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INTRODUCTION

Tinnitus can be defined as the conscious awareness of a tonal 
and/or noise sound in the milieu of no identifiable correspond-
ing external acoustic source [1]. By contrast, tinnitus disorder is 
defined as tinnitus with tinnitus-associated suffering, which can 
consist of emotional distress, cognitive dysfunction and/or auto-
nomic arousal (i.e., stress), leading to functional disability [1]. In 

other words, tinnitus can be equated to the perception of a phan-
tom sound, and tinnitus disorder is tinnitus accompanied by as-
sociated suffering, with or without functional disability. It has 
been shown that chronic tinnitus (tinnitus with a duration of  
3 months or more [1]) is not simply a temporal extension of tin-
nitus of recent onset but involves distinct mechanisms [2,3]. Tin-
nitus has a high prevalence, between 12% and 30% [4], in-
creases with age, is more common in men than women, and is 
expressed more in the left than right ear [4]. 

The phantom sound is often associated with comorbidities, 
especially in the auditory domain, such as hearing loss (80% in 
the elderly) [5] and hyperacusis (7%–70%) [6] being the most 
common ones. However, tinnitus is also frequently associated 
with emotional, cognitive, and autonomic problems, thereby 
qualifying as tinnitus disorder. Indeed, stress is common in tinni-
tus patients (27%) [7], as are anxiety (26%) and depression 
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Tinnitus is defined as the conscious awareness of a sound without an identifiable external sound source, and tinnitus disor-
der as tinnitus with associated suffering. Chronic tinnitus has been anatomically and phenomenologically separated into 
three pathways: a lateral “sound” pathway, a medial “suffering” pathway, and a descending noise-canceling pathway. Here, 
the triple network model is proposed as a unifying framework common to neuropsychiatric disorders. It proposes that ab-
normal interactions among three cardinal networks—the self-representational default mode network, the behavioral rele-
vance-encoding salience network and the goal-oriented central executive network—underlie brain disorders. Tinnitus com-
monly leads to negative cognitive, emotional, and autonomic responses, phenomenologically expressed as tinnitus-related 
suffering, processed by the medial pathway. This anatomically overlaps with the salience network, encoding the behavioral 
relevance of the sound stimulus. Chronic tinnitus can also become associated with the self-representing default mode net-
work and becomes an intrinsic part of the self-percept. This is likely an energy-saving evolutionary adaptation, by detach-
ing tinnitus from sympathetic energy-consuming activity. Eventually, this can lead to functional disability by interfering 
with the central executive network. In conclusion, these three pathways can be extended to a triple network model ex-
plaining all tinnitus-associated comorbidities. This model paves the way for the development of individualized treatment 
modalities.
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(26%). Insomnia is present in 60%–73% of tinnitus patients 
[8,9]. Tinnitus is also associated with poorer performance across 
a variety of broad cognitive domains including executive func-
tion, cognitive processing speed, short-term memory, and gener-
al learning and memory retrieval [10]. This is mainly due to tin-
nitus-related distress [11]. The natural course of tinnitus is unfa-
vorable. In 18% of patients tinnitus resolves spontaneously in  
4 years, while in the other 82% of patients in whom tinnitus 
persists, it improves in 9% and worsens in 9% [12]. 

The mainstay of tinnitus treatment is cognitive behavioral 
therapy (CBT), for which there is meta-analytic evidence of its 
benefits [13]. Yet, CBT results only in a 10% improvement of 
the distress, without decreasing the loudness [13]. Furthermore, 
the meta-analysis could not find a benefit 6 months after CBT 
treatment [13], and it is highly uncertain whether CBT reduces 
anxiety, improves health-related quality of life, or reduces nega-
tively biased interpretations of tinnitus [13]. To develop more ef-
ficacious tinnitus treatments, a better understanding of the patho-
physiological mechanisms that generate and maintain chronic 
tinnitus is required. Better treatments should treat both the sound 
and the suffering. Pain and tinnitus share an analogous patho-
physiology [14-25], clinical phenomenology [14,19-21,23], and 
neuromodulatory treatment approaches [19-21,23,26,27].

