
ONCOLOGY LETTERS  27:  152,  2024

Abstract. Gastric cancer (GC) is a prominent contributor to 
global cancer‑related mortalities, and a deeper understanding 
of its molecular characteristics and tumor heterogeneity is 
required. Single‑cell omics and spatial transcriptomics (ST) 
technologies have revolutionized cancer research by enabling 
the exploration of cellular heterogeneity and molecular 
landscapes at the single‑cell level. In the present review, an 
overview of the advancements in single‑cell omics and ST 
technologies and their applications in GC research is provided. 
Firstly, multiple single‑cell omics and ST methods are 
discussed, highlighting their ability to offer unique insights 
into gene expression, genetic alterations, epigenomic modi‑
fications, protein expression patterns and cellular location in 
tissues. Furthermore, a summary is provided of key findings 
from previous research on single‑cell omics and ST methods 
used in GC, which have provided valuable insights into genetic 

alterations, tumor diagnosis and prognosis, tumor microen‑
vironment analysis, and treatment response. In summary, 
the application of single‑cell omics and ST technologies has 
revealed the levels of cellular heterogeneity and the molecular 
characteristics of GC, and holds promise for improving diag‑
nostics, personalized treatments and patient outcomes in GC.
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1. Introduction

Gastric cancer (GC) is the fourth leading cause of cancer‑related 
mortality (1). According to the World Health Organization and 
the International Agency for Research on Cancer, it is the fifth 
most frequently diagnosed cancer worldwide, with >1 million 
new cases reported each year (2). The incidence rates of gastric 
cancer show regional variations. In East Asia, particularly in 
countries such as Japan, China and South Korea, there is a 
notably higher prevalence of this disease compared with in 
other regions (3,4). GC is also among the cancer types with 
the highest mortality, with the fourth highest cancer mortality 
rate globally (1). Its late diagnosis, often due to initially subtle 
symptoms, results in poor treatment outcomes for numerous 
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patients (5‑8). Known risk factors for GC include infection 
with Helicobacter pylori, alcohol consumption, smoking, age, 
high salt intake, and diets low in fruits and vegetables (9,10). 
H. pylori infection, in particular, can progress from gastritis to 
gastroduodenal ulcers, gastric carcinoma and lymphoma (11).

The diagnosis of GC involves histological examination 
through endoscopic biopsy and staging with CT, endoscopic 
ultrasound, positron emission tomography and laparoscopy (10). 
GC is anatomically classified as true gastric adenocarcinoma 
(gADC; refers specifically to cancer originating in the stomach 
itself) or gastroesophageal‑junction adenocarcinoma (refers to 
cancer that occurs at the junction where the esophagus meets 
the stomach), with histological categorization into diffuse and 
intestinal types (12). Intestinal‑type GC, mainly caused by 
H. pylori infection, is characterized by tubular or glandular 
structures, and is associated with intestinal metaplasia (13). 
Diffuse‑type GC is characterized by poorly differentiated 
tumor cells with decreased adhesion, leading to infiltra‑
tion of the stroma as small subgroups or cellular forms (13). 
Adenocarcinoma accounts for the majority of GC cases 
(90‑95%), followed by less frequent types such as lymphoma 
(4%), gastrointestinal stromal tumors (<1%), carcinoid tumors 
(3%) and hereditary diffuse GC (1‑3%) according to the 
American Cancer Society (9).

GC treatment necessitates a multidisciplinary approach. 
For early‑stage cases with low lymph node metastasis (LNmet) 
risk, endoscopic therapy or surgery alone can be curative (14). 
Innovations such as sentinel lymph node biopsy can improve 
the quality of life without compromising oncologic outcomes, 
yet their use outside East Asia is limited and long‑term 
studies are ongoing (14). Later‑stage localized GC requires 
extensive lymphadenectomy and multimodality therapy to 
prevent the occurrence of nodal and distant metastases (14). 
Targeted therapies have also been implemented for treatment, 
including the use of trastuzumab, an anti‑HER2 antibody, 
and ramucirumab, a VEGFR‑2 antibody (12). Despite these 
advancements, the prognosis and recurrence rates of GC 
remain discouraging due to its complex heterogeneity and the 
specific tumor microenvironment (TME) that promotes tumor 
progression and metastasis (15).

In 2009, Tang et al (16) first introduced single‑cell RNA 
sequencing (scRNA‑seq) technology to address the issue of 
cellular heterogeneity present in bulk RNA sequencing. Since 
then, single‑cell sequencing (SCS) technologies, in conjunc‑
tion with other bulk and/or single‑cell omics technologies, 
have revolutionized the exploration of tumor heterogeneity at 
the single‑cell level, providing insights into transcriptional, 
genomic, proteomic, epigenomic, metabolic and multi‑omics 
characteristics of individual cells (17‑25). Notably, single‑cell 
omics biotechnology, such as scRNA‑seq, enables molecular 
expression profiling of individual cells, allowing the mecha‑
nisms underlying tumor development to be assessed, and 
revealing the molecular characteristics of the TME (26‑33). 
The present review aims to provide an overview of the most 
notable single‑cell omics technologies, platforms and their 
applications in GC studies. Additionally, spatial transcrip‑
tomics (ST) technologies have emerged to construct spatial 
tissue atlases and characterize the spatiotemporal hetero‑
geneity of cancers, offering the potential to profile spatial 
heterogeneity in tumors (34‑39). Therefore, ST technologies 

and their applications in GC studies are also discussed. As no 
current ST method offers as comprehensive a coverage of the 
transcriptome as scRNA‑seq, there is a growing demand to 
integrate single‑cell and spatial data (40‑45). Finally, studies 
and applications that involve integrating scRNA‑seq with ST 
in GC research were explored.

2. Single‑cell omics technologies

The field of single‑cell omics has experienced remarkable 
advancements since its inception. Technologies of milestone 
significance in the field of single‑cell sequencing are discussed 
subsequently. In 2009, the first single‑cell mRNA sequencing 
method was proposed (16), followed by its application to 
human cancer cells in 2011 (46). Subsequently, in 2012, the 
first single‑cell exon was sequenced (47). Building upon these 
developments, Picelli et al (48) introduced Smart‑seq2 in 2013, 
a method that improved coverage and sensitivity compared 
with previous techniques. In 2017, Zheng et al (49) introduced 
a novel scRNA‑seq method referred to as 10x Genomics, 
which revolutionized the study of cellular communication, the 
TME and tumor heterogeneity (Fig. 1). These advancements 
in single‑cell omics technologies have paved the way for 
investigating genomic, transcriptomic and epigenomic hetero‑
geneity at the single‑cell level. Table I presents an overview 
of single‑cell technologies and their respective characteristics.

