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Abstract
Acute Respiratory Distress Syndrome (ARDS) severity may be influenced by heterogeneity

of neutrophil activation. Interferon-stimulated genes (ISG) are a broad gene family induced

by Type I interferons, often as a response to viral infections, which evokes extensive immu-

nomodulation. We tested the hypothesis that over- or under-expression of immunomodula-

tory ISG by neutrophils is associated with worse clinical outcomes in patients with ARDS.

Genome-wide transcriptional profiles of circulating neutrophils isolated from patients with

sepsis-induced ARDS (n = 31) and healthy controls (n = 19) were used to characterize ISG

expression. Hierarchical clustering of expression identified 3 distinct subject groups with

Low, Mid and High ISG expression. ISG accounting for the greatest variability in expression

were identified (MX1, IFIT1, and ISG15) and used to analyze a prospective cohort at the Col-

orado ARDS Network site. One hundred twenty ARDS patients from four urban hospitals

were enrolled within 72 hours of initiation of mechanical ventilation. Circulating neutrophils

were isolated from patients and expression of ISG determined by PCR. Samples were strat-

ified by standard deviation from the mean into High (n = 21), Mid, (n = 82) or Low (n = 17)

ISG expression. Clinical outcomes were compared between patients with High or Low ISG

expression to those with Mid-range expression. At enrollment, there were no differences in

age, gender, co-existing medical conditions, or type of physiologic injury between cohorts.

After adjusting for age, race, gender and BMI, patients with either High or Low ISG expres-

sion had significantly worse clinical outcomes than those in the Mid for number of 28-day

ventilator- and ICU-free days (P = 0.0006 and 0.0004), as well as 90-day mortality and 90-

day home with unassisted breathing (P = 0.02 and 0.004). These findings suggest extremes
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of ISG expression by circulating neutrophils from ARDS patients recovered early in the syn-

drome are associated with poorer clinical outcomes.

Introduction
Extensive variability in severity and survival is a common feature of acute respiratory distress
syndrome (ARDS), and identification of mechanisms that regulate this variability may lead to
more personalized treatment. Age, race, cigarette smoking, and alcoholism impair the immune
system, and are linked to increased prevalence or worse ARDS outcomes [1–9]. Specific forms
of inflammatory dysregulation are also linked to worse outcomes from sepsis or ARDS, includ-
ing coding variations in over 25 genes [10–12]. ARDS is most commonly precipitated by pneu-
monia or sepsis [9,13], resulting in massive neutrophil accumulation within the pulmonary
vasculature [14]. Both over-exuberant or diminished innate immune response to bacterial
products can worsen clinical outcomes, as the protective benefit of pathogen killing is balanced
against the considerable injurious capacity of neutrophils [15,16]. Various stimuli may evoke
complex “adaptive” responses to pathogens by neutrophils, by either decreasing (tolerance) or
increasing (priming) activation [17,18]. Neutrophil function appears dysregulated in ARDS
[19–26], and the potential exists that a beneficial adaptation to one microbe may place the host
at a disadvantage against other infectious agents or inflammatory insults.

Viral infections can modify the immune response to subsequent bacterial infections [27–
34], and thus could predispose to ARDS. A principal immune response to viral infections is
production of the Type I interferons (IFNα and IFNβ), which are evoked by a broad range of
viral factors, and in turn upregulate expression of interferon-stimulated genes (ISG) [35–39].
Hundreds of diverse ISG have been identified, with gene products which may act to reduce
viral replication and release [40], or alternatively function as inflammatory cytokines
[35,41,42]. However, ISG upregulation is neither sensitive nor specific for viral infection. Not
all viral infections trigger the response, and certain intracellular bacteria or systemic autoim-
mune disorders have also been associated with IFNα/β release and ISG upregulation [35,43]. In
animal models and human neutrophils, our group and others have reported elevated IFNα/β
release and/or ISG expression is associated with impaired response to specific bacteria [43–48].
Conversely, severe bacterial-induced inflammation can suppress Type I IFN-regulated path-
ways, and certain viruses have acquired virulence factors that inhibit ISG [49–54].

Based on findings that ISG expression can modify the immune response, we hypothesized
that both elevated and suppressed ISG expression could be associated with more severe out-
comes in ARDS. Herein, we analyzed the range of neutrophil ISG expression in ARDS patients,
and the correlation with clinical outcomes. Hierarchical clustering of neutrophil ISG demon-
strated the presence of 3 distinct cohorts of subjects with High, Mid, or Low ISG expression.
Three ISG with the greatest variability in expression were selected for expression analysis, and
the association of these ISG expression levels with clinical outcome was prospectively tested at
the onset of ARDS.

Material and Methods

Ethics Statement
The study protocol was approved by the Colorado Multiple Institutional Review Board
(COMIRB) committee and the National Jewish Health Institutional Review Board. All subjects,
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or an appropriate proxy, gave written informed consent. The study was conducted in accor-
dance with the Declaration of Helsinki.