Chronic tinnitus has been anatomically and symptomatically 
dissociated into three separable but interacting ascending or de-
scending pathways [16], analogous to what has been described 
for pain [16,28-33]. These consist of an ascending lateral “sound” 
pathway, an ascending non-specific medial “suffering” pathway, 
and a descending noise-canceling pathway [16,34,35]. The me-
dial suffering pathway may overlap with the salience network, 
analogous to what has been shown for pain [29]. Whereas the 
lateral auditory and medial salience pathways can explain the 
loudness and emotional aspects of tinnitus respectively, no cor-
relates have been proposed for the chronification and functional 
disability encountered in chronic tinnitus. We here propose to 
extend the current tinnitus networks to the triple cortical net-
work model to fill this gap. 

The triple network model is a network science-based approach 
to find a common framework for understanding cognitive and 
affective disorders [36]. It proposes that abnormal interactions 

within and between the three cardinal brain networks underlie 
neuropsychiatric disorders [36]. These three networks include 
the self-representational default mode network (i.e., a brain net-
work that is active when a person is not focused on the outside 
world) [37,38], the behavioral relevance–encoding salience net-
work (i.e., a brain network that selects which stimuli are salient 
and thus deserving of our attention) [39], and the goal-oriented 
frontoparietal central executive network (i.e., a brain network 
crucial for maintaining and processing information in working 
memory, problem-solving and decision-making) [39,40]. Nor-
mally, the central executive network and salience network dem-
onstrate correlated activity, and both networks are anti-correlat-
ed to the default mode network [41]. The salience network drives 
the switch between the anti-correlated default mode network 
and the central executive network [42-44]. This is in keeping with 
the proposed functions of the three networks. When the salience 
network detects a behaviorally relevant external stimulus, it de-
creases the activity of the self-oriented and mind-wandering de-
fault mode network and activates the central executive network 
to address the salient external stimulus in a goal-oriented fashion. 
In many brain disorders, such as attention-deficit/hyperactivity 
disorder, anxiety, depression, bipolar, autism, obsessive-compul-
sive disorder, posttraumatic stress disorder, and schizophrenia, 
the functional connectivity (statistical relationships between a 
pair of brain regions that covary or correlate over time) within 
and between these three cardinal networks is aberrant [36,45,46].

We propose that in chronic tinnitus, analogous to what has 
been suggested for pain [47], the three known tinnitus pathways 
can be linked and extended to the triple network model, which 
would explain the chronification of tinnitus as well as propose 
neural correlates for the commonly associated cognitive dys-
function.

THE KNOWN BRAIN ANATOMY OF TINNITUS

A stimulus produces an effect on the different sensory receptors, 
which is transmitted to the sensory cortex, inducing sensation 
[14]. Further processing of this sensory stimulation by other brain 
networks such as the default mode, salience network, and cen-
tral executive network (i.e., the triple network) permits the sound 
stimulus to reach consciousness [48-53], and generates an inter-
nal representation of the outer and inner world, namely a percept 
[14]. Tinnitus perception can thus be defined as the act of inter-
preting and organizing a sound stimulus to produce a meaning-
ful experience of the world and of oneself [14]. 

When a patient visits a health care provider and states that  
he or she has tinnitus, what the person is really conveying is, “I 
have a certain amount of tinnitus loudness associated with a 
certain amount of suffering during a certain amount of time.” 
These three aspects of the unified tinnitus percept can be traced 
to the three different pathways involved in tinnitus processing 

	� The triple network model is a novel unifying framework com-
mon to neuropsychiatric disorders.

	� The salience network encodes the behavioral relevance of tin-
nitus.

	� The default mode network makes tinnitus an intrinsic part of 
the self-percept.

	� Tinnitus can lead to functional disability by interfering with 
the central executive network.
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(Fig. 1) [16]. 
As mentioned, the two main tinnitus-activating pathways in-

clude the anatomically and functionally separable medial and 
lateral tinnitus pathways [16]. The medial ascending pathway in-
volves the rostral to dorsal anterior cingulate cortex (rdACC) and 
anterior insular cortex and processes the affective motivational 
aspect of tinnitus [14,16,54-56]. The causality has been demon-
strated by the fact that cingulotomies could abate negative affect 
and cognitive control [57,58], as researchers stated: “All the pa-
tients except two found the head noises less distressing after the 
operation but objectively the noises were unchanged” [57].

The lateral ascending pathway involving the auditory cortex 
encodes the discriminatory components of the tinnitus, such as 
loudness [59] and tinnitus localization [60]. The two activating 
tinnitus pathways are balanced by the noise-canceling inhibitory 
pathway, involving the pregenual anterior cingulate cortex (pgACC) 
[16,53]. The descending noise-canceling pathway determines the 
amount of time that tinnitus is consciously perceived [61,62], and 
therefore reflects the capacity of the brain to suppress acute or 
ongoing tinnitus [61]. 