scRNA‑seq. scRNA‑seq offers a deeper understanding of cellular 
heterogeneity compared with traditional bulk cell analysis (50). 
It provides insights into gene expression at the single‑cell level. 
The process involves isolating and lysing individual cells, 
followed by reverse transcribing mRNA and then amplifying 
it (50). However, previous single‑cell isolation methods, such 
as manual picking (31,51‑53), FACS‑sorting (54‑56) and 
integrated microfluidic circuits (57‑59), have limitations in 
scalability due to cost, time and labor constraints. To address 
these limitations, advancements have been made to enhance 
efficiency and reduce costs. For example, Seq‑Well (60), devel‑
oped in 2017, is a portable and straightforward platform for 
massively‑parallel scRNA‑seq. Its working principle involves 
confining mRNA capture beads with unique barcodes and 
cells within small pores (pinholes), followed by sealing with 
a semipermeable membrane. This setup is conducive to effi‑
cient cell lysis and mRNA capture. After lysis, the beads are 
removed for parallel sequencing. The unique barcode on each 
bead allows for the identification of the originating cell of each 
transcript. Due to its simplicity and portability, Seq‑Well can 
be implemented in a variety of settings, making it a versatile 
tool for single‑cell genomics and transcriptomics research. 
It uses selective chemical functionalization (mRNA capture 
beads) to enable rapid cell lysis and efficient transcript capture 
while minimizing cross‑contamination. Another scalable 
method, split‑pool ligation‑based transcriptome sequencing 
(SPLiT‑seq), was proposed in 2018. SPLiT‑seq enables effi‑
cient sample multiplexing without the need for specialized 
equipment, and is compatible with fixed cells or nuclei (61). 
In 2019, massively parallel RNA single cell sequencing 
(version 2.0) was introduced, combining sub‑microliter reac‑
tion volumes, optimized enzymatic mixtures and an enhanced 
analytical pipeline (62). These methods substantially reduced 
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costs, improved reproducibility and decreased well‑to‑well 
contamination (62). Unlike most single‑cell transcriptomic 
profiling methods that focus on the 3'‑end of polyadenylated 
transcripts, C1 Cap Analysis of Gene Expression, developed 
in 2019, detects transcript 5'‑ends using an original sample 
multiplexing strategy in the C1TM microfluidic system. 
Analyzing transcript 5'‑ends enhances the understanding of 
gene expression by allowing precise mapping of transcription 
start sites, which sheds light on the complexity of promoter 
usage and regulatory mechanisms. This approach not only 
reveals the diversity of transcript isoforms, contributing to 
protein variability, but also improves the accuracy of gene 
expression profiling across different conditions and cell types. 
Consequently, focusing on 5'‑ends is crucial for unraveling 
the intricacies of gene regulation and the functional diversity 
within cellular processes (63).

Single‑cell genome sequencing. Single‑cell genome 
sequencing has allowed greater examination of genetic 
diversity, making it easier to analyze both de novo germ‑
line and somatic mutations in both normal and cancerous 
cells (23,64). In 2001, a simple method using rolling circle 
amplification was introduced for the amplification of 
vector DNA from single colonies or plaques, removing the 
requirement for lengthy growth periods and conventional 
DNA isolation techniques (65). In 2011, Navin et al (46) 
used flow‑sorted nuclei, whole genome amplification and 
next‑generation sequencing to precisely measure genomic 
copy numbers within individual nuclei. This method was 
used to explore the population structure and evolutionary 
dynamics of tumors in human breast cancer cases. Another 
method, multiple annealing and looping based amplifi‑
cation cycles, introduced quasi‑linear preamplification 
in 2012 (66), reducing biases associated with nonlinear 
amplification (whole genome amplification). Furthermore, 
linear amplification via transposon insertion, proposed in 
2017 (67), overcame limitations of current whole genome 
amplification methods, including amplification bias, 
amplification errors and limited resolution for detecting 
variations, enabling micro‑copy number variation detection 

with kilobase resolution, while minimizing amplification 
biases and errors. Multiplexed end‑tagging amplification of 
complementary strands (METACs) (68), developed in 2021, 
improved single‑cell whole‑genome amplification by lever‑
aging the complementary strands of double‑stranded DNA 
to filter out false positives and reduce sequencing costs, 
achieving high accuracy in detecting single‑nucleotide 
variations and other genomic variants, which improves 
single‑cell whole‑genome amplification by leveraging both 
strands of the DNA. Unique tags are added to DNA ends 
before amplification, allowing for the pairing of comple‑
mentary strands during sequencing. This method helps 
filter out false positives and reduces sequencing costs by 
requiring less sequencing depth for high accuracy. METACs 
is particularly effective in detecting single‑nucleotide varia‑
tions and other genomic variants, differing from traditional 
methods that often amplify only one DNA strand and may 
have higher error rates. It is applicable in fields such as 
single‑cell genomics, clinical diagnostics and population 
genetics (68).

Single‑cell epigenome sequencing. Single‑cell epigenome 
analysis provides valuable insights into DNA methylation, 
histone modification and chromatin states, which influence 
cellular activity (69). In 2013, the first single‑cell method 
for methylome analysis, single‑cell reduced representation 
bisulfite sequencing, was introduced (70,71). This technique 
enables the measurement of the methylation state in ~10% of 
CpG sites through enrichment of CpG dense regions (70,71). 
These sites predominantly cover most promoters, yet a limi‑
tation is their relatively poor coverage of a number of crucial 
regulatory regions, such as enhancers (70). The post‑bisulfite 
adapter tagging method involves bisulfite conversion prior 
to library preparation, ensuring that DNA degradation does 
not compromise the adapter‑tagged fragments. This allows 
for the measurement of methylation at up to 50% of CpG 
sites in individual cells (53). Chromatin immunoprecipita‑
tion (ChIP) followed by sequencing demonstrates improved 
data compared with chromatin immunoprecipitation 
combined with DNA microarray (ChIP combined with DNA 

Figure 1. Timeline of the development of multiple single‑cell omics methods. Red, scRNA sequencing; purple, scGenome sequencing; blue, scEpigenome 
sequencing; pink, scProteomics; green, scMulti‑Omics. CEL‑seq, cell expression by linear amplification and sequencing; DOP‑PCR, degenerate oligonu‑
cleotide‑primed PCR; DR‑seq, DNA and RNA sequencing; Drop‑seq, droplet‑sequencing; G&T‑seq, single cell genome and transcriptome sequencing; 
Gtag&T‑seq, genome‑tag and transcriptome sequencing; LIANTI, linear amplification via transposon insertion; MARS‑seq, massively parallel RNA single 
cell sequencing; Microwell‑seq, Microwell‑sequencing; MIX‑seq, multiplexed interrogation of gene expression through single‑cell RNA sequencing; PIP‑seq, 
protein interaction profile sequencing; sc, single‑cell; scATAC‑seq, single‑cell assay for transposase‑accessible chromatin with high‑throughput sequencing; 
SCoPE‑MS, single‑cell proteomics by mass spectrometry; scRRBS‑seq, single‑cell reduced representation bisulfite sequencing; SMART‑seq, switching 
mechanism at 5'end of RNA template sequencing; TAS‑Seq, terminator‑assisted solid‑phase cDNA amplification and sequencing.
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microarray technology is a method used to identify DNA 
regions that interact with specific proteins, by precipitating 
protein‑DNA complexes and hybridizing the extracted DNA 
onto microarrays) by providing higher resolution, greater 
genomic coverage, increased sensitivity and cost‑effective‑
ness, leading to more precise and comprehensive analysis of 
DNA‑protein interactions, allowing genome‑wide profiling 
of DNA‑binding proteins, histone modifications and 
nucleosomes (72,73). Another method, single cell assay for 
transposase‑accessible chromatin with sequencing, utilizes 
a transposase enzyme to insert sequencing adapters into 
open chromatin regions, revealing which parts of the genome 
are active or accessible in each cell. This technology is 
widely applied in epigenetics to understand cell‑to‑cell vari‑
ability, identify regulatory elements such as enhancers and 
promoters, and explore the mechanisms of gene regulation in 
diverse cell types (57).

