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Neuroprotective Potential of GDF11: Myth or Reality?
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Abstract: In the brain, aging is accompanied by cellular and functional deficiencies that promote
vulnerability to neurodegenerative disorders. In blood plasma from young and old animals, various
factors such as growth differentiation factor 11 (GDF11), whose levels are elevated in young animals,
have been identified. The blood concentrations of these factors appear to be inversely correlated
with the age-related decline of neurogenesis. The identification of GDF11 as a “rejuvenating factor”
opens up perspectives for the treatment of neurodegenerative diseases. As a pro-neurogenic and
pro-angiogenic agent, GDF11 may constitute a basis for novel therapeutic strategies.
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Neurodegenerative diseases are situations that induce the progressive loss of neuronal integrity
accompanied by cellular and functional deficiencies. In the United States, 46 million people are over
the age of 65, and the number of older adults is predicted to increase to 24% of the population, about
98 million people, by 2060. In the United Sates, Alzheimer’s disease, primarily seen in adults over the
age of 65, affected 5 million people in 2013 [1].

Aging is characterized by an increasing homeostatic imbalance, accompanied by a gradual decline
in the regenerative properties of the cells. Proliferation and differentiation of neural stem/progenitor
cells residing within the healthy brain are essential in inducing these processes. New results suggest
aging brains can potentially be rejuvenated. Recent studies indicate that adult neurogenesis may
produce not only young and excitable new neurons but also completely new neuronal subtypes [2,3].
Identifying the molecular mechanisms of degenerative changes, regeneration, and rejuvenation is
important for developing therapies to treat age-related diseases.

The brain is more vulnerable to oxidative stress than other organs. Although the brain only accounts
for ~2% of body mass, it utilizes 15-20% of the energy generated in the whole body. Fundamentally, it is
proposed that aging is the consequence of the progressive generation of reactive oxygen species (ROS)
that damage macromolecules such as DNA and cause neurodegenerative disorders [4].

The brain must rely on the circulation for the continuous supply of nutrients and oxygen and
for the disposal of metabolic waste products [5]. Conventionally, it has been considered questionable
whether the nervous tissue can regenerate, because mature neural cells are very limited in their ability
to proliferate or differentiate. In the adult mammalian brain, three areas are neurogenic and contain
neural stem cells: The subgranular zone in the hippocampal dentate gyrus, the subventricular zone
nearby the lateral ventricles, and the hypothalamus. Neural stem cell niches have been identified,
regulating neural stem cell activity [6]. Stem cells such as adipose-derived stem cells (ADSCs) could
transdifferentiate into neuron-like cells and present neuronal properties [7]. There is evidence that
exercise has favorable effects on the number and function of different circulating angiogenic cells.
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The molecular changes evoked by exercise may contribute to a more powerful ADSC action in the brain.
Exercise has been shown to improve a wide range of age-related cellular and functional impairments [8].

Many molecular mechanisms in liaison with excess of ROS in the brain may contribute to
human aging. Cellular senescence, a state associated with distinct changes of specific gene expression
and the acquisition of a complex proinflammatory secretory profile, has emerged as a potentially
important contributor to aging and age-related diseases [9]. Potential triggers of cellular senescence
and neurogenesis were extensively studied, especially in the context of functional impairment of
the remaining stem cells [10]. It is widely known that, in the cerebral structures, the control of the
neurovascular unit depends on the regulated levels of ROS. Gradually, physiological levels of ROS
exceed the brain’s innate defenses, and then the neuronal functions decline. The degeneration involves
the neurovascular inflammatory process, neurons, neuroglia, and blood vessels. The “neurovascular
unit” concept challenges the symbiotic relationship between brain cells and cerebral blood vessels.
The causes of several neurological disorders may implicate various factors, including the onsets
of cerebrovascular inflammation [11]. The age-associated neurodegenerative disease Alzheimer’s
disease is characterized by the accumulation of aggregated amyloid-beta (A3) peptides in the brain.
A relationship between A3 aggregation and cellular stimulation of proinflammatory cytokine release
has been demonstrated These amyloid peptides induce changes in the microglial phenotype and
activate signaling cascades such as the NLRP3 inflammasome [12].

Astrocytes, microglia, and immunocytes play vital roles in the brain and are involved in
neuro-inflammatory diseases. The infiltration of leukocytes from blood vessels into the central nervous
system (CNS) has been implicated in the pathogenesis of neurological disorders associated with
inflammation. At the start of an inflammatory response, pro-inflammatory mediators induce changes
in the endothelial coating of the blood vessels and in leukocytes. This process results in amplified
vascular permeability and expression of adhesion proteins, promoting the adhesion of neutrophils to the
endothelium with consequent neurodegeneration [13]. Various mechanisms influence neurovascular
inflammation and neurodegeneration, and in this field, many studies have described that autophagy
plays a major role in the process of neurodegeneration and in the limitation of regeneration [14].
Limitation of neurovascular injury is a promising approach to control neuroinflammation.