Enrollment of healthy controls
Volunteers (n = 40) were administered an 18-point questionnaire to verify they were not
experiencing any acute symptoms of a viral illness, did not have any recently diagnosed medi-
cal problems, vaccinations, underlying chronic conditions, or had recently received blood
products. In addition, these healthy subjects were verified to have negative screening results for
hepatitis B and HIV within 6 months of the blood collection. Vital signs checked on the day of
the collection were within the normal range.

Subjects with ARDS used to characterize ISG
Peripheral blood neutrophils isolated from patients with sepsis-induced ARDS (n = 31) were
used to establish ISG expression levels. Neutrophils were isolated within 24 hours of meeting
criteria for ARDS criteria. Gene expression analysis from a subset of this cohort were previ-
ously reported in an analysis of HMGB1 and LPS induced patterns of gene expression in ARDS
[55].

Whole transcriptome analysis of neutrophil ISG expression to
characterize ISG expression
Samples were obtained from 31 patients and 19 healthy volunteers. Briefly, total RNA was sta-
bilized in freshly isolated neutrophils by resuspension of 2x107 cells in 1 ml of RNAlater
(Ambion, Austin, Texas), then stored at –20°C. Subsequent isolation with Trizol (Life Technol-
ogies, Rockville, Md.) and purification with RNEasy MinElute columns (Qiagen, Valencia,
Calif.) was performed following the manufacturer’s protocol. Between 1 and 5 μg of total RNA
was used for microarray target labeling using standard methods for reverse transcription and
one round of in vitro transcription [56]. HG-U133A microarrays were hybridized with 10 μg
cRNA and processed per the manufacturer’s protocol (Affymetrix, Foster City, Calif.). Experi-
ments for this study were performed as recommended by the Microarray Gene Expression
Data society [57]. Individual arrays were determined to be of high quality [58] by: (a) visual
inspection; (b) comparison of the overall fluorescence intensity (scaling factor) to other arrays
in the group; and (c) low 3’/5’ ratios for GAPDH and β-actin (ratio< 3). This procedure
insures that each of the arrays in the group can be directly compared, and that the input
mRNA was intact. Single channel hybridization was performed per sample. The internal qual-
ity control for each hybridization included comparison of overall intensity across all arrays
(intensity consistently varied within two standard deviations of the median intensity) and the
integrity of the labeled target as determined by the ratio of hybridization intensity to 3’ and 5’
regions of GAPD and β-actin (3’/5’ ratios were less than 3 for all arrays). RNA quality was
assessed by spectrophotometry (A260/A280> 1.8) and Agilent Bioanalyzer (28S/18S rRNA
intensity> 1.5). Affymetrix Eukaryotic Hybridization Control mixture was employed as exter-
nal control. The complete set of gene expression data has been deposited in the GEO database
(www.ncbi.nlm.nih.gov/geo/, accession #GSE3037).

Analyses of gene expression in subjects to establish ISG variability
Gene expression analysis was performed using modules within MeV 4.6 [59]. Genes included
in the “Type I Interferon-mediated Signaling Pathway Cluster” by the Gene Ontology Consor-
tium (GO:0060337) were analyzed by Significance Analysis for Microarrays to eliminate genes
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whose expression did not vary between subjects and to detect those genes with significant vari-
ation between subjects. Hierarchical clustering was performed on this subset using Euclidean
distance and complete linkage. Variability of gene expression was examined descriptively by
comparing standard deviations, and principal Component Analysis was also performed on the
genes using median centering. These analyses independently identifiedMx1, ISG15, IFIT1, and
IFIT3 as genes whose expression differences were the greatest between subjects. A three-gene
panel includingMX1, ISG15, and IFIT1 was used in subsequent analyses; IFIT3 was eliminated
from further analyses because of the high similarity, known co-expression, and co-evolutionary
origin between it and IFIT1.

Prospective evaluation of ISG expression from circulating neutrophils of
ARDS patients
Circulating neutrophils of ARDS patients (n = 120) were isolated from patients enrolled into
one of four NHLBI ARDS Network studies conducted at the University of Colorado affiliated
hospitals, each with identical enrollment criteria. The parent studies were: Drug Study of Albu-
terol to Treat ALI (ALTA, ClinicalTrials.gov Identifier: NCT00434993)[60], Early Versus
Delayed Enteral Feeding and Omega-3 Fatty Acid/Antioxidant Supplementation for Treating
People With ALI or ARDS (EDEN-Omega Study: NCT00609180), or Early Versus Delayed
Enteral Feeding to Treat People With ALI or ARDS (The EDEN Study: NCT00883948)
[61,62], or Statins for Acutely Injured Lungs From Sepsis (SAILS: NCT00979121) [63]. The
proportion of patients enrolled from each parent study was not different between the cohorts
with High, Mid, or Low ISG expression (definitions for these groups described below)
(Table 1). None of the interventions tested in the parent studies resulted in a treatment benefit
[60–63]. The central inclusion criteria for all of these studies was ARDS, as defined by occur-
rence within a 24-hour time period of an acute onset of hypoxia (PaO2/FiO2<271 –adjusted
for Denver altitude of 1600m), bilateral infiltrates by chest radiograph, and requirement for
intubation and positive pressure ventilation in the absence of evidence for left-sided cardiac
failure or other exclusionary criteria[60]. Sepsis was identified by standard criteria [64]. All
patients enrolled into the parent ARDS Network studies were eligible for this ancillary study.
All subjects were ventilated using the same protocol[60–62]. Peripheral blood samples were
obtained 2.4±1.1 (mean±S.D.) days after ARDS criteria were met (2.6±1.2 days after intuba-
tion). Sample processing and data analysis was performed at NJH, with approval by the
National Jewish Health Institutional Review Board. This ancillary trial was also registered in
ClinicalTrials.gov (Identifier: NCT00548795). Diagnostic testing for acute or chronic viral
infections was performed in the context of clinical care, and not as part of the study protocol.
There were no common subjects between the two patient sets used in this study.