Single‑cell proteomics (SCoPE). Single‑cell protein mass 
spectrometry allows for comprehensive measurement of 
protein expression patterns in a cell (74). Cytometry by time of 
flight (75), a mass cytometry‑based method, has been used to 
analyze surface and intracellular proteins using metal‑labeled 
antibodies labeled with heavy metal isotopes, allowing simul‑
taneous detection of multiple proteins in cells with minimal 
overlap and higher precision compared with fluorescent labels 
used in traditional flow cytometry. SCoPE by mass spectrom‑
etry (76), a high‑throughput method, was developed based on 
liquid chromatography‑tandem mass spectrometry techniques, 
and is a high‑throughput method for single‑cell proteomic 
analysis that allows for the isolation, enzymatic digestion, and 
subsequent identification and quantification of proteins from 
individual cells. This technique provides detailed insights 
into the protein composition of single cells, revealing cellular 
functions and heterogeneity at the proteomic level. Subsequent 

Table I. Summary of single‑cell technologies and their respective characteristics.

Omics Characteristics Methods

Single‑cell genome Detecting single‑cell SNV, CNV and other DOP‑PCR, 2011 (46), MDA, 2019 (104), MALBAC,
 genomic sequence or structure variations 2012 (66), LIANTI, 2017 (67), META‑CS, 2021 (68)
Single‑cell Detecting mRNA expression in single STRT‑seq, 2011 (170), Smart‑seq, 2012 (171), 
transcriptome cells and identifying cell clusters CEL‑seq, 2012 (52), InDrop, 2015 (172), Drop‑seq66,
  10x Chromium Genomics, 2017 (49), MARS‑seq,
  2019 (62), Seq‑Well, 2017 (60), Microwell‑seq,
  2018 (173), SPLit‑seq, 2018 (61), Quartz‑seq,
  2013 (174), C1‑CAGE, 2019 (63), RamDa‑seq,
  2018 (175)
Single‑cell Detecting the epigenomic status of cells,  scRRBS, 2016 (70), WGBS, 2015 (176), CGI‑seq,
epigenome such as DNA methylation, histone 2017 (177), ATAC‑seq, 2015, 2017 (57,178), DNase‑seq, 
 modification and chromatin states 2013 (179), ChIP‑seq, 2009 (73),Drop‑ChIP, 2015 (180),  
  scBS‑seq, 2020 (23)scAba‑seq, 2016 (181), CUT&Tag, 
  2019 (182), Single‑cell Hi‑C, 2013 (183)
Single‑cell protein Use of mass spectrometry or flow SCoPE‑MS, 2018 (76), SCoPE2, 2021 (77), sc‑CyTOF, 
mass spectrometry cytometry instead of sequencing to 2022 (75)
 measure the protein expression patterns
Single‑cell Combination of single‑cell toolkits Perturb‑seq, 2016 (79), CRISP‑seq, 2016 (80), CROP‑seq,
CRISPR sequencing and CRISPR screening 2017 (81), Mosaic‑seq,2017 (82), 
  Direct‑capture Perturb‑seq, 2020 (83)
Single‑cell Combining analyses of genome, Trio‑seq, 2016 (86)
multiomics epigenome and transcriptome
 Combining surface proteins with CITE‑seq, 2017 (87), REAP‑seq, 2017 (184)
 transcriptome
 Combining genome with transcriptome G&T‑seq, 2015 (185), DR‑seq, 2015 (186)
 Combining DNA methylation with scM&T‑seq, 2016 (88)
 transcriptome
 Combining protein‑DNA contacts with scDam&T‑seq, 2019 (187)
 transcriptome
 Combining open chromatin with TCR T‑ATAC‑seq, 2018 (188)
 Combining open chromatin with SNARE‑seq, 2019 (189), scCAT‑seq, 2019 (190)
 transcriptome

CNV, copy number variation; SNV, single nucleotide variant; TCR, T‑cell receptor.



ONCOLOGY LETTERS  27:  152,  2024 5

improvements led to the development of SCoPE2 (77), which 
offers enhanced quantitative accuracy, proteome coverage, 
sample preparation ease and cost‑effectiveness.

Single‑cell CRISPR sequencing. Single‑cell CRISPR 
sequencing is a cutting‑edge technique that integrates 
CRISPR‑Cas9, a powerful gene‑editing tool, with SCS 
methods. This innovative approach primarily focuses on 
executing targeted gene edits at the single‑cell level and then 
analyzing the consequent changes in the cell transcriptome 
using SCS, thereby allowing researchers to directly observe 
the effects of specific genetic alterations on gene expression 
in individual cells (78). Through this approach, a deeper 
understanding of gene functions, cellular networks and 
disease mechanisms is attainable. These techniques allow 
the use of compiled CRISPR libraries for collective cellular 
interventions, followed by high‑throughput phenotypic anal‑
ysis by using collective cellular interventions via CRISPR 
libraries to simultaneously edit multiple genes, followed by 
high‑throughput phenotypic analysis, allowing for a compre‑
hensive study of the resulting changes in cellular behavior and 
characteristics, revealing complex gene functions and inter‑
actions within cellular networks (78). To date, ≥30 different 
single‑cell CRISPR techniques have been developed; the 
present review focuses on introducing a few representa‑
tive technologies. Perturb‑seq (79) and CRISP‑seq (80) 
were among the first single‑cell CRISPR techniques to 
be developed. Perturb‑seq combines CRISPR‑mediated 
gene perturbation with scRNA‑seq for large‑scale gene 
function screening and studying the impact of gene expres‑
sion changes on cellular states (79). CRISP‑seq, similar 
to Perturb‑seq, focuses on studying individual genes or a 
small numbers of genes, assessing how specific gene‑editing 
events affect cell function (80). By introducing specific gene 
alterations via CRISPR, CRISPR droplet sequencing (81), 
followed by scRNA‑seq evaluates the influence of gene 
perturbations on cellular states and behaviors, which 
combines CRISPR technology with droplet‑based single‑cell 
sequencing, allowing simultaneous editing and gene expres‑
sion profiling in individual cells. Unlike traditional CRISPR 
techniques that focus primarily on gene editing, CRISPR 
droplet sequencing integrates gene editing with detailed, 
single‑cell level transcriptomic analysis, revealing how 
edits affect cellular functions (78). Mosaic‑seq (82) gener‑
ates cellular mosaics (a collection of cells in which each 
cell has a distinct genetic alteration) with various genetic 
perturbations, and analyzes the combined effects of these 
disruptions using scRNA‑seq. This method is used to study 
the interactions between different genes and their impact on 
cellular functions. Direct‑capture Perturb‑seq (83), a variant 
of Perturb‑seq, improves data quality and analysis efficiency 
by directly capturing and sequencing CRISPR‑guided RNA, 
facilitating a more precise association between gene‑editing 
events (deliberate alterations made to the genome using 
CRISPR‑Cas9 technology, such as knocking out, knocking 
in or modifying specific gene sequences) and transcriptomic 
changes.

