadrupole splittings of the high-spin
Fe(II) and intermediate-spin Fe(III) compounds: the corre-
sponding experimental ΔEQ values are underestimated with the
other two hybrids, B3LYP* and TPSSh, by 0.3−0.6 mm s−1.
On the other hand, the TPSSh method reproduces better the
experimental ΔEQ values of the S = 0 Fe(II), S = 1/2 Fe(III),
Fe(IV), Fe(V), and Fe(VI) compounds. All applied density
functionals yield accurate quadrupole splittings for the S = 0
Fe(II) and S = 5/2 Fe(III) complexes (except for complex 8,
see below), which is explained by the reliable description of the
symmetrically occupied Fe-3d subshell by DFT.
In order to test the role of the environment of the molecule,

we also investigated the effect of the COSMO solvation model

Figure 3. Comparison of experimental and (a) RPBE, (b) B3LYP, (c) COSMO-RPBE, (d) COSMO-B3LYP (in combination with the GTO-
CP(PPP) basis set) calculated quadrupole splittings (ΔEQ). The red line connects the ΔEQ(exp.) = ΔEQ(calc.) points. The largest outliers can be
identified by the numbers defined in Table 1. Correlations for all the other applied DFT methods are shown in the SI.
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on the calculated quadrupole splittings. We found that the
inclusion of the molecular environment improves the general
performance of most methods (except for B3LYP, where R2

increases, but also MAE increases, see Table 3), which is in
agreement with a previous study.21c However, the results
indicate that in the case of the hybrid functionals, it results in
the dramatic increase of ΔEQ for the high-spin (S = 2) Fe(II)
complexes. Since the effect is only pronounced for these
systems, it must be related to the enhanced exchange
interaction. While COSMO partially corrects the mentioned
deficiencies of the GGA methods for several S = 2 Fe(II) and S
= 3/2 Fe(III) complexes, it induces the overestimation of
quadrupole splittings provided by the hybrid functionals up to
1.12 mm s−1 (52% error). On the other hand, COSMO turned
out to be beneficial for all other Fe complexes with various
oxidation and spin states. In particular, in the case of complex
65, while the gas phase DFT computations underestimate the
experimental ΔEQ value by ca. 0.8 mm s−1, COSMO reduces
this error by 0.3−0.4 mm s−1.
The largest differences observed between the measured and

DFT-calculated values of ΔEQ are worth a careful examination.
In principle, several possible sources of errors can contribute to
the mismatch observed between the experimental and
calculated quadrupole splittings, which include the effect of
temperature, the poor approximation of the solid-state effects,
and unsatisfactory molecular geometry used in the calculations;
we briefly address these issues here, focusing on the outliers (8,
21, 26, 30, 34, and 40) of one of the best-performing exchange-
correlation functional, COSMO-TPSSh. With the temperature,
it is unlikely that the largest discrepancies stem from

Figure 4. Comparison of experimental and (a) RPBE, (b) B3LYP, (c) COSMO-RPBE, (d) COSMO-B3LYP (in combination with the STO-TZP
basis set) calculated quadrupole splittings (ΔEQ). The red line was drawn at ΔEQ(exp.) = ΔEQ(calc.). The largest outliers can be identified by the
numbers defined in Table 1. Correlations for all the other applied DFT methods are shown in the SI.

Table 3. R2, MAE, and Maximum Deviation Parameters
Obtained for the Calculation of Quadrupole Splittingsd

method R2a MAEb (mm s−1) max. dev.c (mm s−1)

GTO-CP(PPP) Basis
RPBE 0.875; 0.926 0.31; 0.24 1.69; 1.19
OLYP 0.852; 0.918 0.32; 0.24 1.89; 1.40
B3LYP 0.926; 0.947 0.24; 0.25 1.29; 1.20
B3LYP* 0.925; 0.948 0.24; 0.22 1.20; 1.11
TPSS 0.906; 0.936 0.28; 0.23 1.42; 0.87
TPSSh 0.942; 0.942 0.21; 0.19 0.82; 1.05