Isolation of neutrophils and RNA from ARDS and healthy controls
Neutrophils were isolated from peripheral blood using the plasma Percoll method [65] in an
identical fashion for healthy subjects and ARDS patients. Cells were confirmed to be>95%

Table 1. ARDSNET study enrollment numbers (%) by ISG group.

Study Mid-range ISG (n = 82) High ISG (n = 21) Low ISG (n = 17) Overall P-valuea

ALTA 14 (17.1) 5 (23.8) 3 (17.7) p = 0.72

EDEN/OMEGA 58 (70.7) 15 (71.4) 14 (82.4) p = 0.64

SAILS 14 (17.1) 1 (4.8) 0 (0) p = 0.09

aP-value corresponds to Fisher’s exact test for categorical variables comparing three groups.

doi:10.1371/journal.pone.0162490.t001

Neutrophil ISG Expression in ARDS

PLOSONE | DOI:10.1371/journal.pone.0162490 September 8, 2016 4 / 19



pure by visual inspection of cytospins. RNA was extracted immediately from 10–20 x 106 iso-
lated neutrophils in the absence of ex vivo stimulation using TRIzol reagent [66].

PCR analysis of ISG expression
Gene expression in ARDS patients and healthy controls was quantified by real-time PCR of
MX1, IFIT1, and ISG15 relative to GAPDH by the ΔCt method using standard conditions.
Primers and probes were obtained from Applied BioSystems (MX1, Hs00182073_m1; ISG15,
Hs00192713_m1; GAPDH Endogenous Control) and Roche (IFIT1, Universal Probe Library
#9 and forward: 5’-AGAACGGCTGCCTAATTTACA-3’; reverse: 5’-GCTCCAGACTATC
CTTGACCT-3’) as previously described [48]. Relative ISG expression was multiplied by 105 to
convert all values greater than 1, and the mean of the log2 transformed expression values for
each subject was calculated (S1 Dataset).

Determination of IFNα levels
IFNα levels were measured from plasma of ARDS patients (n = 111) using an ELISA from PBL
Laboratories, as directed by the manufacturer. Plasma was isolated during the course of neutro-
phil isolation.

Data analysis of ISG groups
Because hierarchical clustering is less reliable for grouping samples when the number of vari-
ables is small, we divided groups based on deviation from the mean. Other methods to model
high versus low ISG expression in ARDS patients were tested (sum of expression values, split-
ting into high, median and low ISG by quartiles, dichotomizing at the mean, dichotomizing at
the median), but were found to have worse model fit by Akaike information criterion compari-
son (not shown). Overall group comparisons were made using ANOVA or Kruskal-Wallis
tests for continuous variables and Fisher’s exact tests for categorical variables, as indicated in
the text. Pairwise comparisons were made between the High and Mid-range and Low and Mid-
range ISG groups when the corresponding overall test was significant. Ventilator-free and
ICU-free days [67] were analyzed using linear regression. Twenty-eight day home with unas-
sisted breathing and mortality and 90-day home with unassisted breathing and mortality were
modeled using logistic regression. Cox proportional hazards models were used to model time
to discharge to home and mortality outcomes. All regression and survival analyses were
adjusted for gender, race, age and BMI. P-values corresponding to two-tailed tests that were
less than 0.05 were considered statistically significant. Analyses were performed using SAS
(Version 9.4, SAS Institute), and plotted using GraphPad Prism software.

Results

Transcriptional profiling of ISG expression in ARDS neutrophils
Genome-wide transcriptional profiles of circulating neutrophils isolated from patients with
sepsis-induced ARDS (n = 31) and healthy controls (n = 19) was used to characterize ISG
expression. Genes identified as the “Type I Interferon-mediated Signaling Pathway Cluster” by
the Gene Ontology Consortium (GO:0060337) yielded 66 unique genes with available expres-
sion data. Significance Analysis for Microarrays determined that 31 genes were significantly
changed between subjects. Using hierarchical clustering of expression, 3 distinct subject groups
were identified. Both healthy controls and patients were found distributed in clusters of High
and Mid ISG expression, while only ARDS patients were found within a cluster of Low ISG
expression (Fig 1).
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A test for variance was used to identify ISG that were representative of variability between
subjects. When these genes were ranked for extent of variance of expression levels using rela-
tive size of the standard deviation between subjects, the genes with the largest variance were
identified asMX1, ISG15, IFIT1, and IFIT3 (Fig 1A). Alternatively, when gene expression was
examined by Principal Component Analysis to discern changes in variation, the same four pre-
viously identified genes were identified as a distinct cluster (Fig 1B). PC1 (accounting for
91.6% of the variability) appears to generally represent average expression across subjects (high
expression at the low end). PC2 (accounting for 4.5% of the variability) appears to distinguish
within gene variability, where genes with the highest variability in expression are at the low
end.