Single‑cell CRISPR sequencing and its derivative tech‑
nologies hold potential in cancer research. These techniques 
assess the complex molecular networks within tumor cells and 

aid the understanding of the TME, drug responses and mecha‑
nisms of treatment resistance (79). For instance, Jun et al (84), 
using in vitro experiments, explored all cytosine‑to‑thymine 
mutations in the exon regions of three genes (MAP2K1, 
KRAS and NRAS), revealing the insertions and deletions and 
transcriptomic markers contributing to melanoma drug resis‑
tance. Roth et al (85) developed pooled knockin sequencing 
(PoKI‑seq), a technology that measures cell abundance and 
state both ex vivo and in vivo. This method facilitates the 
barcoding and tracking of targeted integrations of large 
non‑viral DNA templates in primary human T cells. The tech‑
nology notably identified a novel TGF‑β R2‑41BB chimeric 
receptor, enhancing the clearance of solid tumors. PoKI‑seq 
enables the parallelized rewriting of endogenous genetic 
sequences, accelerating the identification of effective knockin 
programs for cell therapies. However, specific applications of 
single‑cell CRISPR technology in GC research have yet to be 
discovered.

Integration of multi‑omics. Notable advancements have been 
made in integrating single cell multiple‑omics analyses. For 
instance, Trio‑seq allows for the simultaneous analysis of the 
genome sequence, epigenome and transcriptome in a single 
cell (86). Another technique, cellular indexing of transcrip‑
tomes and epitopes by sequencing, combines surface protein 
analysis with transcriptome sequencing (87), while Single 
Cell Methylome and Transcriptome Sequencing enables the 
simultaneous analysis of both the epigenome (specifically 
DNA methylation patterns) and transcriptome (gene expres‑
sion profiles) at the single‑cell level, and combines DNA 
methylation analysis with transcriptome sequencing within a 
single cell (88).

In conclusion, single‑cell omics technologies, encom‑
passing SCS, single‑cell proteomics and multi‑omics have 
undergone advancements, enabling researchers to explore the 
intricate details of cellular heterogeneity across various omics 
layers. These technologies offer insights into gene expression, 
genetic variations, epigenomic modifications and protein 
expression patterns at the single‑cell level, enhancing the 
understanding of cellular dynamics and disease mechanisms.

3. Application of single‑cell omics technologies in GC

Single‑cell omics technologies have transformed the 
comprehension of GC by revealing cellular heterogeneity 
and molecular landscapes. Numerous studies have used SCS 
methods to investigate GC, providing insights into tumor 
heterogeneity, metastasis, genetic alterations, diagnosis, treat‑
ment response and the TME (47,89‑92) (Fig. 2). The present 
review summarizes key findings of these studies, highlighting 
the contributions of different SCS technologies in advancing 
the knowledge of GC. Additionally, a summary of SCS tech‑
nology applications in GC is presented in Table II.

Genetic alterations of single cells. Early applications of SCS 
in GC focused on transcriptome and single‑cell genome 
analysis of GC cell lines and reported marked genetic and 
transcriptional diversity (93). In one study, the identification of 
24 notable mutated genes among tumor cells demonstrated the 
genetic alterations underlying GC and potential therapeutic 
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targets (94). Analysis of circulating tumor cells (CTCs) 
from patients with advanced GC demonstrated numerous 
mutations in the genes associated with the KRAS and Rap1 
pathways, as well as mutations in the genes associated with the 
MET/PI3K/AKT pathway and the SMARCB1 gene in patients 
with large multiploid CTCs (95), leading to the development of 
resistance to either chemotherapy alone (96) or chemotherapy 
combined with targeted therapy (97) in patients with GC.

Tumor diagnosis and prognosis. In a study on GC lymph 
node metastasis, scRNA‑seq was performed on primary and 
metastatic tissues from 3 patients, revealing intratumoural 
heterogeneity and distinct carcinoma profiles. The results 
identified a subgroup of cells indicating a transitional state 
in the metastasis process, and also revealed potential marker 
genes (ERBB2, CLDN11 and CDK12) and genes driving 
gastric cancer evolution (FOS and JUN), offering insights 
for GC treatment (98). A panel of biomarkers was identified 
for discriminating between benign and malignant epithelial 
tissues, potentially aiding in early detection and diagnosis of 
GC (99). Using scRNA‑seq analysis, subtypes of peritoneal 
carcinomatosis samples from patients with GC were classi‑
fied, and a 12‑gene prognostic signature was identified (100). 
Investigation of metastatic GC using peritoneal ascite samples 
and cerebrospinal fluid revealed that poor prognosis was 
associated with M2‑like characteristics in tumor‑associated 
macrophages (101). In a study of patients with non‑metastatic 
GC, immunosuppressive gene expression patterns were 
enriched in regulatory T cells (Tregs) within gastric tumor 
tissues, indicating an immunosuppressive TME. The absence 
of a separate exhausted CD8+ T cell cluster and low expres‑
sion levels of exhaustion markers were also observed, and 
ACKR1 was identified as a potential marker associated with 
poor prognosis (102). Using scRNA‑seq, a broad spectrum of 
GC subtypes was assessed to create a transcriptomic map of 

biomarkers from malignant epithelial cells for the prediction 
of overall survival in patients with GC (103). OR51E1 has 
been identified as a key marker gene for unique endocrine 
cells in early‑malignant lesions of gastric cancer, offering 
a potential avenue for early detection of malignancy (103). 
Simultaneously, HES6 has been recognized for its potential 
utility in identifying metaplasia at an early stage, demon‑
strating its importance in the early diagnosis and intervention 
of precancerous gastric conditions (104). Furthermore, a panel 
of early GC‑specific signatures was identified using mucosa 
biopsies, which may be used in clinical applications for early 
diagnosis (104).

TME analysis. Analysis of the TME in patients with GC 
revealed increased stromal cells and Tregs, unique transcrip‑
tional cell states in dendritic cells (DCs), exhausted cytotoxic 
T lymphocytes and a specific extracellular matrix composi‑
tion not found in normal tissue (105). Furthermore, in more 
advanced disease stages, a downregulation of interferon 
regulatory factor 8 in CD8+ tumor‑infiltrating lymphocytes 
has been reported, revealing changes in the immunological 
landscape in GC and its potential implications for disease 
progression (106).

