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Abstract

Cancer metabolism has received renewed interest as a potential target for cancer therapy.

In this study, we use a multi-scale modeling approach to interrogate the implications of three

metabolic scenarios of potential clinical relevance: the Warburg effect, the reverse Warburg

effect and glutamine addiction. At the intracellular level, we construct a network of central

metabolism and perform flux balance analysis (FBA) to estimate metabolic fluxes; at the cel-

lular level, we exploit this metabolic network to calculate parameters for a coarse-grained

description of cellular growth kinetics; and at the multicellular level, we incorporate these

kinetic schemes into the cellular automata of an agent-based model (ABM), iDynoMiCS.

This ABM evaluates the reaction-diffusion of the metabolites, cellular division and motion

over a simulation domain. Our multi-scale simulations suggest that the Warburg effect pro-

vides a growth advantage to the tumor cells under resource limitation. However, we identify

a non-monotonic dependence of growth rate on the strength of glycolytic pathway. On the

other hand, the reverse Warburg scenario provides an initial growth advantage in tumors

that originate deeper in the tissue. The metabolic profile of stromal cells considered in this

scenario allows more oxygen to reach the tumor cells in the deeper tissue and thus pro-

motes tumor growth at earlier stages. Lastly, we suggest that glutamine addiction does not

confer a selective advantage to tumor growth with glutamine acting as a carbon source in

the tricarboxylic acid (TCA) cycle, any advantage of glutamine uptake must come through

other pathways not included in our model (e.g., as a nitrogen donor). Our analysis illustrates

the importance of accounting explicitly for spatial and temporal evolution of tumor microenvi-

ronment in the interpretation of metabolic scenarios and hence provides a basis for further

studies, including evaluation of specific therapeutic strategies that target metabolism.

Author summary

Cancer metabolism is an emerging hallmark of cancer. In the past decade, a renewed

focus on cancer metabolism has led to several distinct hypotheses describing the role of
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metabolism in cancer. To complement experimental efforts in this field, a scale-bridging

computational framework is needed to allow rapid evaluation of emerging hypotheses in

cancer metabolism. In this study, we present a multi-scale modeling platform and demon-

strate the distinct outcomes in population-scale growth dynamics under different meta-

bolic scenarios: the Warburg effect, the reverse Warburg effect and glutamine addiction.

Within this modeling framework, we confirmed population-scale growth advantage

enabled by the Warburg effect, provided insights into the symbiosis between stromal cells

and tumor cells in the reverse Warburg effect and argued that the anaplerotic role of gluta-

mine is not exploited by tumor cells to gain growth advantage under resource limitations.

We point to the opportunity for this framework to help understand tissue-scale response

to therapeutic strategies that target cancer metabolism while accounting for the tumor

complexity at multiple scales.

Introduction

Cancer remains one of the leading causes of death worldwide. A central challenge in under-

standing and treating cancer comes from its multi-scale nature, with interacting defects at the

molecular, cellular and tissue scales. Specifically, the molecular profile at the intracellular level,

behavior at the single-cell level and the interactions between tumor cells and the surrounding

tissues all influence tumor progression and complicate extrapolation from molecular and cel-

lular properties to tumor behavior [1–3]. Understanding the multi-scale responses of cancer to

microenvironmental stress could provide important new insights into tumor progression and

aid the development of new therapeutic strategies [2]. Therefore, cancer must be studied and

treated as a cellular ecology made up of individual cells and their microenvironment. This eco-

logical view should account for the competition and cooperation of different molecular and

cellular players, and for both the physical and biological characteristics of the environment in

which tumor evolves. Such perspectives complement studies of the genetic drivers of tumor

and potentially provide new bases for treating this disease [4].

Central to an ecological perspective of tumors is metabolism, the biochemical process by

which cells derive energy and biomass from the nutrients available in their environment while

excreting products of metabolism back to the environment. This exchange of metabolites

impacts the distribution of resource in the environment and sets constraints on the availability

of resources to individual cells [5]. Therefore, metabolism couples the behavior of individual

cells to the characteristics–spatial-temporal organization and phenotypic make-up–of the full

population. Recently, cancer metabolism has drawn renewed attention in the field of cancer

biology [4,6]. Following the early observations of the unique tissue-scale metabolic profile of

tumors made by Otto Warburg in the 1920s, discoveries of oncogenes and molecular cues in

tumor-associated metabolic alterations have renewed the hope for therapeutic routes that tar-

get cancer metabolism [7].

