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Abstract
In this study, the complete genome of a novel polyomavirus detected in a great cormorant (Phalacrocorax carbo) was charac-
terized. The 5133-bp-long genome of the cormorant polyomavirus has a genomic structure typical of members of the genus 
Gammapolyomavirus, family Polyomaviridae, containing open reading frames encoding the large and small tumor antigens, 
viral proteins 1, 2, and 3, and the X protein. The large tumor antigen of the cormorant polyomavirus shares 45.6–50.4% 
amino acid sequence identity with the homologous sequences of other gammapolyomaviruses. These data, together with 
results of phylogenetic analysis, suggest that this cormorant polyomavirus should be considered the first member of a new 
species within the genus Gammapolyomavirus, for which we propose the name “Phalacrocorax carbo polyomavirus 1”.

Introduction

Members of the family Polyomaviridae infect mammals, 
birds, and fish [1–3]. The biology of avian and mammalian 
polyomaviruses differs significantly. Avian polyomaviruses 
are not highly species-specific, and they cause acute, ful-
minant, and often fatal disease in their susceptible hosts. 
In contrast, mammalian polyomaviruses show rigorous host 
species specificity and typically cause inapparent infections 
in immunocompetent hosts [2]. The family Polyomaviridae 
comprises eight genera. Viruses of the genera Alpha-, Beta-, 
and Deltapolyomavirus, as well as the recently established 
genera Epsilon- and Zetapolyomavirus have been detected 
from mammals, whereas members of the genus Gammapol-
yomavirus infect birds. Polyomaviruses of fish have been 
assigned to the new genera Etapolyomavirus and Thetapoly-
omavirus [1].

Polyomaviruses are characterized by nonenveloped ico-
sahedral particles, 40–45 nm in diameter, that enclose a cir-
cular dsDNA genome of 3962–7369 bp [2]. The polyoma-
virus genes are expressed in a time-dependent manner. The 
products of the early genes are primarily regulatory proteins 
(e.g., the large and small tumor antigens [LTA and STA]), 
and the late genes code for the viral proteins (VPs) VP1, 
VP2, and VP3, which are responsible for virion formation 
[2, 4–6]. Additional coding capacity has been noted; for 
example, the genome of avian polyomaviruses may encode 
an X protein or a VP4 protein downstream of the replication 
origin [2, 5–8].

Our knowledge about the genetic diversity of mamma-
lian polyomaviruses has increased rapidly over the past 10 
years, which has led to an extended taxonomic classifica-
tion, with more than 100 species. Gammapolyomaviruses 
are represented by nine species [1–3, 7]. Goose hemorrhagic 
polyomavirus and budgerigar fledgling disease virus, two 
well-characterized, high-mortality avian polyomaviruses, 
have been described in a number of bird species that might 
play a role in their natural circulation [8, 9]. Hence, it seems 
plausible that wild birds serve as hosts for novel gammapol-
yomaviruses as well as for some highly pathogenic gam-
mapolyomaviruses associated with economic losses.

In this study, wild birds that died in 2019 at the Zoo 
and Botanical Garden, Budapest (Hungary), were tested 
for polyomaviruses. Approximately 50-100 mg of internal 
organ tissue samples were homogenized in PBS using a Tis-
sueLyzer LT instrument (QIAGEN, Hilden, Germany) and 
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were centrifuged for 10,000 × g for 5 min. Nucleic acid was 
extracted using a ZiXpress-32® Automated Nucleic Acid 
Purification Instrument and a ZiXpress-32® Viral Nucleic 
Acid Extraction Kit (Zinexts Life Science Corp., New Taipei 
City, Taiwan) from a mixture of the prepared samples from 
each bird.

Polyomavirus DNA was detected using a broad-spectrum 
nested PCR assay with the primer sets VP1-1f and VP1-1r, 
and VP1-2f and VP1-2r, described by Johne and co-workers 
[10]. Sequencing of the amplicons revealed traces of poly-
omavirus sequence in one out of 32 specimens collected 
from kidney and liver samples from a great cormorant 
(Phalacrocorax carbo). The bird was admitted to the zoo’s 
rescue station with presumed traumatic injuries, but detailed 
pathological findings were not available.