Aging is characterized by the reduced regenerative capacity of tissues. Tissue regeneration and
rejuvenation in aging organisms has been studied after heterochronic parabiosis (HP) [15]. In order
to investigate the influence of an organism on its conjoined partner, animal models that “mimic”
the natural phenomenon of conjoined twins were created. The surgical technique of physically
connecting two living organisms is termed “parabiosis”, from the Greek “para” (next to) and “bios”
(life). Collecting verification has indicated that the blood of young animals holds powerful “factors
of youth”. Rejuvenating effects of HP are observed in the aged brain, indicating that young blood
counteracts cellular and functional age-related neuronal decline [16]. The endogenous compound
growth differentiation factor 11 (GDF11), present in young blood, is a circulating negative regulator of
cardiovascular and neuronal functions, suggesting that raising GDF11 levels could potentially treat or
prevent various age-related diseases [17].

GDF11 is produced from precursor proteins by proteolytic processing. There is a high degree of
identity between the active domains of mature growth factors such as GDF8/myostatin and GDF11.
GDF11 has been measured in different tissues. Recently, using immunohistochemistry, GDF11 expression
in almost all neurons throughout the rat brain and spinal cord was demonstrated. To investigate the
developmental changes in GDF11 expression, immunohistochemistry was performed using rat brains at
different ages. The expression levels peaked at two postnatal weeks and then gradually decreased [18].
The broad GDF11 distribution suggests that it may have critical functions for neurons. GDF11 is highly
expressed in many embryonic murine tissues, including the developing CNS. It has been reported
that GDF11 facilitates the temporal progression of neurogenesis in the developing spinal cord [19].
Its expression is most abundant in young adult organs and seems to decrease during aging [20]. Today,
it is still controversial whether the tissue levels of GDF11 protein are age-related. The hippocampus has
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been studied extensively for age-related structural and functional impairments as well as age-dependent
deficits in cognition. A wide variation of GDF11 protein expression was detected in the hippocampus of
old animals. Moreover, interestingly, GDF11 appeared to be differently modulated by exercise in the
hippocampus of young and old mice [21]. A recent study established that GDF11 enhanced hippocampal
neurogenesis and plasticity in the hippocampus and cortex of old mice [22].

Studies have focused on GDF11 as a potential anti-aging regulating molecule. Evidence indicates
that it may function as a pro-neurogenic and pro-angiogenic agent (Table 1). Consistent with these
properties, GDF11 treatment may protect the brain, and its administration may be a viable approach
for improving deleterious aspects of brain aging and neurodegenerative diseases. Recombinant GDF11
(rGDF11) treatment improves the cerebral vasculature and enhances neurogenesis [23,24]. In the context
of aging, GDF11 appears to promote vascular and neural plasticity of the central nervous system [22,25,26].
It is suggested that cognitive improvements elicited by young blood administrated to animals may not
be limited to neurogenesis but may also be due to enhancements in synaptic plasticity [27]. Biochemical
experiments have demonstrated that GDF11 can activate Smad2, suggesting the involvement of ALK
receptors in GDF11 signaling [25] (Figure 1). Investigation of GDF11 in the cerebrospinal fluid (CSF)
has been studied. In patients with amyotrophic lateral sclerosis (ALS), higher CSF levels of GDF11
were correlated with a better disease issue [28]. In this complex field, GDF11 biology suggests that it
is a major regulator of brain functions in connection with other growth and trophic factors. Neuronal
temporal identity is multifactorial. Spatial and temporal growth factors influence each specialized cell
type. Brain anatomy includes multiple specialized cells that function together through the neurovascular
unit. This unit appears fundamental for brain metabolism and is regulated by numerous endogenous
modulators. In this field, inhibition of inflammation appears to be a potential therapeutic strategy for
neuro-inflammatory injury, and the role of GDF11 may be evoked [29].

BRAIN | Precursor of GDF11 |

¥
Mature GDF11

OXYGEN L
I GDF11 RECEPTORS

0);;?:;2;/5 > INFLAMMATION <2 |«<——— ALK Receptors

<—— Smads

Gene expression

\
2 PRO-ANGIOGENIC | {2 PRO-NEUROGENIC

L J
T

ACTIONS

g
EURO PLASTICITY
VASCULAR PLASHCITY |—> EFFECTS <« NEU |

Figure 1. Schematic overview of the pro-angiogenic and pro-neurogenic properties of growth
differentiation factor 11 (GDF11) in the brain. Mature GDF11 exerts its effects by binding to activin
receptor-like kinases (ALK) inducing the phosphorylation of Smads. GDF11 reduces oxidative stress
and inflammatory process.
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Table 1. Pro-angiogenic and pro-neurogenic properties of GDF11 in aging and disease models.