STO-TZP Basis
RPBE 0.887; 0.919 0.30; 0.23 1.73; 1.48
OLYP 0.870; 0.906 0.31; 0.24 1.94; 1.54
B3LYP 0.949; 0.958 0.21; 0.25 1.01; 1.11
B3LYP* 0.949; 0.960 0.21; 0.21 0.80; 1.09
TPSS 0.914; 0.923 0.27; 0.22 1.49; 1.66
TPSSh 0.948; 0.955 0.21; 0.18 0.73; 1.12

aSquare of the correlation coefficient of the linear fit obtained for
experimental and calculated values of quadrupole splittings. bMean
absolute error. cMaximum deviation from the experimental values.
dThe values given after the semicolon correspond to results obtained
with the COSMO model.
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temperature effects, since the corresponding experimental ΔEQ
values were taken from Mössbauer measurements carried out at
liquid He (4.2 K) or liquid N2 (77 K) temperatures and
relevant thermal variations of the quadrupole splitting typically
take place at higher temperatures. Furthermore, calculations
made on X-ray structures do not produce better overall
performance, and results also in numerous outliers, as it has
been seen in ref 31; these suggest that solid-state effects do not
alter the EFG of the complexes significantly. Finally, in order to
investigate the possibility of inadequacy of the structures
obtained in the molecular optimization with the pure BP86
functional, we carried out further test computations for the
problematic complexes. We performed both geometry opti-
mizations and the calculation of the quadrupole splitting with a
hybrid functional at the COSMO-TPSSh level, and we found
that the large errors of the outliers cannot be amended this way
(see Table S12).
As the consideration of the possible sources of errors has not

provided a satisfying explanation of the outliers, we shall
consider whether the treatment of the electronic structure is
appropriate in all cases. For GGAs, the discrepancies in most
cases can be assigned to the incorrect treatment of the exchange
interaction, as stated above. Although hybrid functionals give
more accurate results, even for these methods large deviations
from the corresponding experimental values are observed in a
few cases. For instance, in the case of ferrocene (Cp2Fe,
complex 8), the experimental quadrupole splitting is system-
atically overestimated by all hybrid functionals, while GGAs
provide results in good agreement with this value, as also
reported in ref 29. This effect originates from the fact that GGA
functionals reproduce better the energetics of π-type charge-
transfer (Fe-3d→Cp-π* donation and Cp-π→Fe-3d* back-
donation) and the experimental HOMO−LUMO energy gap
than hybrid methods,29,98 which quantities are decisive for the
bonding and the increased EFG in Cp2Fe. Large deviations are
observed also for the experimental and hybrid DFT ΔEQ values
for the square planar S = 1 FeII(OEP) (34) and FeII(TPP) (35)
complexes; however, the GGA-type RPBE method yields
accurate results. As will be addressed in section 3.5, the key to
this effect stems from the treatment of electronically degenerate
states by DFT. Furthermore, for the hybrids, we also identified
two main outliers: [Fe(terpy)2]

3+ (40) and Fe(PPh3)2(″S2″)
(61). In contrast to our results presented above, we found that
in these distorted open-shell hexacoordinate complexes, the
inclusion of the exact exchange results in the overestimation of
ΔEQ. This effect is surprising, since hybrid methods provide
reliable results for other quasi-octahedral systems possessing
the same S = 1/2 3d5, and S = 1 3d4, electron configurations.
Also, our results indicate that the hybrid methods give accurate
estimates to the ligand-only contributions of quadrupole
splittings for hexacoordinate complexes (e.g., deviations up to
only 0.1 mm s−1 were observed for 19, which is the S = 0 Fe(II)
analogue of 40). Therefore, these discrepancies for 40 and 61
most likely stem from the incorrect description of the partially
occupied and split t2g-like orbitals. For systems with such
electron structure (including a relevant distortion), we propose
the application of GGA functionals, which provide accurate
ΔEQ values.
Based on the results presented above, we conclude that

although none of the applied density functionals show a good
universal performance over the whole investigated data set, with
the careful selection of an appropriate DFT method, this
technique is very promising for the accurate prediction of