In his seminal work, Warburg noted the distinct metabolic profile of tumor cells with high

glycolytic rate and lactate production in the presence of oxygen. This so-called Warburg effect

or aerobic glycolysis has been widely observed in different types of tumor cells (Fig 1A, ①) [8].

This original observation by Warburg led him to hypothesize that aerobic glycolysis is caused

by impaired respiration; in turn, this defect results in cancer [9]. It is now well accepted that

this hypothesis is incorrect as most tumor cells retain functional mitochondria [10,11]; we still

lack a full understanding of the origin and consequences of the Warburg effect. More recently,

other hypotheses have been proposed in the field of cancer metabolism such as the reverse
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Warburg effect (Fig 1A, ②) and glutamine addiction (Fig 1A, ③) [3,12–16]. Despite support

of these three hypotheses from various experimental studies, significant uncertainty remains

with respect to their definitions, their origin, and their impact on tumor progression and ther-

apeutic interventions. Unraveling these fundamental questions could open a clearer path to

targeting cancer metabolism as a therapeutic strategy.

In the past few years, studies of cancer metabolism have begun to elucidate how the meta-

bolic alterations in tumor cells can influence tumor progression [9,17–21]. A definitive charac-

teristic of tumor cells is uncontrolled proliferation. Compared to healthy cells that remain

quiescent in most of their life cycle, tumor cells proliferate rapidly, accompanied by high rates

of metabolic uptake. This metabolic profile of tumor cells leads to significant depletion of

metabolites in the local microenvironment, resulting in resource limitations. Additionally,

byproducts and waste products produced by the metabolism of tumor cells can potentially hin-

der the growth of neighboring cells or act as sources of alternative metabolic substrates

[16,22,23]. Although studies have made efforts to capture these experimental observations

mathematically [20,24–29], we are unaware of computational studies that test the implications

of these hypotheses with respect to metabolic behaviors at the individual cell level, intercellular

interactions mediated by shared metabolic environment, and the collective behavior that

together define fitness and growth potential of the tumor. Recent computational work has

made progress toward capturing the multi-scale complexity of cancer. These studies investi-

gated the effect of tumor microenvironmental factors, specifically molecular cues and metabo-

lites, on tumor population dynamics and provided insights into the cooperative behaviors of

tumor subpopulations [30–34]. Similar intraspecies competition or cooperation are often

observed in microbial organisms and heavily studied from a population ecology perspective

[35–37]. Theories and modeling tools are better developed in the microbial field due to the rel-

atively convenient validation from experiments [38–40].

In this study, we take a multi-scale modeling approach to describe the intracellular, cellular,

and multicellular behaviors of cells within a tumor (Fig 1). With this framework, we investigate

the following hypotheses: Warburg Effect/Aerobic glycolysis (①), Reverse Warburg (②), and

Glutamine Addiction (③). We begin by translating hypotheses from experimental studies into

Fig 1. Multi-scale modeling of cancer metabolism. (A) Flux Balance Analysis (FBA). The arrows represent fluxes of

species within a reduced representation of cell metabolism and cell growth; the detailed network used in FBA is

presented in S1 Fig. Key steps associated with three hypotheses are labeled: ① Warburg effect, ② Reverse Warburg

and ③ Glutamine addiction. The uptake and production rates are qi/n [g/g-DW-hr] for the ith metabolite and the nth

metabolic phenotype. We impose the maximum growth rate, μm,n [hr-1], for a given metabolic phenotype of each cell

type as an objective function within the FBA. (B) Cell: Biomass (Xm [g]) growth of each cell type is modeled as a

Monod-like process parameterized by the same maximum growth rates used in FBA that are modulated by functions

of metabolite concentrations, fn({Cj})Monod. The change in Volume of the cell (Vm [L]) is calculated from biomass

growth by applying a constant density of the cell (ρ[g-DW/L]). Yield coefficients (Yi/n [g-DW/g]) for each metabolite

(i) and corresponding metabolic phenotype (n) are defined in terms of the uptake and production rates (qi/n) obtained

from FBA. Extracellular space: Species balances for each explicit metabolite follow reaction-diffusion kinetics and

govern the concentration profiles of metabolite at the multicellular scale. These equations (Eqs 1–4 in text) are

integrated into and solved within an agent-based model (ABM—iDynoMiCS). (C) ABM simulations: i) Radial, two-

dimensional growth: Tumor cells grow radially out from an initial cluster of cells with metabolites supplied at the edge

of the cell mass such that radial gradients of concentration emerge (color map–red is high and blue is low

concentration). Two phenotypes are displayed (red: tumor cells and blue: stromal cells). As the tumor grows,