ISG expression in neutrophils isolated from ARDS patients and healthy
controls
A three-gene panel (MX1, ISG15, and IFIT1) identified as having the most variable expression
(Fig 1) was used as a marker of neutrophil ISG expression in ARDS. IFIT3 was not further ana-
lyzed due to its high similarity, co-regulation, nearby chromosomal location, and co-evolution-
ary origin with IFIT1. We hypothesized that the variable expression of these genes would be
associated with changes in clinical outcomes in ARDS. Relative expression level of each gene

Fig 1. Transcriptome analysis to characterize ISG expression of ARDS patient and healthy control neutrophils. (A) Log2-transformed
expression of 31 unique transcripts within the Type I Interferon-mediated Signaling Pathway Cluster from neutrophils isolated from sepsis-
induced ARDS patients (n = 31) and healthy volunteers (n = 19). ISG expression was ordered by hierarchical clustering (Euclidean distance with
complete linkage), and contains only genes determined to significantly change between subjects. Three major clusters of subjects (columns) are
broadly grouped as High ISG expression (left), Mid (middle) and Low (right). Subject groupings are represented by yellow (healthy) and blue
(ARDS) blocks at the profile base. Only ARDS patients were contained within the Low ISG expression subject cluster. When these genes were
ranked for extent of variance of expression using relative size of the standard deviation between subjects, the genes with the largest variance
were identified asMX1, ISG15, IFIT1, and IFIT3 (identified by shading). (B) A Principal Component Analysis identified the same 4 genes that
comprised nearly all of the variability between subjects in Panel A.

doi:10.1371/journal.pone.0162490.g001
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was determined prospectively by quantitative PCR of neutrophils isolated from ARDS patients
(n = 120). The means of the transformed values of gene expression were normally distributed
(Fig 2). Samples greater than one standard deviation above mean expression were designated
as the “High” ISG expression cohort (n = 21), and the corresponding group of samples with
ISG expression less than one standard deviation below the mean was designated as the “Low”
ISG expression cohort (n = 17). Subjects falling within one standard deviation of the mean
were designated as “Mid” ISG expression (n = 82) (Fig 2). ARDS patients in the test set were
compared with healthy control subjects (n = 40) analyzed in an identical fashion. As with the
first cohort, ISG expression of healthy controls was found to fall only within the High and
Mid-ranges (Fig 2), while the Low-expressing cohort was confined to subjects with ARDS.

Patient characteristics at study enrollment
Demographic features and underlying medical conditions for ARDS patients were quite similar
across cohorts at the time of enrollment (Table 2). Compared to the Mid cohort, patients with
High and Low ISG expression were not different in age or gender. Within the High ISG cohort,
19% were identified as Black or African American, compared to 2.4% of the Mid cohort (pair-
wise P = 0.015). No differences in race or ethnicity were identified in the Low ISG cohort com-
pared to Mid. BMI was significantly lower in the Low ISG cohort compared to the Mid cohort
(pairwise P = 0.006). However, the Low ISG cohort did not have an increased frequency of
identified pre-existing medical conditions. Patients with at least one identified underlying med-
ical condition ranged from 63.4% to 71.4% across the three groups (Fisher’s test P = 0.80).

Identified risk factors for ARDS at presentation were also not different between the study
groups (Table 3). The most common presenting injury was pneumonia, with a prevalence
ranging from 71.9% to 76.5% between the three groups (Fisher’s test P = 0.95), followed by sec-
ondary sepsis (range 57.1% to 73.2%, Fisher’s test P = 0.33). No patient had primary trauma.
Study enrollment occurred 2.4±1.1 days (mean±S.D.) after meeting ARDS criteria. Clinical and
physiologic assessment made at this early time point demonstrated a divergence in disease
severity (Table 4). While gas exchange as measured by the PaO2 to FiO2 ratio was not different
between the three groups, the Glasgow Coma score (GCS) and the APACHE III score differed
significantly, with the Mid group averaging a less severe score. GCS represented the major con-
tributor to the observed difference within the APACHE III score.

Extremes in ISG expression are associated with decreased survival and
greater disease severity
Outcomes for patients with High or Low ISG expression were compared with the Mid ISG
cohort. High ISG expression was associated with worse outcomes, with fewer ventilator-free
and ICU-free days over the first 28 days than the Mid cohort (pairwise P-values = 0.006 and
0.009, respectively Table 5). The fraction of patients discharged to home with unassisted
breathing was significantly lower at 90 days for High ISG compared to Mid (pairwise P-
value = 0.02, Table 5). Mortality was higher by 90 days for High ISG, with 33.3% reported as
dead prior to discharge to home with unassisted breathing for High ISG, compared to 12.2%
for the Mid ISG group (pairwise P-value = 0.04).