quadrupole splittings. The hybrid TPSSh functional combined
with COSMO gives satisfactory results for most cases.
However, for the S = 2 Fe(II) and S = 3/2 Fe(III) complexes,
the B3LYP (for the latter compounds in combination with the
COSMO model) method provides more accurate ΔEQ values.
Furthermore, in the special cases of π-bonded compounds,
square-planar arrangements with S = 1 and largely distorted
open-shell hexacoordinate systems we suggest using the GGA-
type COSMO-RPBE method. The application of the carefully
selected DFT methodology described above in this paragraph
yields a MAE value of 0.12 mm s−1 (7% error) and a maximum
deviation of 0.55 mm s−1 (17% error) on the investigated set of
66 complexes. These results are shown in Figure 5a. Therefore,

we conclude that the suggested approach provides accurate
ΔEQ values over the variety of the investigated complexes,
which enables the reliable prediction of 57Fe quadrupole
splittings.
It is apparent from Figure 5a that the classes of compounds

treated separately in the above recipe fall into different regions.
This interesting observation hints that a strategy can also be
proposed, where the selection of the applied density functional
is solely guided by the experimentally observed ΔEQ values. A
good correlation with the experiment over the whole

Figure 5. Comparison of experimental and DFT-calculated quadru-
pole splittings (ΔEQ), applying exchange-correlation functionals for
different (a) chemical classes of Fe complexes and (b) ranges of
experimental ΔEQ (in combination with the STO-TZP basis set). The
red line was drawn at ΔEQ(exp.) = ΔEQ(calc.).

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct4007585 | J. Chem. Theory Comput. 2013, 9, 5004−50205013



investigated ΔEQ range may provide a basis for the develop-
ment of stronger model-independent techniques for the
accurate prediction of quadrupole splittings. Encouraged by
this, we test the applicability of an alternative approach utilizing
the above idea, with the use of three arbitrarily selected regions:
ΔEQ ≤ 1.5, 1.5 < ΔEQ ≤ 2.0, ΔEQ > 2.0. These results are
shown in Figure 5b. The obtained MAE value of 0.17 mm s−1

(9% error) and the maximum deviation of 1.01 mm s−1 (42%
error) and also the outliers observed in the ΔEQ > 2.0 region
clearly indicate the lower efficiency of the method, compared to
the above one based on the chemical classification of Fe
complexes. However, the approach produces deviations only up
to 0.32 mm s−1 (17% error) in the ΔEQ < 2.0 region.
Therefore, the success and applicability of this technique is
limited by the discrepancies detected in the ΔEQ > 2.0 region.
We have tried to apply different region limits and DFT
methods but could not significantly improve the performance,
which is barely better than that of the best hybrid functional.
Consequently, due to the problematic cases leading to the
outliers, a robust model-independent description does not seem
to be attainable.
3.5. Case Studies for the Quadrupole Splitting in

Mössbauer Spectroscopy. In this section we check the
reliability of the DFT approach by testing its performance in
the prediction of quadrupole splittings in a few chemically
relevant applications of MS. Also, we examine the apparent
difficulties introduced by the electronically degenerate states of
open-shell Fe(II) complexes and propose a method to
overcome them.
a. Electronically Degenerate States of S = 1 Fe(II)

Complexes. An intriguing class of compounds possesses
open-shell electronically degenerate states in solids. As noted
previously in section 3.4, the incorrect treatment of these states
induces large variations in the experimental and calculated ΔEQ
values. For instance, the experimental quadrupole splittings of
the planar S = 1 Fe(OEP) (34) and Fe(TPP) (35) porphyrin-
derivative complexes are underestimated with the B3LYP/
CP(PPP) method by 1.2−1.3 mm s−1. On the other hand, the
serious overestimation of ΔEQ (by 1.4−2.3 mm s−1) for these
complexes was also experienced in earlier works, when hybrid
exchange-correlation functionals were applied with no
symmetry constraints,31 or when the EFG was computed
with the GGA-type BPW91 functional on a D4h structure of
complex 35.16b However, a quite acceptable ΔEQ value of 1.75
mm s−1 was obtained with the same functional, when the D2d
symmetry of the system (obtained from its crystal structure99)
was employed.16b We made efforts to understand the reasons
behind these discrepancies by a detailed investigation.
The lowest-lying electronic states of Fe(TPP), applying the

D4h point group symmetry, are the triplet 3A2g and
3Eg states.