concentration gradients of metabolites become significant, making the tumor growth a diffusion-limited process that

can result in different growth dynamics as well as distinct spatial distribution of cell subpopulations. ii) Axial, one-

dimensional growth: Layers of tumor cells (red) and stromal cells (blue) are initiated near a blood vessel that supplies

metabolites (from the top), such as glucose and oxygen in the blood stream. Growth pushes cells deeper into the tissue,

away from the vessel, such that strong gradients of metabolite can again occur. iii) Krogh length calculation: To

evaluate the impact of diffusion limitations in a simple model, we treat cells as continuum with uniform, zeroth order

kinetics of metabolite consumption to calculate the distance over which the concentration of limiting metabolites falls

to zero within the tumor mass; we refer to this distance as the Krogh length of a given metabolite.

https://doi.org/10.1371/journal.pcbi.1006584.g001
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constraints and objectives within the FBA (Fig 1A). We proceed to use FBA to obtain the yield

coefficients (Y = maximum growth rate/flux of metabolite) for use in Monod-like kinetics of

cellular growth at the individual cell level (Fig 1B). Finally, we simulate the growth dynamics

of these cells at the multicellular scale to elucidate the implications of these metabolic scenarios

(Fig 1C). We address the impact of the metabolic phenotypes implied by current hypotheses

on the growth dynamics of tumor cells in the resource-limited microenvironments that

emerge after tumor initiation. This modeling framework opens a route to explore tissue-scale

tumor dynamics with explicit account taken for these metabolic scenarios in an efficient

manner.

Model

Scale-bridging model formulation

Fig 1 illustrates, schematically, the multi-scale approaches we use. At the intracellular scale, we

use Flux Balance Analysis (FBA) to construct a network that captures the central metabolism

of mammalian cells (Fig 1A). In Fig 1A, the arrows represent fluxes of species within a reduced

representation of cell metabolism and cell growth; the detailed network used in FBA is pre-

sented in S1 Fig. Key steps associated with three hypotheses are labeled: Warburg effect (①) is

distinguished by high glycolytic flux and lactate production; reverse Warburg (②) is distin-

guished by the uptake of lactate; and glutamine addiction (③) is distinguished by uptake of

glutamine as a carbon source to feed TCA cycle. We build the biomass template reaction (S1

Fig) based on major precursors for biomass synthesis by reducing Shlomi and coworker’s

genome scale biomass template [20]. We impose a cellular maintenance reaction with a base-

line rate to define the required minimum metabolism of cells (see Methods). We modify con-

straints and objective functions within the FBA network to define the characteristics of the

different hypotheses (labeled in Fig 1A). We estimate parameters based on literature (see S1

Table). We acknowledge that the altered metabolic phenotype of tumor cells may be due to

prior genetic events that occurred in the cell, such as loss of tumor suppressors (e.g., p53) [41].

However, we only consider the metabolic phenotypes of the cells at fixed genetic profiles here

since we focus on impact of metabolic profiles on tumor growth over time scales (days) that

are short relative to those required for the emergence and accumulation of genetic alterations

in the cells (months or years). At the cellular scale (Fig 1B), we use the imposed maximum

growth rates (μm,n [hr-1]) and the metabolic uptake and production rates of the metabolites (qi/

n [g/g-DW-hr]) obtained from FBA to determine yield coefficients ((Yi/n [g-DW/g]) for each

metabolite (i) and corresponding metabolic phenotype (n):

Yi=n ¼ �
mm;n

qi=n
ð1Þ

These yield coefficients link our intracellular treatment of metabolism by FBA and our cellular

and multicellular treatment of resource utilization and growth. We model biomass (Xm [g])

growth of each cell type as a Monod-like process parameterized by maximum growth rate for

each metabolic phenotype, μm,n [hr-1] and a Monod function of metabolite concentrations,

fn({Cj})Monod:

dXm

dt
¼ Xm �

P
nmm;n � fnðfCjgÞMonod ð2Þ

We provide detailed discussions of the Monod functions in the next Section. We used the

same value of maximum growth rate for each phenotype of each cell at both the FBA (Fig 1A)

and cell-scale (Fig 1B). We report parameter values in S1 Table. Additionally, we use a
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threshold in cell diameter to define the doubling of the cell by linking biomass growth to the

volume (Vm [L]) expansion of the cell at a fixed dry mass density (ρ [g-DW/L]):

dVm

dt
¼

1

r

dXm

dt
ð3Þ

To bridge the treatment of metabolic processes at the cellular and multicellular scales, we solve

steady state species balances for each explicit metabolite at each time step within iDynoMiCS

[39]:

@Ci

@t
¼ Dir

2Ci þ
P

mr
P

nqi=n � fnðfCjgÞMonod ð4Þ

where Ci [g/L] is the concentration of ith metabolite, Di [m2/day] is the diffusion coefficient of

ith metabolite. Here, the species balances can be safely treated as being at steady state because

the time step in our simulation (1 hour) is selected to resolve cell growth and is long compared

to typical transients in metabolism [39].