Patients with Low ISG expression also demonstrated worse outcomes, similar in severity to
the High ISG expression cohort, with fewer ICU-free days over the first 28 days compared to the
Mid cohort (pairwise P-value = 0.02, Table 5). The fraction of patients discharged to home with
unassisted breathing was lower at 90 days for Low ISG compared to Mid (pairwise P-value =
0.03, Table 5). Mortality was significantly increased at 28 days (pairwise P-value = 0.03), and by
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Fig 2. Classification of ARDS patients based on neutrophil ISG expression. The mean of the transformed expression values of
neutrophilMX1, IFIT1, and ISG15 is plotted for ARDS patients (triangle, n = 120) or healthy subjects (circle, n = 40). Subjects whose ISG
expression was greater or less than one standard deviation from the mean were designated as High (red) or Low (blue) ISG expressers,
respectively. ISG expression in healthy subjects overlapped only with the High and Mid cohorts of ARDS patients.

doi:10.1371/journal.pone.0162490.g002
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90 days, with 35.3% reported as dead prior to discharge to home with unassisted breathing for
Low ISG (P = 0.03 compared to Mid, Table 5).

Table 2. Baseline characteristics of ARDS patients.

Characteristic Mid-range ISG (n = 82) High ISG (n = 21) Low ISG (n = 17) Overall P-valuea

Male sex no. (%) 45 (54.9) 9 (42.9) 9 (52.9) P = 0.67

Age in years (mean±S.D.) 53.7±16.2 53.4±11.7 55.1±14.2 P = 0.93

White race no. (%) 63 (76.8) 14 (66.7) 10 (58.8) P = 0.23

Black or African American no. (%) 2 (2.4) 4 (19.0) 2 (11.8) P = 0.01b

Hispanic no. (%) 16 (19.5) 6 (28.6) 5 (29.4) P = 0.45

BMI (mean±S.D.) 28.7±6.5 29.8±8.1 24.0±4.5 P = 0.02c

Underlying Medical Conditions

Any Medical Condition- no. (%) 52 (63.4) 15 (71.4) 11 (64.7) P = 0.80

Chronic dialysis- no. (%) 1 (1.2) 1 (4.8) 2 (11.8) P = 0.06

AIDS- no. (%) 2 (2.4) 2 (9.6) 0 (0) P = 0.23

Leukemia- no. (%) 0 (0) 0 (0) 0 (0) P = 1.0

Non-Hodgkin’s lymphoma- no. (%) 0 (0) 0 (0) 0 (0) P = 1.0

Solid tumor w/ metastasis- no. (%) 2 (2.4) 1 (4.8) 0 (0) P = 0.68

Immune suppression- no. (%) 5 (6.1) 4 (19.1) 0 (0) P = 0.06

Hepatic failure- no. (%) 2 (2.4) 0 (0) 0 (0) P = 1.0

Cirrhosis- no. (%) 8 (9.8) 3 (14.3) 2 (11.8) P = 0.74

Diabetes Mellitus- no. (%) 16 (19.5) 5 (23.8) 7 (41.2) P = 0.17

History of hypertension- no. (%) 29 (35.4) 8 (38.1) 6 (35.3) P = 0.96

Prior myocardial infarction- no. (%) 5 (6.1) 1 (4.8) 2 (11.8) P = 0.64

Peripheral vascular disease- no. (%) 3 (3.7) 1 (4.8) 1 (5.9) P = 0.81

Prior stroke with sequelae- no. (%) 1 (1.2) 0 (0) 2 (11.8) P = 0.07

Dementia- no. (%) 3 (3.7) 1 (4.8) 1 (5.9) P = 0.56

Chronic pulmonary disease- no. (%) 9 (11.0) 2 (9.5) 0 (0) P = 0.49

Arthritis- no. (%) 4 (4.9) 0 (0) 0 (0) P = 0.77

Peptic ulcer disease- no. (%) 3 (3.7) 2 (9.5) 0 (0) P = 0.34

aP-value corresponds to overall ANOVA for continuous variables comparing three groups, and Fisher’s exact test for categorical variables comparing three

groups.
b Significant difference between Mid-range and High ISG groups.
c Significant difference between Mid-range and Low ISG groups.

doi:10.1371/journal.pone.0162490.t002

Table 3. Injury etiology at initial presentation by ISG group.

Primary physiological injury Mid-range ISG (n = 82) High ISG (n = 21) Low ISG (n = 17) Overall P-valuea

Pneumonia–primary 59 (71.9) 16 (76.2) 13 (76.5) P = 0.95

Pneumonia–secondary 8 (9.8) 1 (4.8) 2 (11.8) P = 0.71

Aspiration–primary 6 (7.3) 1 (4.8) 2 (11.8) P = 0.75

Aspiration–secondary 20 (24.4) 3 (14.3) 1 (5.9) P = 0.18

Multiple transfusions–primary 3 (3.7) 0 (0) 0 (0) P = 1.0

Multiple transfusions–secondary 5 (6.1) 1 (4.8) 0 (0) P = 0.83

Sepsis–primary 10 (12.2) 3 (14.3) 2 (11.8) P = 0.91

Sepsis–secondary 60 (73.2) 12 (57.1) 12 (70.6) P = 0.33

aP-value corresponds to Fisher’s exact test for categorical variables comparing three groups.

doi:10.1371/journal.pone.0162490.t003
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Multivariate analysis of risk associated with extremes in ISG expression
After adjusting for gender, race, age and BMI, both High and Low ISG expression cohorts had
significantly fewer days ventilation-free compared to the Mid ISG cohort (P-values = 0.002 for
both comparisons, Table 6). Similarly, after adjusting for covariates, both High and Low ISG
expression cohorts had significantly fewer days ICU-free compared to the Mid ISG cohort (P-
value = 0.001 for both comparisons, Table 6). Multivariate analysis was not performed for
APACHE III score, as it measures elements of disease severity likely associated with extremes
in ISG expression.