The DFT calculations deliver quadrupole splitting values of
ΔEQ(

3A2g) = 0.40 mm s−1 and ΔEQ(3Eg) = 3.08 mm s−1. This
large difference suggests that the origin of the above-mentioned
discrepancy between theory and experiment requires a close
and careful inspection of the electronic structure. We have
discussed in the SI that the five Fe-3d orbitals make different
contributions to the EFG (eq S15, Table S1); therefore, their
occupation has a major influence on the quadrupole splitting.
In Figure 6, we show that the small ΔEQ obtained for the 3A2g
state is due to the symmetric occupation of the degenerate dxz
and dyz orbitals and the double occupation of the dz2 orbital,
whereas the large quadrupole splitting in 3Eg can be attributed
to the asymmetric occupation of these orbitals. Since the energy

separation of these states is small (∼0.12 eV), DFT calculations
can converge to either of these states. Lowering the symmetry
removes the degeneracy. D2h was found to be the highest
symmetry for which we observed a mixing of the dxy and dz2
orbitals in the ground state (mediated by the ligands), which
resulted in the accurate quadrupole splitting value of 1.25 mm
s−1. We mention that the mixing was also observed when
utilizing the RPBE/CP(PPP) method, without the application
of any symmetry constraints, which also provided accurate
results.

b. Electronically Degenerate States of a S = 2 Fe(II)
Complex. The DFT-calculated ΔEQ values of a S = 2 Fe(II)
quasi-tetragonal complex, [Fe(DTSQ)2]

2− (23), reported in
previous studies28a,31 also showed very large deviations (0.71−
1.65 mm s−1) from the experimental value of 4.01 mm s−1.
When investigating the electronic structure of this complex in
the D2d symmetry, we found that its two lowest-lying states,

5A2
and 5B2, are degenerate. The calculated quadrupole splittings
for these states show a large difference due to the different
occupation of the dz2 and dx2−y2 orbitals. While the ΔEQ(

5A2) =
4.30 mm s−1 value is in good agreement with the experiment,
the 2.92 mm s−1 value obtained for the 5B2 state is as far from
the experimental one as those reported in refs 28a and 31
(Figure 7). Therefore, the comparison between the calculation
and the experiment permits us to identify the true ground state,
and the problematic 5B2 electronic configuration can be avoided
by the application of symmetry. Note that 23 does not appear
as an outlier in Figures 3 and 4, since in every case for our
calculations it converged to the 5A2 state, which yielded
quadrupole splittings in agreement with the magnitude of the
experimental ΔEQ. Furthermore, the sign of the experimental
ΔEQ has also been determined for this compound: it is
negative. This is in very good agreement with our calculations,
where ΔEQ(5A2) < 0 and ΔEQ(

5B2) > 0, which allows the
unambiguous identification of the true ground state for this
system: it is the 5A2. Without imposing the Fe-3d electronic
configuration corresponding to this state, DFT calculations
(with both GGA and hybrid functionals) can converge either to
the 5A2 or to the 5B2 state depending on the starting geometry
and the applied exchange-correlation functional. The above
results suggest that the largest differences observed between the

Figure 6. Schematic representation of the electronic configurations
and the 3D illustration of the DFT Fe-3d orbitals of the triplet 3A2g
and 3Eg (D4h) states of Fe(TPP) (35). Note that for the sake of
simplicity we do not show spin-polarized energy levels and we only
show one component of the degenerate dxz, dyz orbitals and

3Eg states.
The given ΔEQ values were computed at the B3LYP/STO-TZP level
of theory and are to be compared with the experimental value of 1.51
mm s−1.
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experimental and DFT-calculated ΔEQ values in previous
studies28a,31,33,34 can be also attributed to the selection of the
inappropriate ground state from the electronic quasi-degenerate
states.
c. Geometric Isomerism of Octahedral Low-Spin Fe(II)