We integrate Eqs 1–4 into iDynoMiCS to track the growth of individual cells within a con-

tinuum matrix occupied by other cells in which metabolites diffuse (term 1 in Eq 4). The con-

centration of metabolites at the multicellular scale governs the cellular biomass growth (Eq 2)

and the biomass kinetics in turn influences the concentration profile of metabolites (term 2 in

Eq 4), and subsequently the growth kinetics of the surrounding cells. Cells are treated as hard

spheres [38]. This spatial-temporal interaction between the cells and the microenvironment is

a dynamic process that changes at each time step within iDynoMiCS.

We simulate growth in both radial and axial geometries in iDynoMiCS (Fig 1C): 1) Radial,

two-dimensional growth (Fig 1C i))–tumor cells (red) grow radially out from an initial cluster

of cells with metabolites supplied at the edge of the cell mass such that radial gradients of con-

centration emerge (color map). As the tumor grows, concentration gradients of metabolites

become significant, making the tumor growth a diffusion-limited process that can result in dif-

ferent growth dynamics as well as distinct spatial distribution of cell subpopulations. 2) Axial,

one-dimensional growth (Fig 1C ii))–layers of tumor cells (red) and stromal cells (blue) are

initiated near a blood vessel that supplies metabolites (from the top), such as glucose and oxy-

gen in the blood stream. Growth pushes cells deeper into the tissue, away from the vessel, such

that strong gradients of metabolite can again occur.

The radial simulations (Fig 1C i)) provide a qualitative understanding of the growth

dynamics in different metabolic scenarios; axial simulations (Fig 1C ii)) allow us to further

quantify the observed dynamics. In both cases, we initiate tumor cell clones (same Monod

parameters) surrounded by a varying number of layers of stromal cells (defined by distinct

metabolic and growth parameters–see Fig 2 and Table 1). These arrangements capture tumor

growth with initiation occurring at different distances from local vascular structure and thus at

different levels of metabolic stress. We proceed to track growth as a function of depth of initia-

tion and metabolic phenotype. We perform 11 replicates, with randomly seeded initial posi-

tions of tumor and stromal cells within their compartments; all other parameters in the

simulation were kept the same across these replicates for each metabolic scenario. Addition-

ally, we kept these random initial seeding positions of cells the same across simulations of the

three metabolic scenarios to eliminate any effect that comes from the difference in the initial

seeding when comparing the scenarios. As we are interested in initial stages of avascular

growth, we do not account for later stage processes such as angiogenesis. Further, we do not

account for cell death explicitly in our simulations; tumor cells in zones with severely depleted

metabolites remain quiescent based on the Monod-like growth kinetics. When evaluating total
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Fig 2. Metabolic profiles of various cell types in different hypotheses. Values of metabolic fluxes [mmol/g-DW-hr] under

different metabolic phenotypes obtained from the FBA are shown in boxes. Blue: normoxic phenotype. Orange: hypoglycemic

phenotype. Black: hypoxic phenotype. (A) Representation of the Warburg Effect hypothesis includes: (i) Stromal cell: Normoxic

stromal cells are quiescent and aerobic (use mainly OXPHOS to generate ATP for maintenance) (blue values). Hypoxic stromal

cells are quiescent and anaerobic (use primarily glycolysis to generate ATP for maintenance) (black values). (ii) Warburg tumor

cell: Normoxic Warburg tumor cells are highly proliferative and aerobically glycolytic (use mainly glycolysis to generate ATP to

grow—blue values). The values of flux shown represent the metabolic phenotype of Warburg Number, WN = 2. Hypoxic Warburg

tumor cells are quiescent and anaerobically glycolytic (use glycolysis to generate ATP for maintenance—black values). (B)