Treatments GDF11 Model Type Effects References
Recomb}nant G[?Fll (rGDF11) Old mice angiogenesis
Intraperitoneal (i.p.) 0.1 mg/kg (23-month-old) ] [24]

Daily injection for 28 days NEurogenesis
rGDF11 Young (2-3-month-old) angiogenesis
1 mg/kg i.p. and old mice o [22]
Daily injection for 28 days (22-23-month-old) neuronal activation
rGDF11 Young mice .
0.1 mg/kg i.p. (1-5-month-old) and : NEUTOgenests [30]
1 day mice (9-month-old) short term memory
rGDF11 Mouse model of stroke angiogenesis
0.1 mg/kg i.p. (right middle cerebral 8108 ) [31]
For 7-13 days after stroke occlusion: RMCO) NEUrogenests
. .
01.0 Zr???illgl;/k ; Rat model of stroke ang1ogene.351s [25]
e & Lp- (RMCO and reperfusion) endothelial
For 7 days proliferation
rGDF11 Mouse model of angiogenesis
Intravenous 0.1 mg/kg Alzheimer’s disease } [26]
For 28 days neurogenesis

A number of experimental and clinical studies investigated the role of GDF11 on stroke recovery.
In the model of experimental stroke induced by cerebral ischemia/reperfusion, neuro-inflammatory
injury is present. Systemic administration of rGDF11 exerted proangiogenic effects following cerebral
ischemia and contributed to improve the neurological function in this model of stroke. After ischemic
injury, GDF11-induced angiogenesis was probably mediated by TGF-f3 signaling [25]. In stroke
patients, angiogenesis is an important factor for stroke recovery. Consistent with its pro-neurogenic
and pro-angiogenic properties in the adult brain, GDF11 treatment may improve stroke condition [31].
The beneficial effects of GDF11 on neurogenesis in the aged brain may be closely dependent on the
improvement of the vascular function, as GDF11 increases the concentration of vascular endothelial
growth factor (VEGF), a potent angiogenic factor.

The pathogenesis of neurodegenerative diseases is unclear. It is stated that Alzheimer’s
disease is a complicated heterogeneous disease involving multiple factors, including heredity factors,
neurotransmitters, immune and environmental factors. The regenerative abilities of a cell depend
on the maintenance of a functional proteome. High profile studies have reported conflicting data
regarding the properties of GDF11. Increasing GDF11 levels may improve some facets of Alzheimer’s
pathology [26,30]. A large number of studies have found confirmation that the key characters of
Alzheimer’s disease are changes in synaptic plasticity and neuron injury. Neurons are cells highly
dependent on mitochondrial oxidative phosphorylation for energy production. GDF11 reduces
oxidative stress and mitochondria damage. After exogenous injection of rGDF11, apoptosis and
inflammation are reduced [32]. Oxidative stress and inflammation are proved to have essential roles in
cerebral injuries. Heme-oxygenase-1 (HO-1), a major antioxidant, protects cells and tissues against
the attack of oxidative products in the presence of brain injuries [33]. It is proposed that the role of
GDF11 in suppressing ROS overproduction contributes to the limitation of inflammation and of the
level of mitochondrial injury. Many pro-longevity signaling pathways, such as forkhead box class
O (Foxo) transcription factors and SIRT1, have been shown to play important roles in brain function.
The manipulation of signaling molecules that impact Foxo and SIRT1 activities improves the neuronal
stress response associated with ROS production.

As we reported, several factors that are elevated in young animals were identified in blood
plasma from mice, and their blood concentrations inversely correlated with the age-related decline in
neurogenesis. In contrast to GDF11, the levels of a new factor, CCL11, increase with age in animals.
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CCL111is a C-C motif chemokine 1 [34]. CCL11 injected into young animals led to degenerative changes
in the CNS, disturbed the cognitive functions, and inhibited tissue regeneration. The identity of
specific factors in the blood of young mice mediating cognitive functions and their potential molecular
pathways have not been clearly elucidated yet.

In conclusion, among the TGFf proteins that regulate aspects of CNS formation and health, GDF11
is a “rejuvenating factor”, able to treat diseases in different systems in old individuals and a factor that
promotes neurogenesis in aged mice. Recent studies have shown that stimulating the intrinsic growth
potential of CNS neurons can induce axon regeneration after CNS injury. The identification of GDF11
as a “rejuvenating factor” opens up perspectives for the treatment of age-related brain dysfunction.
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