TINNITUS AND SUFFERING ARE DIFFERENT

As above-mentioned, tinnitus can be defined as the conscious 
awareness of a tonal and/or noise sound for which there is no 
identifiable corresponding external acoustic source, while tinni-

tus disorder is defined as tinnitus with suffering [1]. Suffering can 
be defined as an unpleasant experience associated with negative 
cognitive, emotional, and autonomic responses to a (tinnitus) 
stimulus [29]. About 80% of the people with tinnitus are not 
bothered by the phantom sound, but in 20% it is severely both-
ersome [63], qualifying as tinnitus disorder [1].

The sensation of a phantom sound can lead to suffering via 
the associated feeling of (emotional) unpleasantness and (cogni-
tive) catastrophizing. Tinnitus catastrophizing is characterized by 
(1) a tendency to magnify the threat value of tinnitus, (2) feeling 
helpless in the context of tinnitus, and (3) a relative inability to 
inhibit tinnitus-related thoughts (rumination) [64]. Thus, tinnitus 
catastrophizing acts as an amplifier of unpleasantness and tinni-
tus loudness by deficient cognitive coping strategies [65]. The com-
bination of the perceived unpleasantness and catastrophizing 
leads to suffering, which can express in different behaviors such 
as anger, fear, and frustration [64,65] (Fig. 1). 

Tinnitus is often associated with stress [7,66-68]. Physiologi-
cal stress can be defined as an unpleasant sensory, emotional, 
and subjective experience that is associated with potential dam-
age of body tissue and bodily threat [69], especially when an en-
vironmental demand exceeds the natural regulatory capacity of 
an organism [70]. Stress results in an immediate adaptive tem-
porary response of the autonomic nervous system and slower 
protracted stimulation of the hypothalamic-pituitary adrenal en-
docrine axis [71]. Whereas acute stress responses are adaptive 
and beneficial to survival by preparing a fight-or-flight response, 

Fig. 1. The anatomical pathways associated with three different aspects of tinnitus (loudness, suffering, and presence). A sound stimulus leads 
to a cognitive, emotional, and autonomic response, which is phenomenologically expressed as catastrophizing, attention paid to the tinnitus, 
unpleasantness, fear, anger or frustration with tinnitus, and arousal/distress. These cognitive, emotional, and autonomic symptoms are all phe-
nomenological expressions of altered activity in the medial pathway.
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chronic stress becomes maladaptive, leading to a host of prob-
lems including metabolic syndrome, obesity, cancer, mental health 
disorders, cardiovascular disease, and increased susceptibility to 
infections [72]. Chronic stress can result in depression [72,73], 
anxiety [73], and anger [74]—in other words, chronic suffering. 

Tinnitus distress correlates with activity in the rdACC [55,56, 
75]. The increased cortisol level in stress results in unpleasant-
ness via its functional modulation of the rdACC [76]. The neural 
substrates of physiological stress, as identified by a meta-analy-
sis also involve the rdACC and anterior insula [69]. Unpleasant-
ness (suffering) and sound intensity (loudness) can be modulat-
ed independently. This has been known since the 1950s, as fol-
lowing frontal lobotomies performed for tinnitus it was realized 
that “In fact, of the 19 patients who survived the operation, 11 
felt that their head noises were just the same but bothered them 
less and 8 felt that they had improved” [57]. Similar observations 
were made by other neurosurgeons [58] and are equivalent to 
changes noted with electrode implants in the rdACC [54]. 

In summary, tinnitus consists of a sensory loudness component, 
encoded by the ascending lateral pathway, and a suffering com-
ponent, encoded by the ascending medial pathway. Suffering in-
volves a cognitive, emotional, and autonomic component, all 
encoded by parts of the medial pathway. The medial and lateral 
pathways are separable, and consequently, one may have tinni-
tus without suffering and suffering without tinnitus.