Representation of the Reverse Warburg effect includes: (i) Hijacked stromal cell: Normoxic hijacked stromal cells are quiescent and

undergo aerobic glycolysis (use mainly glycolysis to generate ATP for maintenance—blue values). Hypoxic hijacked stromal cells

are quiescent and anaerobic (use mainly glycolysis to generate ATP for maintenance—black values). (ii) Reverse Warburg tumor

cell: Normoxic reverse Warburg tumor cells are highly proliferative and uptake lactate aerobically; however they utilize OXPHOS

to generate ATP to grow, fueled by lactate and oxygen instead of undergoing glycolysis using glucose (blue values). Hypoglycemic

reverse Warburg tumor cells are quiescent and consume lactate to fuel mitochondria for maintenance (orange values). Hypoxic

Impact of metabolism on solid tumors

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006584 December 7, 2018 7 / 30

https://doi.org/10.1371/journal.pcbi.1006584


tumor size, this assumption is equivalent to counting dead cell mass within the necrotic core

as part of the tumor; this definition is consistent with that of previous studies [42–46].

With the aim of providing intuition on the outcomes of simulations and characteristic

physical parameters, we also calculate the Krogh length, shown schematically in Fig 1C iii).

Here, we define the Krogh length of a metabolite as the length at which the concentration of

metabolite becomes zero given the uptake of the metabolite with zeroth order growth kinetics

for the cell phenotype in the region (see Methods). While this is an extremely simple model

that couples zeroth order kinetics with a continuum description of reaction and diffusion in

the tissue, we will show that it provides insights into the characteristics by which reaction and

diffusion govern the growth of tumors.

With this multi-scale computational framework, we study the tumor population dynamics

in a spatial-temporal manner and investigate the consequences of different hypotheses in can-

cer metabolism from a population ecology perspective. This perspective examines the impacts

of phenotypic composition, spatial structure and reaction-diffusion on tumor growth.

Distinct metabolic profiles of various cell types implied by metabolic

scenarios

Before we further specify the hypotheses depicted in Fig 1 individually, we define the met-

abolic phenotypes of the cell types implicated in these hypotheses based on observations

in the literature. We integrate our interpretations of these metabolic mechanisms into

FBA to obtain the uptake and production rates of metabolites (see Table 1): In our

approach, we assume each cell type (e.g., healthy stromal cell) can adopt more than one

metabolic phenotype (e.g., aerobic under normoxic conditions and anaerobic under hyp-

oxic conditions). These different metabolic phenotypes are implemented as objective

functions and constraints in FBA and in turn, result in different flux distributions (Fig 2,

coded by color). We then obtain yield coefficients (Yi/n) for the ith metabolite in the nth

metabolic phenotype of cells by linking maximum growth rate (μm,n) of the mth cell type

to the uptake and production rates (qi/n) (Eq 1); the Yi/n serve as measures of the efficiency

with which the metabolites generate biomass: the bigger the value of Yi/n is, the more effi-

ciently the nth metabolic phenotype utilizes the ith metabolite to grow.

Fig 2 summarizes predictions from FBA for the metabolic profiles of these cell types under

distinct metabolic phenotypes. The metabolic switch from normoxia to hypoxia or to hypogly-

cemia leads to drastic changes in metabolic fluxes; the values in box represent fluxes of the spe-

cific metabolites when they display different metabolic profiles, coded by color (see caption).

These flux distributions in turn lead to different uses of metabolites as reflected in yield coeffi-

cients (presented in Table 1). We present detailed description of each phenotype of the cells in

the following subsections.

The Warburg effect. In our exploration of the Warburg effect, we use healthy quiescent

cells to define the tissue that hosts the tumor cells (Fig 2A i) and 2C i)). We refer to these cells

reverse Warburg tumor cells are quiescent and undergo anaerobic glycolysis to produce lactate (black values). Note the different

directions of arrows for lactate fluxes. (C) Representation of Glutamine Addiction includes: (i) Stromal cell: Normoxic stromal cells

are quiescent and aerobic (use mainly OXPHOS to generate ATP for maintenance—blue values). Hypoxic stromal cells are

quiescent and anaerobic (use primarily glycolysis to generate ATP for maintenance—black values. (ii) “Glutamine-addicted” tumor

cell: Normoxic “glutamine-addicted” tumor cells are highly proliferative and aerobic; instead of utilizing glucose in glycolysis, they

undergo OXPHOS to generate ATP to grow, fueled by glutamine and oxygen (blue values). Hypoglycemic “glutamine-addicted”

tumor cells are quiescent and consume glutamine to fuel mitochondria for maintenance (orange values). Hypoxic “glutamine-

addicted” tumor cells do not consume glutamine. They are quiescent and undergo anaerobic glycolysis (black values). Note the

different directions of arrows for glutamine flux.

https://doi.org/10.1371/journal.pcbi.1006584.g002
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as stromal cells. This metabolic scenario imposes a direct competition for resources between

the two sub-populations (stromal cells and tumor cells).