Patients’ status of being discharged home with unassisted breathing by day 90 was signifi-
cantly different for High and Low ISG expression cohorts, compared to the Mid cohort (P-val-
ues = 0.006 and 0.01, respectively, Table 6). Patients’ 90 day mortality was significantly
different for High and Low ISG expression cohorts, compared to the Mid cohort (p-val-
ues = 0.01 and 0.035, respectively, Table 6). In addition, time to discharge to home with unas-
sisted breathing was significantly delayed in the High and Low cohorts compared to the Mid
cohort (P-values = 0.006 and 0.004, respectively; p-values from Cox PHmodel)(Fig 3A). A sur-
vival analysis of time to mortality by day 90 was also significantly different for High and Low
ISG expression cohorts, compared to the Mid cohort (P-values = 0.01 and 0.009, respectively,
from Kaplan Meier analysis; adjusted P-values = 0.02 and 0.02, respectively, from Cox PH
model) (Fig 3B).

Table 4. Physiologic assesment at enrollmenta by ISG group.

ASSESSMENT Mid-range ISG (n = 82) High ISG (n = 21) Low ISG (n = 17) Overall P-valueb

Gas exchange

PaO2/FiO2 107±40.8 104±45.1 128±53.1 P = 0.16

APACHE III score 87.5±22.8 106.2±20.4 100.1±38.8 P = 0.006c

Glasgow Coma Score 8.3±2.8 5.7±2.6 8.0±3.1 P = 0.002c

aValues measured 2.4 ± 1.1 days (mean ± S.D.) after ARDS criteria met.
bP-value corresponds to overall ANOVA for continuous variables comparing three groups.
c Significant difference between Mid-range and High ISG groups.

doi:10.1371/journal.pone.0162490.t004

Table 5. Summary Statistics for Clinical Outcomes. Elements in table are median (Q1-Q3) or number (percent) as indicated.

Characteristic Mid-range ISG (n = 82) High ISG (n = 21) Low ISG (n = 17) Overall P-valuea

28-day freeb

Ventilation, median (Q1-Q3) 18 (4–22) 4 (0–18) 2 (0–18) P = 0.006c

ICU, mean, median (Q1-Q3) 17 (6–22) 1 (0–16) 1 (0–14) P = 0.02c

Home with unassisted breathing
2Day 28, No. (%) 20 (24.4) 6 (28.6) 4 (23.5) P = 0.95
2Day 90, No. (%) 65 (79.3) 11 (52.4) 9 (52.9) P = 0.01c

Mortality
2Day 28, No. (%) 7 (8.5) 4 (19.1) 5 (29.4) P = 0.04c

2Day 90, No. (%) 10 (12.2) 7 (33.3) 6 (35.3) P = 0.02c

aP-value corresponds to overall Kruskal-Wallis test for 28-day free data comparing three groups, and Fisher’s exact test for categorical variables comparing

three groups
bNumber of days that patient is both alive and free of mechanical ventilation or ICU care for the first 28 days or first 90 days since start of mechanical

ventilation or ICU care.
cSignificant pairwise P-values between Mid and High ISG groups and Mid and Low ISG groups are stated in the text.

doi:10.1371/journal.pone.0162490.t005
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Association of ISG expression with viral infection or circulating IFNα
Screening of patients for viral infection was not systemically performed. However, acute or
chronic viral infections were identified in 15 subjects during clinical care, including H1N1
influenza (n = 6), HIV (n = 4), Hepatitis B (n = 1), Hepatitis C (n = 3), or H1N1 combined
with Hepatitis C (n = 1). While 24% of the High ISG expression cohort had a confirmed viral
infection, compared to 11% in the Mid ISG cohort and 5.9% in the Low ISG cohort, these dif-
ferences were not significant (Fisher’s exact test P = 0.23)(Fig 4). We measured serum IFNα in
patients as a possible surrogate to detect viral infection. At enrollment into this protocol, 52.4%
of patients in the High ISG cohort had detectable IFNα in their circulation, which trended
greater than patients in the Mid ISG cohort (26.3%) and the Low ISG cohort (33.3%, Fisher’s
exact test P = 0.08)(Fig 4). The quantity of IFNα in circulation was highly variable, but greater
in the High ISG cohort (median 13.3 pg/mL, range<0.1 to 544) compared to the Mid ISG
cohort (median <0.1, range<0.1 to 1000, Kruskal-Wallis P = 0.009)(Fig 4).