The back-to-back PCR primers PyV_20190702-2_F 
(5’-TGG​GAA​GAT​GTA​CTA​TAG​GGG​TCT​TC-3’) and 
PyV_20190702-2_R (5’-TCT​GAC​TGC​ACA​ACA​AAC​
CCAC-3’) (annealing at 65 °C) were designed for amplifi-
cation of the circular polyomavirus genome using Phusion 
DNA polymerase according to the manufacturer’s instruc-
tions (Thermo Fisher Scientific, Waltham, MA, USA). The 
PCR product was purified and prepared for next-generation 
sequencing using an Illumina NextSeq™ 500 platform as 
described elsewhere [11]. Sequence contigs were obtained 
by de novo assembly using Geneious Prime® v.2020.2.4 
(Biomatters, Auckland, New Zealand) and CLC Genom-
ics Workbench v9 (QIAGEN, Hilden, Germany) software. 
The ORFs were predicted using the Open Reading Frame 
Finder tool (https://​www.​ncbi.​nlm.​nih.​gov/​orffi​nder/). The 
sequences were edited using AliView software and were 
aligned using the MAFFT algorithm implemented in the 
Geneious Prime software [12]. Maximum-likelihood phy-
logenetic analysis was performed using PhyML software 
(LG+G+I+F model, aLRT SH-like branch support) using 
reference sequences [1, 13]. The phylogenetic tree was visu-
alized and edited using MEGA6 software [14].

Altogether, 528,035 sequence reads mapped to the novel 
genome with a sequencing depth of > 3100. The priming 
site of the back-to-back PCR was determined by Sanger 
sequencing, resulting in lower sequencing depth in this 
region. The novel genome (GenBank accession number 
MZ666388) was found to be 5133 bp long, and the genomic 
structure resembles that of gammapolyomaviruses, con-
taining the putative ORFs encoding the LTA, STA, VP1, 
VP2, and VP3 proteins (Fig. 1, Table 1) [1–8]. Furthermore, 
ORF-X was predicted upstream of the VP2. We observed 
signatures of mRNA splicing in both the LTA and ORF-X 
genes (Fig. 1, Table 1). Analysis of representative complete 
genome sequences of members of all polyomavirus species, 
performed using RDP4 software, did not reveal any recom-
bination events affecting the genome of the cormorant poly-
omavirus (CoPyV) [15].

Typical motifs similar to those in other avian polyoma-
viruses could be identified in the LTA of CoPyV, includ-
ing the polyomavirus conserved region (CR1, LEELL), 
the hexapeptide in the J domain (HPDKGG), the pRB1-
binding motif (LHAEE), the nuclear localization signal 
(NLS, TPPKDRAT), the zinc finger motif (CETCKAQK-
KDMPFRMLKRKWVGGHIDDH), and the ATPase motifs 
(GGVNTGKT and GAVPVNLE) [4, 6, 7]. The VP3 started 
with an in-frame methionine of the VP2, as part of the 
motif MALMPY, which conformed to the consensus motif 
MALXXΦ (Φ = W, F, Y) described also for other polyoma-
viruses [4]. The C-terminal region of the putative VP2 and 
VP3 proteins of CoPyV and all other gammapolyomaviruses 
is rich in arginine (R) and lysine (K), which may be com-
ponents of functional NLSs [4]. Although NLSs have been 
recognized in VP1 proteins of mammalian polyomaviruses 
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Fig. 1   (A) Schematic representation of the genomic structure of cor-
morant polyomavirus. (B) Maximum-likelihood phylogenetic tree of 
LTA aa sequences of polyomaviruses constructed using PhyML soft-
ware, applying the GTR+G+I model and aLRT SH-like branch sup-
port. Branches with < 80 support were hidden. The sequence of Japa-
nese eel endothelial cells-infecting virus (GenBank accession number 
AB543063) was used to root the tree. The cormorant polyomavirus 
(Phalacrocorax carbo polyomavirus 1) is indicated by a blue triangle
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[4], an accumulation of basic amino acids is not typical for 
this region of avian polyomaviruses.

In the LTA-based phylogenetic tree, the CoPyV sequence 
branched together with gammapolyomavirus sequences 
(Fig. 1). Each of the main coding sequence of CoPyV and 
the gammapolyomaviruses shared a maximum of 62.5% nt 
and 66.6% aa sequence identity in pairwise comparisons, 
showing the highest values with sequences from goose hem-
orrhagic polyomavirus, Adélie penguin polyomavirus, and 
butcherbird polyomavirus. According to the demarcation 
criteria for polyomaviruses, including a genetic distance of 
> 15% for the LTA aa sequence [3], CoPyV may be the first 
member of a novel species within the genus Gammapoly-
omavirus, for which we propose the name “Phalacrocorax 
carbo polyomavirus 1”.
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