Complexes. In addition to the valence electrons, the ligands
also contribute to the electric potential and the Vzz at the

57Fe
nucleus, and this can also be a rich source of chemical
information. Compounds where the Vzz induced by the
electrons cancels provide an ideal testing ground to study
how DFT reproduces the ligand contribution. In this section
we investigate how geometric isomerism can affect the Vzz. In
octahedral geometry, complexes with a composition of FeA2B4
can have two different isomers with the two A ligands in trans
or cis positions. For a potential Φ = q/r generated by a point
charge q of the monatomic ligand, its contribution to the main
component of the EFG can be expressed as

= ∂ Φ
∂

= − = ϑ −− −V
z

q z r r q r(3 ) (3cos 1)zz

2

2
2 2 5 2 3

(11)

where r,ϑ are polar coordinates. Representing the A and B
ligands by the qA and qB point charges, and applying the algebra
described in detail in the SI (eqs S12−S14), the −2(qA − qB)
and 4(qA − qB) expressions can be derived for the Vzz of the cis
and trans isomers, respectively (note that the constant r−3 term
is omitted and η = 0, due to the axial symmetry) (Figure 8). In
the case of the S = 0 Fe(II) electronic configuration, no
unpaired electron contributes to the EFG, thus the ligand
contribution determines the EFG and ΔEQ, and the above
point charge approximation should give acceptable results.
Therefore, a −1: 2 ratio is expected for the quadrupole
splittings of cis and trans isomers of low-spin FeA2B4 complexes.
Also, for the FeAB5 system a Vzz of 2(qA − qB), thus a 1:2 ratio
to the trans case is expected. We utilized one of the best-
performing DFT methods and found that the hybrid functional,
COSMO-TPSSh, reproduces the above derived −1:2:1 ratio of

the corresponding quadrupole splittings reasonably well, in the
case of octahedral Fe(II) model compounds (for more details,
see Table S15 in the SI). For the cis-trans isomers of
FeX2(RNC)4 and FeX(RNC)5

+ (X = CN, R = Et or X = Cl,
R = Ph) experimental data is also available, and the DFT-
predicted ΔEQ values not only show the approximate −1:2:1
ratio but are also in a fair agreement with the measured values,
as seen in Table 4.

d. Phase Transitions. MS is also a powerful tool to study
phase transitions.3,9,100,101 Here we focus on those where the
microscopic origin is either spin crossover48−50,69,70 or a change
in the orbital degeneracy102−104 in Fe complexes. The ΔEQ is
very sensitive to the variations in the electronic structure
induced by both processes. The quadrupole splitting is typically
small for octahedral low-spin (S = 0) Fe(II) and high-spin (S =
5/2) Fe(III) complexes, where the distribution of the 3d
electrons is symmetric: (t2g)

6(eg)
0 or (t2g)

3(eg)
2, therefore the

electronic contribution to the Vzz is zero. On the other hand, it
is large in their counter-pairs in the spin crossover process, the
high-spin (S = 2) Fe(II) and low-spin (S = 1/2) Fe(III)
compounds. With their respective configurations (t2g)

4(eg)
2 and

(t2g)
5(eg)

0, the filling of the 3d (in fact, the t2g) subshell is
uneven, thus the d-electron contribution to the Vzz is large,
according to its population dependence discussed in the SI (see
Table S1 and Figure S1). Consequently, these values reflect the
variations in the occupation of the corresponding Fe-3d
orbitals. As can be seen in Table 5, DFT provides reliable
ΔEQ results for Fe(II) and Fe(III) spin-crossover compounds,
thus it gives a strong support for the prediction or
interpretation of the Mössbauer spectra at spin-state transitions.
A different type of phase transition triggered by the

redistribution of the 3d electrons is the inversion of the orbital
ground state. This phenomenon was intensively studied in the

Figure 7. Schematic representation of the electronic configurations
and the 3D illustration of the DFT Fe-3d orbitals of the quintet 5A2
and 5B2 states of [Fe(DTSQ)2]

2− (23). Note that for the sake of
simplicity we do not show spin-polarized energy levels and that we
only show one component of the degenerate dxz, dyz orbitals. The
given ΔEQ values were computed at the B3LYP/STO-TZP level of
theory and are to be compared with the experimental value of −4.01
mm s−1.