Discussion
This single-center prospective study is the first known exploration of the clinical significance of
systemic ISG expression in ARDS. In a preliminary set of patients (n = 31) we identified the
ISGs that account for the greatest variability in expression. These genes (MX1, ISG15, IFIT1,
and IFIT3) are prototypical ISGs, previously shown to be highly expressed in stimulated neu-
trophils [66,68,69], lymphocytes [37], peripheral blood mononuclear cells [38,39], and whole
blood [70]. Using a panel of three of these unrelated genes in a non-overlapping cohort
(n = 120), we found that ARDS patients with ISG expression greater or less than one standard
deviation from the mean had significantly worse clinical outcomes. These data suggest the
potential for immunomodulation as a result of ISG expression to affect ARDS outcomes. At
the time of admission, these three cohorts were indistinguishable with regards to age, gender,
co-existing medical conditions, or type of physiologic injury. Likewise, circulating white blood
cell count or plasma levels of IL6 and TNFα showed no correlation with ISG levels (data not
shown). Use of single genes over the 3-gene panel offered no distinction in the analyses.

Table 6. Estimated Differences And Odds Ratios For Adjusted Clinical Outcomes, Between High AndMid-Range Or Low- And Mid-Range ISG
Groups. All models adjusted for age, race (African American or other), gender and BMI.

Characteristic High ISG (n = 21) Low ISG (n = 17) Overall P-value

28-day freea

Ventilation, mean difference (95% CI) -7.00 (-11.38, -2.62) -7.52 (-12.33, -2.71) 0.0006c

ICU, mean difference (95% CI) -7.02 (-11.32, -2.72) -7.71 (-12.43, -2.98) 0.0004c

Home with unassisted breathing b

28 Day Period, odds ratio (95% CI) 1.62 (0.52, 5.05) 0.94 (0.26, 3.45) 0.69

90 Day Period, odds ratio (95% CI) 0.19 (0.06, 0.63) 0.20 (0.06, 0.73) 0.004c

Mortality b

Day 28, odds ratio (95% CI) 2.83 (0.65, 12.33) 4.23 (0.94, 18.97) 0.12

Day 90, odds ratio (95% CI) 4.90 (1.37, 17.52) 4.29 (1.11, 16.59) 0.02c

aFor 28-day free variables, mean differences are High or Low ISG group mean minus Mid-range ISG group mean; p-value corresponds to Type 3 analysis

from linear regression model.
bFor home with unassisted breathing and mortality models, Odds Ratio are odds for High or Low ISG group relative to odds for Mid-range ISG group; P-value

corresponds to Type 3 analysis from logistic regression model.
c Significant pairwise P-values between Mid and High ISG groups and Mid and Low ISG groups are stated in the text.

doi:10.1371/journal.pone.0162490.t006
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Occurrence of elevated ISG expression in a subgroup of ARDS patients and healthy controls
is not surprising. Acute and chronic viral infections are common within the population [52],
and may remain undiagnosed or indolent. While a higher prevalence of acute or chronic viral
infection were identified in the High ISG group of ARDS patients (Fig 4), most of the High
ISG group were not known to have a co-existing viral infection. Conversely, patients with
proven viral infections were also found (in lower percentages) in the Mid and Low ISG expres-
sion cohorts, underscoring the relatively poor correlation between clinically evident viral infec-
tions and systemic ISG expression. Although IFNα/β and ISG expression is indicative for viral
infections, we have no evidence outside the confirmed cases that viral infection was responsible
for ISG expression. IFNα/β is released into the circulation early after viral infections, and may
be undetectable or present in very low quantities, even in experimental settings [36], a finding
confirmed in this study. Thus direct testing for IFNα/β in the serum is not clinically useful.
However, leukocyte ISG expression has been identified as a more sensitive marker of Type 1
IFN release [36]. ISG expression signatures have been proposed as a useful marker to distin-
guish between bacterial and viral infections [38], and even between specific viruses [39] as part
of a paradigm shift to focus on host gene profiles to diagnosis infections rather than the

Fig 3. Kaplan-Meier Analysis of 90-Day Discharge to Homewith Unassisted Breathing and Survival. (A) Proportion of
patients confirmed to be discharged to home with unassisted breathing within 90 days of study enrollment. Overall log-rank P-
value comparing groups was 0.009. After adjusting for age, race, gender and BMI, rate of discharge to home was significantly
lower for both the High ISG (red line, P = 0.006) and Low ISG (blue line, P = 0.004; p-values from Cox PHmodel) expressing
cohorts when compared to the Mid (black line). (B) Proportion of patients confirmed to be dead within 90 days of study enrollment.
Overall log-rank P-value comparing groups was 0.01. After adjusting for age, race, gender and BMI, rate of death was significantly
worse for both the High ISG (red line, P = 0.02) and Low ISG (blue line, P = 0.02; p-values from Cox PHmodel) expressing cohorts
when compared to the Mid (black line).

doi:10.1371/journal.pone.0162490.g003
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Fig 4. Association of ISG expression with confirmed viral infections and circulating IFNα. (A) The
presence of a viral infection, as determined either through available medical history or within the course of
clinical care, did not reach significance in the cohort with High ISG expression (5 of 21) compared to the Mid
(8 of 82) and Low (1 of 17) cohorts (Fisher’s exact test P = 0.23). (B) Detection of circulating IFNα tended to
occur more frequently within the High ISG cohort (11 of 21) compared to the Mid (20 of 76) and Low (5 of 15)
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traditional search for the pathogen [71]. Similarly, TLR4 activated IFNα/β production has been
reported in human macrophages [72], and a sizeable subpopulation within the ARDS cohort
were septic, suggesting that TLR4 activation could also be responsible for enhanced ISG expres-
sion. However, it is unknown if TLR4 mediates IFNα/β production by systemic cells, and ISG
expression is equally elevated in some healthy subjects, suggesting that sepsis is not the major
cause of ISG expression.