TINNITUS CHRONIFICATION, ENERGY 
EXPENDITURE AND THE DEFAULT MODE 

NETWORK

Network science is a research field studying complex networks 

such as computer, economic, biological, social, cognitive, and se-
mantic networks, abstracting the networks to nodes (or vertices) 
and their connections (or edges). Network science is increasingly 
used to understand the involvement of resting-state network in-
teractions in brain disorders [77-80], including tinnitus [81,82]. 
One of its findings is the involvement of the default mode net-
work in tinnitus [83-91]. It can be hypothesized that in chronic 
tinnitus the default mode network, which controls self-represen-
tational processing may become pathologically connected to 
tinnitus-provoking networks [89]. The significance of this finding 
is tremendous, as this may be a neurobiological rationale why in 
chronic tinnitus the sound becomes embodied—that is, an inte-
gral part of the self, the new normal default state [92]—thereby 
making treatments more difficult [93]. Furthermore, not only 
can tinnitus become an integral part of the self, but when suffer-
ing becomes chronic, fear can turn into anxiety and sadness into 
depression, all common comorbidities in tinnitus. 

A question can be raised, “why does this connectivity to the 
default mode occur?” An evolutionary explanation can be pro-
posed that involves the free energy principle of brain function-
ing [94,95]. In sum, it posits that an energy-expensive organ, 
such as the brain, tries to conserve energy in whatever way it 
can [96,97]. It is of interest that the salience network and the 
sympathetic central control overlap in the brain [98], and the 
central component of the brain’s parasympathetic nervous net-
work partially overlaps with the default mode network [99]. 

The sympathetic nervous system increases intrinsic energy 
consumption by 15%–35% [100,101]. In recent-onset pain, the 
daily energy consumption is increased by 60% [102], whereas 
in more chronic pain, the daily extra energy expenditure is only 
increased by 15% [103,104]. Similarly, fear increases energy ex-
penditure by 22% [105], whereas chronic anxiety only increases 

Fig. 2. In subjects with acute tinnitus, the default mode network and the central executive network are anti-correlated. When tinnitus becomes 
chronic, the anticorrelation between the two networks disappear and the triple network including the salience network causes suffering, em-
bodiment, and functional impairment because of tinnitus.
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energy expenditure by 6% [106]. By rewiring to connect the 
tinnitus pathways to the default mode network, which broadly 
overlaps with the parasympathetic central network, energy ex-
penditure can therefore be saved. Data on energy expenditure 
in acute tinnitus versus chronic tinnitus have not been published 
yet, but might hopefully be performed, as to verify whether this 
concept holds for tinnitus as well.

TINNITUS, COGNITIVE DYSFUNCTION, AND 
THE CENTRAL EXECUTIVE NETWORK

Chronic tinnitus can lead to a lower quality of life and the de-
velopment of tinnitus-related disability, especially cognitive dis-
ability [10,11,107,108]. Tinnitus loudness, tinnitus distress, and 
tinnitus duration correlate positively with different cognitive 
measures (e.g., the trail-making test, Montreal cognitive assess-
ment, Mini-Mental State Examination) [109]. Based on network 
science principles, each aspect of tinnitus could be the result of 
connectivity changes between the lateral pathway (i.e., the audi-
tory network), and another resting-state network, such as the 
salience network (suffering), the default mode network (em-
bodiment), the central executive network (cognitive disability), 
and motor network (physical disability). Changes in the auditory 
[110,111], salience [112-116], default mode [83-91], and central 
executive networks [87,113] have been shown in patients with 
tinnitus. In a healthy state, the salience network, which overlaps 
with the ascending medial pathway, and the stress network are 
anti-correlated with the default mode network [41]. In chronic 
tinnitus, this anti-correlation is lost, as suggested by increased 
functional connectivity between the rdACC and precuneus [91]. 
Furthermore, interference in the goal-oriented central executive 
network may lead to functional impairment in subjects with tin-
nitus (Fig. 2).

CONCLUSION

Tinnitus is processed by three distinguishable but interacting 
networks, each encoding different tinnitus characteristics. The 
ascending lateral pathway, with the auditory cortex as the main 
hub, is responsible predominantly for loudness. The ascending 
medial pathway, with the rdACC and insula as the main hubs, 
are involved in the suffering component, and the descending 
noise-canceling pathway, with the pgACC as the main hub, is 
related to the percentage of the time that the tinnitus is present. 
When the tinnitus sensation pathways become correlated to the 
default mode instead of anti-correlated, tinnitus becomes part 
of the self-percept (i.e., part of who one is, the new normal). 
This can subsequently lead to functional disability by interfering 
with the goal-oriented central executive network. Therefore, the 
three tinnitus pathways previously described need to be extend-

ed to incorporate the triple network to explain the full clinical 
picture of chronic tinnitus.
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