Figure 8. 3D representation of the structures of the octahedral (a)
trans-FeA2B4, (b) cis-FeA2B4, and (c) FeAB5 complexes. Parametric Vzz
values expected from the point charge model are also shown. The
orientation of the z axis was chosen to be the principal axis.

Table 4. Comparison of Experimental and DFT-Calculated
ΔEQ Values of Octahedral Fe(II) Complexesc

compound temp/K exptla COSMO-TPSShb

trans-Fe(CN)2(EtNC)4 300 0.59 −0.43
cis-Fe(CN)2(EtNC)4 300 0.29 +0.18
Fe(CN)(EtNC)5

+ 300 0.17 −0.24
trans-FeCl2(PhNC)4 295 1.55 +1.70
cis-FeCl2(PhNC)4 295 0.78 −0.88
FeCl(PhNC)5

+ 295 0.73 +0.77
aExperimental ΔEQ values were taken from ref 9. bIn combination
with the STO-TZP basis set. cValues are given in mm s−1.
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high-spin (S = 2) [Fe(H2O)6]
2+ and [Fe(DCTU)6]

2+ (DCTU
= N,N′-dicyclohexylthiourea) complexes, frequently with
MS.102,103 The symmetry of the system is D3d, which
corresponds to a trigonally distorted octahedron. Being a
high-spin complex, five of the six d electrons are equally
distributed on the five 3d orbitals, hence it is the sixth one
which will contribute to the Vzz. The lowest-lying orbitals are a
2-fold-degenerate eg (dxz, dyz) and the a1g (dxy). Depending on
the distortion, either of them can be lowest, and thus populated
by the sixth electron, giving rise to the orbitally degenerate
doublet (D) or singlet (S) state. (In solids, the crystal
symmetry may stabilize the D state.) The corresponding term
is 5Eg for the D and 5A1g for the S state. Note that the electron-
only contribution to the Vzz for the S and D states is ±2: ∓1,
according to Table S1 presented in the SI. The experiments
revealed that at low temperatures the system is in the orbital
singlet ground state, which undergoes a phase transition around
200 K, and at higher temperature the doublet becomes the
ground state. Mössbauer measurements yield smaller ΔEQ
values for the D (5Eg) state than for the S (5A1g) one, by ca.
2 mm s−1, which is attributed to the population variations
associated with the singlet-doublet transition. As shown in
Table 6, this phenomenon is also reflected well by the DFT
results, for which a good agreement was observed with the
experimental quadrupole splittings.
e. Determination of the Sign of Quadrupole Splittings. In

most of the foregoing, we did not consider the sign of ΔEQ,
only its magnitude, because the sign is usually not reported in
the experimental literature. However, the sign of the quadru-

pole splitting gives information on the charge distribution that
is very relevant to structural or coordination chemistry, as
became obvious in the previous case studies too. It is
determined by the sign of the Vzz, the largest component of
the diagonalized traceless EFG tensor. For instance, in the case
of an axially distorted octahedral complex with six identical
ligands, the sign of the Vzz reveals whether the system is
compressed or stretched along the principal z axis (Figure 9).

Different ligands can also change the sign of the EFG,
according to the electron density on their donor atoms. The
effect of a negative Vzz is that it inverts the energy ordering of
the quadrupole-split mI = ±3/2 and ±1/2 nuclear energy levels
for the I = 3/2 excited state, thus, it flips the lines of the
quadrupole doublet. The detection of this flipping, in fact the
detection of the sign of the Vzz, is therefore very difficult
experimentally because it requires either the application of an
external magnetic field or the orientation-dependent measure-
ment of the line intensities on a single crystal.
We evaluated and compared the DFT-calculated and

measured signs of ΔEQ and found an excellent agreement in
correctly reproducing the sign for all compounds for which it
has been determined experimentally (Table S16). In particular,
the calculations predict the correct negative sign for the 5A2
state of complex 23, while the opposite sign is predicted for
5B2; which also supports the results presented in section 3.4b.
Also, the correct relative signs were obtained for the cis/trans-
FeA2B4 and FeAB5 complexes. The computations also provide
the correct signs for the orbital singlet and doublet states of the
[Fe(H2O)6]