The association of worse clinical outcomes with High ISG expression in ARDS is supported
by clinical observations and animal models that demonstrate viral infections increase suscepti-
bility to secondary bacterial infections [27–34]. Primary or secondary bacterial infections pre-
cipitate an overwhelming majority of ARDS cases [10]. Previously, we reported that ARDS
neutrophils with elevated ISG expression have an altered response to S. aureus, which included
reduced p38 MAP kinase activation, attenuation of O2

- generation and IL8 secretion, increased
apoptosis, and impaired bacterial killing [48]. Others have reported IFNα/β release and ISGs
expression promote anti-bacterial activity against select pathogens [44–47]. No demographic
or clinical feature at study enrollment associated with worse outcomes in the High ISG expres-
sion compared with the Mid group, with the exception of a greater prevalence of African
Americans in the High ISG group (19% vs 2.4%, P = 0.015). African Americans have been
found to experience worse outcomes from ARDS [8]. However, multivariate analysis con-
firmed that ISG expression was still a risk factor after accounting for race in the High expres-
sion cohort.

The presence of a distinct subpopulation of ARDS patients with relatively inhibited ISG
expression was seen in both cohorts of patients used in this study. Outcomes in this cohort
were also worse than the Mid ISG group, without differences in demographic or clinical fea-
tures. The Low ISG group had a normal BMI, which was significantly lower than the Mid
group, who were on average overweight (mean±sd: 24.0±4.5 vs 28.7±6.5, P = 0.006). However,
the prevalence of pre-existing medical conditions was not greater in the Low ISG subgroup,
and differences in BMI within this range are not associated with changes in outcomes from
ARDS [73]. Worse outcomes in ARDS patients with abnormally Low ISG expression is sup-
ported by a preponderance of data that indicate ISG expression is generally a protective mecha-
nism[41]. In the absence of ISG-encoded products, the host is more vulnerable to sustained or
recurrent viral infection[74]. While ISG expression is believed to be induced by anti-viral sig-
nals, it is of interest that the Low ISG cohort has levels of some ISG that are lower than in
healthy subjects, particularly the genes identified as having the greatest expression variability.
Increasingly, viruses have been identified with the capacity to suppress ISG expression through
a variety of mechanisms, including strains of herpes simplex virus I [50], rhinovirus [51], hepa-
titis C [52,54] and pseudorabies virus [49]. A recent trial demonstrated a reduction in ARDS
mortality associated with the administration of IFN-beta-1a[75], supporting our finding that a
subpopulation of ARDS patients with high mortality has low ISG expression.

In conclusion, systemic ISG expression within the first days of ARDS onset is associated
with disease severity and prognosis. This response should be considered along with other iden-
tified genetic, environmental, and complex demographic factors as a contributor to heteroge-
neity of ARDS outcomes. Other identified disease modifiers, such as age, race, or alcoholism
[1–9], or coding variation in inflammatory response regulating genes [10–12], are generally

cohorts, but this difference did not reach significance (Fisher’s exact test P = 0.08). (C) Levels of circulating
IFNα trended higher within the High ISG cohort (n = 21) compared to the Mid (n = 76), (Kruskal-Wallis overall
P-value = 0.03; High vs. Mid pairwise P = 0.009). n = 15 for the Low cohort. Plot depicts range (minimum�0,
maximum = upper whisker), 1st to 3rd quartile (box) and median (line).

doi:10.1371/journal.pone.0162490.g004
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chronic or permanent risk factors. Yet no risk factor is apparent in many ARDS patients, and
the general lack of recurrent ARDS argues for the existence of transient risk factor(s). Up or
downregulation in ISG expression could represents a “window” of vulnerability that places an
otherwise healthy subject at increased risk for a period of days or weeks. This is a clinically
plausible scenario in many patients, supported by analysis of mortality from respiratory failure
during viral pandemics [28,29]. While ISG expression was assessed early after clinical presenta-
tion in this trial, cytomegalovirus reactivation may occur 1–2 weeks after hospitalization in
critically ill patients [76], which could upregulate ISG expression later in ARDS. Longitudinal
studies are needed to determine the duration of abnormal ISG expression in ARDS patients,
and if late upregulation occurs with CMV reactivation. While ISG expression may be of prog-
nostic value at the onset of ARDS, the potential exists for this marker to modify clinical care,
either by alerting clinicians to the possibility of an unsuspected viral or autoimmune disease, or
as a direct target for immunomodulation through administration of Type 1 interferons[75].

Supporting Information
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(TXT)
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