Another study demonstrated that monocyte‑like DCs and 
autophagy‑related genes marking high‑plasticity (ability of 
certain cancer cells to adapt and change in response to different 
environments or therapeutic pressures) GC were associated 
with poor prognosis during GC peritoneal metastasis progres‑
sion (107). In tumors with a high alternate promoter burden 
(APB‑high), characterized by increased use of alternative 
gene promoters, distinct immunological populations were 
observed along with a reduced proportion of T cells. These 
findings shed light on the immunological aspects of GC and 
how the APB‑high status influences tumor progression and the 
immune response (108).

Figure 2. Application of single‑cell sequencing technologies in research of GC, including five aspects: Tumor heterogeneity, genetic alterations, tumor diag‑
nosis, tumor metastasis and treatment response. GC, gastric cancer; NK, natural killer.
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Table II. Summary of the applications of single‑cell sequencing technologies in GC.

First author/s, year Sample Method Findings (Refs.)

Andor et al, 2020 GC cell lines. Droplet‑based Integrating single‑cell (93)
  reagent delivery genomes and transcriptomes
  system in GC cell lines revealed
   substantial genetic and
   transcriptional diversity.
Peng et al, 2019 34 cancerous cells and Agilent SureSelect 24 significant mutated genes (94)
 9 healthy cells from a patient Platform were identified.
 with GC.
Wang et al, 2021 3 patients with GC with SMART‑seq2 Marker genes (ERBB2, (98)
 primary cancer tissues and  CLDN11 and CDK12) for
 matched metastatic lymph node  lymph node metastasis and
 cancer samples.  potential evolution‑driving
   genes (FOS and JUN) were
   identified.
Sathe et al, 2020 7 patients diagnosed with GC 10x Genomics TME variations, including (105)
 and 1 patient with intestinal  increased stromal cell and
 metaplasia.  Treg numbers, unique
   transcriptional cell states
   in DCs and exhausted
   CTL subclasses, and specific
   extracellular matrix
   composition in TME stromal
   cells.
Zhang et al, 2021 9 samples of tumor tissues and 10x Genomics Identified a set of biomarkers (99)
 3 samples of non‑tumor tissues.  capable of distinguishing
   between benign and malignant
   epithelium.
Wang et al, 2021 15 patients with gastric 10x Genomics Peritoneal carcinomatosis (100)
 adenocarcinoma.  specimens were categorized
   into two distinct subtypes
   based on their prognostic
   implications, accompanied
   by the identification of a
   12‑gene prognostic signature.
Eum et al, 2020 5 specimens from 4 individuals SMART‑seq2 Tumor‑associated macro‑ (101)
 with GC, consisting of 4  phages in the malignant
 peritoneal ascites samples and  ascites of patients with GC
 1 cerebrospinal fluid sample.  exhibited pronounced M2‑like
 A total of 3 samples were  characteristics. Furthermore,
 procured from donors without  the presence of this M2‑like
 cancer, peritonitis, bacterial  phenotype in TAMs was
 infection or hepatitis B/C virus.  associated with a poor
   prognosis in patients with GC.
Meyer et al, 2020 Carcinogen‑induced mouse SMART‑seq2 Increased group 2 innate (191)
 model.  lymphoid cell levels in
   stomach tissues of patients
   with spasmolytic polypeptide‑
   expressing metaplasia
   suggested their involvement
   in coordinating the
   metaplastic response to
   severe gastric injury. 
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Table II. Continued.

First author/s, year Sample Method Findings (Refs.)

Fu et al, 2020 Cancer tissue samples from 2 10x Genomics The results revealed down‑ (106)
 patients with GC. Peripheral  regulation of the IRF8
 blood samples were collected  transcription factor in CD8+

 from 3 patients with GC before  tumor‑infiltrating lympho‑
 surgery. A total of 2 normal  cytes from GC tissues.
 samples of blood were obtained.  Furthermore, decreased IRF8
   levels in blood CD8+ T cells
   suggested an advanced disease
   stage.
Kwon et al, 2021 19 patients with metastatic GC. 10x Genomics A diverse TCR repertoire was (192)
   associated with prolonged
   progression‑free survival in
   patients treated with
   pembrolizumab. Additionally,
   increased PD‑1 and CD8+

   T cell levels were associated
   with durable clinical benefits.
Li et al, 2022 9 untreated patients with non‑ 10x Genomics The GC tissues exhibited (102)
 metastatic GC.  enrichment of immune
   suppression‑related gene
   expression in Treg cells.
   No distinct exhausted CD8+

   T cell cluster was identified,
   and low expression levels of
   exhaustion markers PDCD1,
   CTLA4, HAVCR2, LAG‑3
   and TIGIT were observed.
   Furthermore, specific ACKR1
   expression in tumor
   endothelial cells was
   associated with poor prognosis.
Huang et al, 2023 35 patients across four medical 10x Genomics Elevated monocyte‑like DCs (107)
 centers (with/without GC  during GC progression were
 peritoneal metastasis).  associated with poor
   prognosis. Additionally, high‑
   plasticity GC, characterized by
   autophagy‑related genes
   MARCKS and TXNIP, was
   associated with a worse
   prognosis.
Kang et al, 2022 Tumors and matched normal 10x Genomics Tumors exhibited prominent (91)
 tissue of 24 treatment‑naïve  overrepresentation of activated
 patients with GC.  fibroblasts and endothelial
   cells. Additionally, immuno‑
   suppressive myeloid cell
   subgroups and Tregs were
   pivotal in creating an immuno‑
   suppressive microenvironment,
   which was associated with an
   unfavorable prognosis and
   resistance to anti‑programmed
   cell death 1 treatment in
   patients.
 



ONCOLOGY LETTERS  27:  152,  2024 9

Table II. Continued.

First author/s, year Sample Method Findings (Refs.)

Kim et al, 2022 A total of 12 chemotherapy‑ 10x Genomics Identified the defining (111)
 naïve Korean patients with  characteristics linked to a
 metastatic advanced GC  positive response to platinum‑
   based chemotherapy.
Huang et al, 2022 9 patients were chosen, each 10x Genomics A comprehensive transcrip‑ (103)
 providing both primary tumor  tomic landscape of malignant
 and normal tissue samples for  epithelial cells in GC was
 the study.  constructed. Prognostic
   signatures for predicting
   overall survival in patients
   with GC were developed by
   combining the scRNA‑seq
   data with bulk RNA
   sequencing datasets.
Sundar et al, 2022 A total of 53 tumor samples, Illumina Hiseq scRNA‑seq analysis validated (108)
 including 13 APB‑high, 27 sequencer the presence of distinct
 APB‑int and 13 APB‑low  immunological populations
 samples.  and revealed decreased
   proportions of T cells in
   tumors characterized by high
   APB levels.
Zhou et al, 2023 A total of 14 tissue samples 10x Genomics In both malignant cells and (193)
 were collected, including 1  the immune microenviron‑
 normal mucosa tissue, 6 DGC  ment, there were distinctive
 tissues, 6 PDGC tissues and 1  molecular characteristics
 NEC tissue.  observed in DGC, PDGC and
   NEC. The analysis indicated a
   progressive reduction in
   interferon pathway responses
   as cells transitioned from
   DGC to NEC, leading to an
   increased capacity for
   immune evasion.
Yang et al, 2022 3 patients with synchronous BD® Single‑Cell The differential prognoses (109)
 gastric and colorectal cancer. Multiplexing Kit and drug responses observed
   in GC and colorectal cancer
   could be primarily attributed
   to the variations in the TME,
   which were influenced by the
   mutational landscape and
   microbiome components.
Li et al, 2022 10 GC specimens collected 10x Genomics Conducted single‑cell RNA (112)
 before and after neoadjuvant  sequencing on 10 GC samples
 treatment with camrelizumab  both before and after
 in combination with  neoadjuvant treatment. The
 mFOLFOX6.  study highlighted that high
   expression of interferon‑γ in
   CD8+ T cells was associated
   with enhanced responses to
   this combination therapy,
   indicating an immunological
   impact on the tumor
   environment.
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Table II. Continued.