2+ and [Fe(DCTU)6]
2+ complexes (Table 6),

which signs were also obtained from the interpretation of an
axial, trigonal crystal field.103 These results suggest that the
computational approach is highly effective for the determi-
nation of the sign of quadrupole splittings, which should be
considered as a very powerful tool in the investigation of the
electron structure and local symmetry.
We have also re-evaluated the data obtained with

combination of the four different techniques using a chemical
classification (presented before in Figure 5a), this time using
the sign of ΔEQ, when available from the experiment, and

Table 5. Comparison of Experimental and DFT-Calculated
ΔEQ Values of Fe(II) and Fe(III) Spin-Crossover
Complexesc

compound temp/K exptla B3LYPb

Fe(phen)2(NCS)2 (LS) (1) 77 0.34 0.40
Fe(phen)2(NCS)2 (HS) (20) 77 2.82 2.94
Fe(LN4)(NCS)2 (LS) (2) 80 0.77 0.80
Fe(LN4)(NCS)2 (HS) (21) 80 2.51 2.50
{Fe[HC(3,5-Me2pz)3]2}I2 (LS) (3) 4.2 0.21 0.15
{Fe[HC(3,5-Me2pz)3]2}I2 (HS) (22) 180 3.86 4.00
Fe(thpu)(Hthpu) (LS) (36) 80 3.09 3.45
Fe(thpu)(Hthpu) (HS) (43) 241 0.81 1.17
[Fe(acpa)2]PF6 (LS) (37) 78 2.24 2.24
[Fe(acpa)2]PF6 (HS) (44) 320 0.53 0.67

aExperimental values were taken from references given in Table 1. bIn
combination with the STO-TZP basis set. For the abbreviations, also
see Table 1. cValues are given in mm s−1.

Table 6. Comparison of Experimental and DFT-Calculated
ΔEQ Values of Orbital Singlet (S) and Doublet (D) States of
Fe(II) Complexesc

compound state temp./K exptl.a B3LYPb

[Fe(H2O)6]
2+ S 107 −3.36 −3.66

[Fe(H2O)6]
2+ D 295 +1.40 +1.25

[Fe(DCTU)6]
2+ S 77 −3.31 −3.27

[Fe(DCTU)6]
2+ D 300 +1.32 +0.94

aExperimental values were taken from refs 102 and 103. bIn
combination with the STO-TZP basis set. Note that for [Fe-
(DCTU)6]

2+, we performed the calculations on the [Fe(DMTU)6]
2+

(DMTU = N, N′-dimethylthiourea) model compound in order to
reduce computational cost. cValues are given in mm s−1.

Figure 9. Illustration of the sign of the EFG for a distorted spherical
charge distribution (top) and for Fe complexes with Oh symmetry
(bottom). In case of a negative (respectively positive) Vzz, the charge
distribution around the Fe nucleus is represented as an oblate
(respectively prolate) spheroid, while the complex undergoes a
tetragonal distortion by being compressed (respectively stretched)
along the principal z axis. Note that a zero Vzz corresponds to a fully
symmetric system with an undistorted charge distribution, represented
by a sphere, or equal bond lengths for the Oh case.
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assuming the calculated one, when it is not. The plot and the
fitted line along with the parameters describing the fit and its
goodness is shown in Figure 10. The agreement is very good,
and the parameters indicate that exploiting the sign of the
quadrupole splitting can make MS a more powerful technique
in structural research.