To define the metabolic character of stromal cells under normoxia at the intracellular scale

with FBA, we set an objective function that targets an extremely low growth rate (1×10−6 hr-1,

equivalent to a doubling time of 28881 days) to represent the quiescent nature of healthy

somatic cells (Fig 2A i), blue). Additionally, we put unconstrained bounds (0 to1) on all

fluxes in the network.

To define the stromal metabolic phenotype at the cellular scale, we expressed the growth

kinetics in terms with oxygen and glucose as the limiting metabolites. We chose a Monod

form that captures the Pasteur effect:

dXS

dt
¼ ðmS;aer

CG

KG þ CG

CO

KO þ CO
þ mS;ana

CG

KG þ CG

KO

KO þ CO
ÞXS ð5Þ

where XS [g] is the biomass of the stromal cell, μS,aer [hr-1] is the maximum growth rate under

normoxia, μS,ana [hr-1] is the maximum growth rate under hypoxia, CG [g/L] is the concentra-

tion of glucose, KG [g/L] is the half saturation constant of glucose, CO [g/L] is the concentration

of oxygen, and KO [g/L] is the half saturation constant of oxygen. The Monod form in Eq 5

approximates the behavior of a quiescent somatic cell whose growth is under regulatory con-

trol that follows Pasteur effect [47]: when oxygen concentration the cells experience is high

(CO >> KO), the first term on the right-hand side of Eq 5 dominates, simulating oxidative

phosphorylation (OXPHOS); when oxygen concentration becomes low (CO << KO), the sec-

ond term (Eq 5, right-hand side) becomes dominant, capturing cells undergoing anaerobic

glycolysis. We set the half saturation constants of the metabolites (except lactate, which is set

Table 1. Summary of uptake/production rates and yield coefficients of metabolites under different cellular metabolic phenotypes.

Cell Type Phenotype μm,n qGlu/n qO2/n qLac/n qGln/n YGlu/n YO2/n YLac/n YGln/n

(m) (n) (hr-1) (g/g-DW-

hr)

(g/g-DW-

hr)

(g/g-DW-

hr)

(g/g-DW-

hr)

(g-DW/g) (g-DW/g) (g-DW/g) (g-DW/g)

Warburg Effect Healthy Stromal Cell Aerobic 1×10−6 -0.045 -0.048 N/A N/A 2.22×10−5 2.08×10−5 N/A N/A

Anaerobic 1×10−6 -0.45 -3.2×10−7 N/A N/A 2.22×10−6 3.13 N/A N/A

Warburg Tumor

Cell

Aerobic,

WN = 0

0.018 -0.078 -0.064 N/A N/A 0.231 0.281 N/A N/A

Aerobic,

WN = 2

0.018 -0.183 -0.052 N/A N/A 0.098 0.349 N/A N/A

Aerobic,

WN = 10

0.018 -0.394 -0.0266 N/A N/A 0.0456 0.68 N/A N/A

Aerobic,

WN = 34

0.018 -0.573 -0.006 N/A N/A 0.031 2.953 N/A N/A

Anaerobic 1×10−6 -0.45 -3.2×10−7 N/A N/A 2.22×10−6 3.13 N/A N/A

Reverse

Warburg Effect

Hijacked Stromal

Cell

Aerobic 1×10−6 -0.45 -3.2×10−7 0.45 N/A 2.22×10−6 3.13 -2.22×10−6 N/A

Anaerobic 1×10−6 -0.45 -3.2×10−7 0.45 N/A 2.22×10−6 3.13 -2.22×10−6 N/A

Reverse Warburg

Tumor Cell

Aerobic,

WN = 2

0.018 -0.183 -0.052 0.117 N/A 0.098 0.349 -0.154 N/A

Aerobic, RW 0.018 -6.72×10−3 -0.073 -0.079 N/A 2.68 0.247 0.227 N/A

Hypoglycemic 1×10−6 -3.73×10−7 -0.053 -0.05 N/A 2.68 1.87×10−5 2×10−5 N/A

Anaerobic 1×10−6 -0.45 -3.2×10−7 0.45 N/A 2.22×10−6 3.13 -2.22×10−6 N/A

Glutamine

Addiction

Healthy Stromal Cell Aerobic 1×10−6 -0.045 -0.048 N/A N/A 2.22×10−5 2.08×10−5 N/A N/A