First author/s, year Sample Method Findings (Refs.)

Zhang et al, 2019 Tumor tissue of 13 patients. 10x Chromium Identification of OR51E1 as a (104)
  platform marker for distinctive
   endocrine cells in early‑
   malignant lesions, and the
   potential utility of HES6 in
   identifying metaplasia at an
   early stage was revealed.
Jiang et al, 2022 10 human tissue samples from 10x Genomics Using scRNA‑seq, the study (194)
 6 patients.  assessed primary tumors and
   different metastases (liver,
   peritoneum, ovary and lymph
   node) in GC, and aimed to
   analyze intra‑ and inter‑
   tumoral heterogeneity of
   carcinoma cells and the TME
   and understood organ‑specific
   metastatic patterns, with
   particular emphasis on
   lymphatic metastases.
Chen et al, 2021 111 patients with advanced GC. Illumina HiSeq Patients exhibited a high (95)
  X Ten system prevalence of mutations in the
   KRAS and Rap1 signaling
   pathway, particularly in 3
   baseline small CTCs
   displaying trisomy 8.
   Additionally, distinctive
   mutations in the MET/PI3K/
   AKT pathway and the
   SMARCB1 gene were
   detected in the patients,
   specifically in >6 large
   multiploid CTCs.
Nagaoka et al, C57BL/6 mice inoculated with 10x Genomics In the murine GC model, the (113)
2020 two GC cell lines (YTN16 and  combination of anti‑IL‑17 and
 YTN2).  anti‑PD‑1 monoclonal
   antibodies was associated
   with robust tumor regression.
Zhang et al, 2020 13 mucosa biopsies from 9 10x Genomics A panel of specific signatures (104)
 patients. These patients  was identified for EGC,
 included individuals with wild  which hold clinical signifi‑
 superficial gastritis (non‑  cance for accurate diagnosis
 atrophic gastritis, with three  of EGC
 biopsies), which served as the
 normal control group, chronic
 atrophic gastritis (with three
 biopsies), intestinal metaplasia
 (with six biopsies) and EGC
 (with one biopsy).
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Comparisons between GC and colorectal cancer revealed 
distinct mutational landscapes and microbiomes, contributing 
to differences in the TME, and thus, disease prognosis (109). 
Furthermore, the communication between cancer‑associated 
fibroblasts (CAFs) within the TME and other cells provides 
insights into their regulatory functions (110).

Treatment response. Activated fibroblasts, endothelial cells, 
immunosuppressive myeloid cell subsets and Tregs present 
in the TME were associated with an unfavorable prognosis 
and resistance to anti‑programmed cell death 1 therapy in 
patients GC (91). Characteristics linked to a positive response 
to platinum‑based chemotherapy were defined, aiding 
personalized treatment decisions. For example, response was 
associated with on‑treatment TME remodeling, including 
natural killer cell recruitment, decreased tumor‑associated 
macrophages, M1‑macrophage repolarization and increased 
effector T‑cell infiltration (91). In non‑responders to chemo‑
therapy, Kim et al (111) observed low or no programmed 
death‑ligand 1 expression, an increase in Wnt signaling and 
B‑cell infiltration, a higher presence of lymphocyte activating 
3‑expressing T cells, and a reduction in dendritic cells. This 
suggests a distinct pattern of immune changes associated with 
chemotherapy resistance.

To assess the effects of combination therapy with camreli‑
zumab and 5‑fluorouracil, leucovorin and oxaliplatin on GC 
and its impact on the TME, Li et al (112) conducted single‑cell 
RNA sequencing on 10 GC samples both before and after 
neoadjuvant treatment. This study highlighted that high 
expression of interferon‑γ in CD8+ T cells was associated with 
enhanced responses to this combination therapy, indicating 
an immunological impact on the tumor environment (112). 
Additionally, a murine model suggested the potential thera‑
peutic approach of combining anti‑IL‑17 and anti‑programmed 
death‑1 monoclonal antibodies for GC tumor regression (113).

In conclusion, these studies (112,113) demonstrated the 
wide‑ranging application and use of single‑cell omics tech‑
nologies in GC research. By analyzing single cells, these 

studies have provided insights into intratumoral heterogeneity, 
the TME, immune and treatment responses, prognostic 
markers, and potential therapeutic targets. In addition, these 
techniques contribute to the understanding of GC biology 
and hold promise for improved diagnostics and personalized 
treatments.

4. ST technologies

ST techniques have notably improved the understanding of 
cellular function within multicellular organisms by revealing 
the precise location of cells in tissue sections. These tech‑
niques can be broadly categorized into two main types: 
Imaging‑based methods and sequencing‑based methods (114). 
Imaging‑based methods include in situ hybridization (ISH) 
and in situ sequencing (ISS), while sequencing‑based methods 
include laser capture microdissection (LCM) and in situ 
barcoding (ISB) (115). Table III provides an overview of the 
key characteristics of ST technologies.

ISH techniques, such as single‑molecule RNA fluorescence 
ISH (FISH) (116), seqFISH (117,118), seqFISH+ (119), multi‑
plexed error‑robust FISH (120,121) and RollFISH (122), use 
labeled probes to detect and visualize specific RNA molecules 
within tissue sections. These techniques involve hybridization 
of labeled probes to complementary target RNA sequences, 
followed by signal detection and localization. However, ISH 
is limited by the need for prior probe design knowledge and 
its inability to provide transcriptome‑wide coverage, thereby 
constraining its applications (117,123,124).

ISS‑based ST techniques, including f luorescent 
ISS (125), expansion sequencing (126), BaristaSeq (127) and 
spatially‑resolved transcript amplicon readout mapping (128), 
enable direct sequencing of RNA molecules in their tissue 
context, thereby offering spatially resolved transcriptomic 
information. While ISS‑based techniques offer subcellular 
resolution, their use is impacted by limitations, including 
a restricted number of targeted genes or low detection 
efficiency (125‑130).

Table II. Continued.

First author/s, year Sample Method Findings (Refs.)