4. CONCLUSION
We carried out DFT calculations on a large and diverse data set
of Fe complexes, to investigate the applicability of various
computational methods in the prediction of Mössbauer
parameters. For the isomer shifts, we found that the
performance of hybrid functionals is superior, compared to
those of the pure DFT methods, due to the inclusion of
nonlocal corrections. Moreover, the approximation of the
environment of the molecule by the application of the COSMO
model makes the calculations more reliable in predicting isomer
shifts. Our results do not indicate the clear preference for
Slater-type orbitals, as the enhanced core-polarized Gaussian
basis set showed a similar performance. The best agreement
between experiment and theory was obtained for the COSMO-
B3LYP method, which provided accurate 57Fe isomer shifts for
all the 66 investigated compounds.
Our results for the prediction of quadrupole splittings also

indicate an improved general performance of the hybrid
methods over those of the GGAs. While in general TPSSh
provided the most accurate results, the also well-performing
B3LYP method turned out to be the optimal for high-spin (S =
2) Fe(II) and intermediate-spin (S = 3/2) Fe(III) complexes.
However, large deviations from experiment were observed for
the ΔEQ values obtained with hybrid density functionals for
molecules with π-type charge-transfer, for square planar S = 1
compounds, or for highly distorted hexacoordinate open-shell
Fe complexes (including the systems 8, 40, 34, 35, and 61). For
these systems GGA functionals are found to give a correct
description of the EFG. On the other hand, while hybrid
functionals gave reliable results for intermediate- and high-spin
complexes, GGA methods seriously underestimated the
corresponding, relatively large quadrupole splittings of these
systems, most probably due to the inappropriate description of
the exchange interaction in GGAs, which is better handled in

hybrid functionals by the inclusion of Hartree−Fock exchange.
The application of the COSMO solvation model to
approximate the role of the molecular environment improves
the DFT-calculated quadrupole splittings for the majority of the
studied Fe complexes. However, COSMO led to the serious
overestimation of the quadrupole splittings of high-spin Fe(II)
complexes when used in combination with hybrid functionals.
Similar to the isomer shift results, we also did not observe the
clear preference of the Slater-type basis set over the core-
polarized Gaussian one for the prediction of quadrupole
splittings.
Although no single universal method can be proposed for the

calculation of 57Fe quadrupole splittings, in most cases hybrid
exchange-correlation functionals in combination with the
COSMO model yield sufficiently accurate results. However,
in the special cases mentioned above, the omission of COSMO
and/or the application of a suitable GGA functional are
essential to avoid the failures described in the present study. We
have provided a recipe for choosing the proper DFT technique
based on a chemical classification of the compounds. This
combined DFT approach delivers an excellent agreement
between experimental and calculated quadrupole splittings for
all investigated Fe complexes. An alternative method is also
tested, where the density functional is chosen according to the
magnitude of the experimental ΔEQ, which could pave the way
to a model-independent approach in assigning the Mössbauer
spectra. However, the performance of this approach is barely
better to that of the best hybrid, because it cannot remedy the
problem of outliers.
The reliability of the DFT approach was also investigated by

verifying its performance for a few case studies related to
problems of high chemical relevance. We found that the largest
differences between the experimental and DFT-calculated
quadrupole splittings in our work and in the literature can be
mainly attributed to the difficulties introduced by the
description of the proper ground state. We observed this effect
for the 23 and 35 complexes, and by the investigation of their
electronic structure we concluded that these failures can be
avoided by the careful treatment of the symmetry of these
molecules to select the appropriate one from among their
(quasi)-degenerate states. Our results indicate that the DFT-
calculated quadrupole splittings of low-spin cis/trans-FeIIA2B4
and FeIIAB5 compounds follow the ratio −1:2:1 estimated in a
point charge model and agree with the experimental values.
The computational method was also tested for the prediction of
quadrupole splittings at phase transitions, such as spin
crossover and the inversion of the orbital ground state. DFT
provided good results, confirming that a combined theory and
MS approach is a powerful tool to study such transitions.
Finally, we found a perfect agreement for the experimental and
DFT-determined signs of quadrupole splittings, which suggests
the wide applicability of DFT calculations in the prediction and
interpretation of this property, which is invaluable for the
description of the electronic structure and local symmetry.
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Chumakov, A. I. Hyperfine Interact. 2000, 128, 255−272. (e) Sergueev,
I.; van Bürck, U.; Chumakov, A. I.; Asthalter, T.; Smirnov, G. V.;
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