Anaerobic 1×10−6 -0.45 -3.2×10−7 N/A N/A 2.22×10−6 3.13 N/A N/A

Glutamine-addicted

Tumor Cell

Aerobic 0.018 -0.122 -0.059 N/A -0.03 0.148 0.305 N/A 0.607

Anaerobic 1×10−6 -1.55×10−4 -0.053 N/A -0.054 6.46×10−3 1.88×10−5 N/A 1.86×10−5

https://doi.org/10.1371/journal.pcbi.1006584.t001
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to be the same as that of glucose) to be 1/10 of their physiological concentrations in blood cir-

culation (See S1 Table) with the assumption that cells would experience phenotypic change

when concentrations of the limiting metabolites drop by an order of magnitude. Since we use

the same maximum growth rates under normoxia and hypoxia (μS,aer = μS,ana = 1×10−6 hr-1),

Eq 5 can be further simplified to the following form:

dXS

dt
¼ mS

CG

KG þ CG
XS ð6Þ

Although this form indicates that the growth of stromal cells only depends on glucose avail-

ability, driven by the imposed weak growth rate, the FBA accounts for the demand for cellular

maintenance under different cellular phenotypes (aerobic vs. anaerobic) such that the pre-

dicted yield coefficients for both oxygen and glucose depend strongly on local concentration

of oxygen (Table 1). The different utilizations of metabolites (represented by yield coefficients)

under the influence of oxygen availability in turn impact local concentrations of both oxygen

and glucose, and thus lead to different growth rates of cells.

To define the character of a Warburg tumor cells under normoxia (Fig 2A ii), blue), we

used the ratio of the flux of pyruvate to lactate to its flux into the mitochondrion; we call this

ratio the Warburg number (WN). A literature survey suggested that a typical value of the WN

in tumor cells is 2 (two pyruvates go to lactate for every one that enters the TCA cycle), though

significant uncertainty remains and WN may be as large as ~ 10 [15,48,49]. In this study, we

explore a range of WN in our simulations, from 0 to 34.

To define the Warburg phenotype at the intracellular scale in FBA, we chose the objective

function to achieve a growth rate of 0.018 hr-1 (doubling time = 38 hrs), a typical doubling rate

for cancer cells [48]. We then iteratively changed the uptake rate of oxygen to achieve a desired

WN. This iterative process was done by setting the upper bound of the constraint on the oxy-

gen uptake rate to be the same as that of the unconstrained FBA solution (the case of WN = 0)

and then lowering it in each iteration until the desired WN was reached. This constraint on

oxygen forced the uptake of more glucose and led to production of lactate (① in Fig 1A, blue

in Fig 2A ii)). Without this imposed constraint, our flux distribution did not display the char-

acteristics of the Warburg effect (i.e., there was no lactate production such that WN = 0); an

observation also made previously [20,50]. We found that a constraint directly imposed on lac-

tate production could also be used to produce the same flux distribution predicted with con-

strained oxygen uptake. The equivalence of these two constraints is due to the requirement of

ATP and redox balance to meet the growth demand; this balance can only be achieved via

either OXPHOS or aerobic glycolysis [9,11]. As illustrated in Fig 2A ii) (WN = 2), when a War-

burg phenotype is imposed (WN >0), the metabolic behavior of tumor cells under normoxia

(blue) is very distinct from the Pasteur behavior of the healthy stromal cells (Fig 2A i)), as

tumor cells undergo aerobic glycolysis. The Warburg phenotype under normoxia forces

tumor cells to use glycolysis in addition to OXPHOS for ATP generation; this situation leads

to a shift in utilization from oxygen to glucose, reflected in uptake rates of glucose (qGlu/aer =

-0.078 g/g-DW-hr for WN = 0 vs. qGlu/aer = -0.183 g/g-DW-hr for WN = 2) as well, shown in

Table 1.

To define the Warburg phenotype at the cellular scale, we selected a Monod form of

growth kinetics that captures a Pasteur-like switch from rapid growth in normoxic condi-

tions (aerobic growth, μW,aer = 0.018 hr-1) to slow growth under hypoxic conditions

(anaerobic growth, μW,ana = 1×10−6 hr-1), depending on the local oxygen concentration:

dXW

dt
¼ ðmW;aer

CG

KG þ CG

CO

KO þ CO
þ mW;ana

CG

KG þ CG

KO

KO þ CO
ÞXw ð7Þ
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where XW [g] is the biomass of the tumor cell, CG [g/L] is the concentration of glucose, KG

[g/L] is the half saturation constant of glucose, CO [g/L] is the concentration of oxygen,

and KO [g/L] is the half saturation constant of oxygen (S1 Table). When oxygen concen-

tration the cells experience is high (CO >> KO), the first term on the right-hand side of Eq

7 dominates, Warburg tumor cells adopt more of an aerobic, rapid growth profile (aerobic

glycolysis); when oxygen concentration becomes low (CO << KO), the second term (Eq 7,

right-hand side) becomes dominant and tumor cells undergo much slower growth regime

via anaerobic glycolysis.