Li et al, 2022 Eight pairs of GC and adjacent 10x Genomics The analysis focused on (110)
 mucosal samples.  examining the characteristics
   of different cancer‑
   associated fibroblast subsets
   and their role in regulating
   the dynamic communication
   between cancer‑associated
   fibroblasts (CAFs) within the
   TME and other cells.

APB, alternate promoter burden; CTCs, circulating tumor cells; CTL, cytotoxic T cell; DCs, dendritic cells; DGC, differentiated gastric cancer; 
EGC, early gastric cancer; GC, gastric cancer; IRF8, interferon regulatory factor 8; mFOLFOX6, 5‑fluorouracil, leucovorin and oxaliplatin; 
NEC, neuroendocrine carcinoma; PDGC, poorly differentiated gastric cancer; scRNA‑seq, single‑cell RNA sequencing; SMART‑seq, single 
molecule amplification and re‑sequencing technology for sequencing; TCR, T‑cell receptor; TME, tumor microenvironment; Treg, regulatory 
T cell.
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LCM‑based ST techniques, such as laser capture microdis‑
section sequencing (131), NICHE‑seq (132), tomo‑seq (133) 
and Geo‑seq (134) facilitate precise assessment of specific 
cell populations or defined spatial regions of interest within 
tissues. These techniques allow for the examination of gene 
expression patterns within complex tissue architecture. 
However, LCM‑based techniques are labor‑intensive and 
low‑throughput, rendering them impractical for processing 
samples in large batches (135,136).

ISB‑based ST techniques provide transcriptome‑wide 
resolution at the cellular and subcellular levels, enabling inves‑
tigations into gene expression patterns within the tissue context. 
Notable examples of ISB‑based techniques include NanoString 
Technologies, Inc. digital spatial profiling (DSP) (137), 
High‑Definition ST (138), Visium (139), Stereo‑seq (140) and 
Slide‑seq (141). These techniques enable simultaneous detection 
of multiple genes and offer valuable insights into cellular spatial 
organization and tissue heterogeneity (138,140,142,143).

By using ST techniques, researchers can gain a compre‑
hensive and detailed understanding of the spatial distribution 
of gene expression within tissues. These advancements have 
notable implications for various fields, including develop‑
mental biology, disease research and regenerative medicine.

5. Application of ST technologies in GC

Previous research has demonstrated the diverse applications 
of ST technologies. These applications encompass in situ 

cell typing (144,145), spatial gene expression pattern acquisi‑
tion (139), tumor trajectory mapping (146), exploration of tumor 
pathogenesis (147‑150), investigation of the TME (33,151‑155) 
and prediction of disease prognosis (156,157). In Table IV, a 
summary of ST technology applications in GC is presented. 
For instance, Kumar et al (90) pinpointed specific B‑cell 
sublineages exhibiting increased proportions in diffuse‑type 
gastric cancer and highlighted KLF12 expression in epithe‑
lial cells as a potential driver of plasma cell recruitment. 
Furthermore, a stepwise accumulation of CAF subpopulations 
characterized by high co‑expression of INHBA and FAP was 
identified.

Furthermore, immunohistochemistry (IHC) and duplex 
ISH techniques were used to evaluate the distribution of 
major cell types, and identified CCL2‑expressing endothelial 
cells and fibroblasts, thereby providing evidence of tumor 
invasion (158). Utilizing the NanoString Technologies, Inc. 
‘PanCancer Progression Panel’, Sundar et al (159) conducted 
a differential gene expression analysis and revealed that 
only 16% of genes exhibited significant differences between 
primary tumor deep (PTdeep) areas and corresponding LNmet 
samples. Notably, both LNmet and PTdeep samples exhibited 
increased expression of several genes with potential therapeutic 
significance, such as IGF1, PIK3CD and TGFB1, compared 
with superficial primary tumors (159). In a separate study using 
10x Genomics Visium, Yamasaki et al (160) demonstrated 
the role of hypoxia signaling in the metastatic progression 
of KRASG12V‑expressing gastric neoplasia‑p53KO tumors, 

Table III. Summary of ST technologies.

Category ST methods Samples Characteristic

LCM LCM‑seq, 2016 (131), tomo‑seq, Formalin fixed paraffin‑ Uses a laser to precisely dissect and capture
 2014 (133) Geo‑seq, 2017 (134),  embedded/fresh frozen targeted cells or areas, enabling downstream
 PIC, 2021 (195), NICHE‑seq (132),  RNA analysis to obtain transcriptomic
   information specific to the isolated cells
   or regions.
ISB NanoString Technologies, Inc. DSP, Formalin fixed paraffin‑ Involves barcoding individual cells within
 2020 (137), HDST, 2019 (138), embedded/fresh frozen intact tissue sections using DNA‑barcoded
 Visium, 2016 (139), Slide‑seq,  antibodies or oligonucleotide‑conjugated
 2019 (141), Stereo‑seq (140)  antibodies, facilitating subsequent
   identification and spatial localization
   during RNA sequencing analysis.
ISH Sm FISH, 1998 (116), Seq FISH+, Formalin fixed paraffin‑ Uses complementary DNA or RNA probes
 2019 (119), MERFISH, 2015 (196), embedded/fresh frozen labeled with fluorescent or chromogenic
 SABER, 2019 (197), seqFISH  markers to detect and visualize target
 (117,118), multiplexed error‑robust  RNA molecules in their original spatial
 FISH (120,121) and RollFISH (122)  context.
ISS ExSeq, 2021 (126), FISSEQ, Formalin fixed paraffin‑ Involves iterative cycles of sequential
 2014 (127), ISS, 2013 (198), embedded/fresh frozen/ hybridization of spatially barcoded
 STAR map, 2018 (128), BaristaSeq cell cultures oligonucleotides, followed by imaging
 2018 (127)  and nucleotide incorporation, to
   determine the RNA sequence and its
   spatial location.

ISB, in situ barcoding; ISH, in situ hybridization; ISS, in situ sequencing; LCM, laser capture microdissection; ST, spatial transcriptomics.
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highlighting trametinib as a promising therapeutic approach 
to curb metastasis in KRAS‑mutated GC. Furthermore, the 
application of DSP revealed upregulation of genes related 

to triglyceride catabolism and endogenous sterols, such as 
COL15A1, FABP2 and FABP4, particularly in cases positive 
for stroma‑reactive invasion front areas (161).

Table IV. Summary of spatial transcriptomics technology applications in GC.

First author/s, year Sample Method Findings (Refs.)

Kumar et al, 2022 10 tumor (patients NanoString Increased plasma cells and (90)
 diagnosedwith gastric Technologies, stage‑dependent accumulation
 adenocarcinoma) Inc. GeoMx of cancer‑associated
 and 3 normal samples.  fibroblasts in diffuse‑type
   gastric tumors, supported
   by spatial transcriptomics.
Jeong et al, 2021 5 patients with diffuse‑ IHC and ISH IHC and duplex ISH unveiled (158)
 type GC.  the spatial distribution of
   different cell types, along
   with the presence of CCL2‑
   expressing endothelial cells
   and fibroblasts, signifying
   tumor invasion.
Sundar et al, 2021 Each assay encompassed NanoString In GC, metastases to regional (159)
 a total of 64 primary GC Technologies, lymph nodes are typically
 samples and their Inc. rooted in the deeper subregions
 corresponding regional ‘PanCancer  of the primary tumor. Upcoming
 lymph node metastases, Progression trials for novel targeted
 all originating from Panel’ treatments should focus on
 patients with locally  evaluating these deep tumor
 advanced, resectable GC.  areas, as key genes relevant
   to therapy may show unique
   changes there.
Yamasaki et al, Three gastric neoplasia Visium, 10x Potential involvement of (160)
2022 tumor organoids from Genomics hypoxia and MAPK signaling
 gastric neoplasia mice  in the progression of KRAS‑
 (GAN‑WT, GAN‑p53  mutated GC, independent
 and GAN‑KP).  of Wnt signaling. Potential
   use of trametinib as a
   therapeutic candidate for
   suppressing hypoxia‑induced
   tumor‑stroma interactions and
   inhibiting metastatic
   progression.
Grosser et al, 2022 6 SARIFA‑positive and NanoString DSP demonstrated that SARIFA‑ (161)
 6 SARIFA‑negative cases. Technologies, positive cases exhibited
  Inc. GeoMx upregulation of genes associated
  DSP with triglyceride catabolism
   and endogenous sterols.
   Specifically, differential
   expression of COL15A1,
   FABP2 and FABP4 was
   observed in the positive cases. 

DSP, digital spatial profiling; GAN, gastric neoplasia; GAN‑WT, gastric neoplasia; GAN‑p53, gastric neoplasia with p53 knockout; GAN‑KP, 
KRASG12V‑expressing gastric neoplasia‑p53KO; GC, gastric cancer; IHC, immunohistochemistry; ISH, in situ hybridization; LNmet, lymph 
node metastasis; PTdeep, primary tumor deep; SARIFA, stroma areactive invasion front areas.
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To summarize, the applications of ST technologies in GC 
have yielded valuable insights into cell types, spatial gene 
expression patterns, tumor invasion, metastatic progression 
and potential therapeutic targets. These findings contribute to 
the understanding of GC pathogenesis and open avenues for 
improved treatment strategies.

6. Integration of scRNA‑seq and ST

scRNA‑seq is a tool for identifying cell subpopulations within 
tissues. However, it is unable to capture the spatial arrangement 
of cells and the immediate networks of intercellular commu‑
nication in their native locations (41). ST technologies have 
not yet achieved the same level of resolution as scRNA‑seq 
in transcriptomic maps of tissues (117). Therefore, integrating 
both single‑cell and ST data can provide a comprehensive 
understanding of cell‑type distribution and the potential 
mechanisms of intercellular communication underlying tissue 
architecture (41).

Li et al (110) conducted scRNA‑seq combined with 
multi‑staining registration of 16 samples from cancer and 
adjacent mucosa tissues (8 patients). This study reported four 
subsets of CAFs with distinct properties in GC.

Kumar et al (90) compared single‑cell profiles between 
patient‑derived organoids and primary tumors, highlighting 
similarities and differences within and between lineages. These 
findings were compared with ST using in vitro and in vivo 
models, providing a high‑resolution molecular resource for 
intra‑ and interpatient lineage states across distinct GC subtypes.

Jeong et al (158) performed scRNA‑seq on tissue samples 
from different layers of diffuse‑type GC and validated the 
results using IHC and ISH on formalin‑fixed paraffin‑embedded 
tissues. This study revealed spatial reprogramming of the 
TME that may contribute to the invasive tumor potential in 
diffuse‑type GC.

Sundar et al (159) investigated spatial intratumoral 
heterogeneity in primary GC and matched these to LNmet 
using transcriptomic profiles, DNA copy number profiles and 
histomorphological phenotypes. These findings suggested that 
regional lymph node metastases likely originate from deeper 
subregions of the primary tumor.

Jia et al (162) performed scRNA‑seq and IHC on samples 
from patients with gADC to characterize the immune cell popu‑
lation in the TME. The results provided novel insights into the 
immune and tumor cell signatures in the TME of gADC with 
tertiary lymphoid structures and highlighted the potential role 
of IgA‑mediated humoral immunity in these patients.

Using simultaneous single‑cell and spatial analysis, 
Xie et al (163) demonstrated that secreted phosphoprotein 1 
was expressed at high levels in GC and was associated with 
macrophage infiltration, advanced tumor stage and increased 
mortality in patients with advanced GC. Enrichment of 
tumor‑specific macrophages in the deep layer of GC tissue was 
identified, emphasizing their role in the disease.

In summary, integrating single‑cell and ST data holds great 
potential for unraveling the complex architecture of tissues 
and understanding intercellular communication networks. 
The aforementioned studies (90,110,158,159) provide valu‑
able insights into the cellular heterogeneity, immune response 
and spatial organization of GC, which contributes to the 

knowledge of GC and demonstrates future research and 
therapeutic strategies.

7. Conclusion and future direction

GC is an invasive disease associated with high morbidity and 
characterized by notable heterogeneity. Single‑cell omics tech‑
nologies and analytical tools have been identified as resources 
for elucidating the complexity of the TME, and intra‑ and 
intertumoral heterogeneity. In the present review, an overview 
of current single‑cell omics technologies and their applica‑
tions in GC research was provided. Discussing the rapidly 
advancing field of ST and understanding the spatial organi‑
zation of tumors is crucial for evaluating tumorigenesis and 
disease progression, and how it can be used with single‑cell 
omics to gain deeper insights into the characteristics of GC. 
This combined approach provides a method to construct 
spatial histology information and assess the spatial structure 
of tumors. By integrating these complementary approaches, 
previously unknown mechanisms of tumor heterogeneity can 
be assessed. This integrative effort holds great promise for 
defining disease subtypes, predicting prognosis and enabling 
targeted therapies to be delivered, based on the spatial distri‑
bution of specific cell subtypes. It also allows the identification 
of ligands and receptors involved in their mechanism of 
action. However, SCS and ST research on GC has not yet been 
applied to the clinical practice of treating GC. Ultimately, this 
comprehensive approach will further the understanding of 
tumorigenesis and allow the development of novel techniques 
for precision therapy in the future.

8. Prospects for integrating single‑cell omics and ST with 
artificial intelligence

In cancer research, the combination of high‑resolution data 
from single‑cell omics and ST with the analytical capabili‑
ties of artificial intelligence (AI) offers insights into cellular 
heterogeneity and intercellular interactions (25,164,165). 
AI, especially deep learning, efficiently processes vast and 
complex data, automatically identifying cell states and 
subgroups (166). This integration not only allows the combina‑
tion of results from a number of studies and data classification, 
but also reveals intratumoral cell communication and inter‑
actions, aiding in predicting tumor progression pathways, 
identifying novel drug targets and providing decision support 
for precision therapy and personalized strategies (167). This 
interdisciplinary fusion markedly advances the exploration of 
tumor complexity, accelerates research progress and promotes 
therapeutic innovation, marking a notable advancement in the 
field of cancer medicine (168,169).
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