The reverse Warburg effect. In the reverse Warburg hypothesis, oxidative tumor cells

have been observed to uptake lactate as a carbon source in addition to glucose (Fig 1A, ②)

[22,23,51]. Additionally, upregulation of glycolytic enzymes such as PKM2 has been observed

in tumor-associated fibroblast suggesting an aerobic glycolytic phenotype for tumor-associated

stromal cells [12,52]. This metabolic scenario represents an example of a host-parasite effect in

which the hijacked stromal cells (the “host”) are feeding the tumor cells (the “parasite”) lactate

by adopting an aerobic glycolytic phenotype [53]. This type of behavior between the oxidative

and hypoxic tumor cells as well as between the tumor cells and the stromal cells has also been

previously referred to as a symbiosis [14,16,24,25,29,54].

In the exploration of the reverse Warburg hypothesis, we used the “hijacked” stromal cells

described by Sotgia et al. to define the tissue in which tumor grows [55]. These metabolically

reprogrammed stromal cells can be tumor-associated fibroblasts or macrophages. Unlike the

quiescent healthy stromal cells that undergo the Pasteur effect, they commit to a glycolytic phe-

notype in which they uptake glucose and produce lactate under both normoxic (blue in Fig 2B

i)) and hypoxic (black in Fig 2B i)) conditions.

To capture the metabolic phenotype of aerobic glycolysis in hijacked stromal cells under

normoxic conditions in FBA, we used an objective function to minimize oxygen uptake rate

while constraining the cell at a low growth rate, μHS (1×10−6 hr-1, same as for healthy stromal

cells). Hence, the metabolic flux distributions are identical in normoxic and hypoxic condi-

tions, as shown in Fig 2B i).

We define the biomass growth of such reprogrammed stromal cells at the cellular scale as

follows:

dXHS

dt
¼ mHS

CG

KG þ CG
XHS ð8Þ

where XHS [g] is the biomass of the hijacked stromal cell, CG [g/L] is the concentration of glu-

cose, and KG [g/L] is the half saturation constant of glucose (S1 Table). As with healthy stromal

cells, this Monod form is also independent of oxygen. However, in this case, we follow the pro-

posal by Sotgia et al. that these reprogrammed stromal cells are committed to a glycolytic phe-

notype that favors the use of oxygen and lactate by the adjacent Reverse Warburg tumor cells.

Therefore, the yield coefficients of oxygen and glucose for the hijacked stromal cells remain

the same under both normoxia and hypoxia (Table 1).

To investigate the hypothesis of reverse Warburg effect, we define the normoxic reverse

Warburg phenotype of tumor cells at the intracellular scale in FBA by using an objective func-

tion to minimize the uptake of glucose to simulate the ability to utilize lactate as the preferred

substrate by the tumor cells while constraining the growth rate, μRW,aer, to be high under nor-

moxic conditions (0.018 hr-1 as with the Warburg phenotype) (blue in Fig 2B ii)).

At the cellular scale, based on our interpretation of the reverse Warburg tumor cells from

the literature [12,16,23], we allowed them to adapt to different metabolic phenotypes in

response to changes in local concentration of metabolites (i.e., lactate, glucose and oxygen),
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captured by the Monod-like growth kinetics. Specifically, in addition to the normoxic War-

burg and hypoxic phenotypes (Fig 2A ii)), we introduced two more metabolic phenotypes, the

normoxic reverse Warburg (blue in Fig 2B ii)) and hypoglycemic phenotypes (orange in Fig

2B ii)) to describe the reverse Warburg tumor cells:

dXRW

dt
¼ mRW;aer

CG

KG þ CG

CL

KL þ CL

CO

KO þ CO
þ mW;aer

CG

KG þ CG

KL

KL þ CL

CO

KO þ CO

þ mhypogly
CL

KL þ CL

CO

KO þ CO

KG

KG þ CG
þ mRW;ana

CG

KG þ CG

KO

KO þ CO
ÞXRW ð9Þ

where XRW [g] is the biomass of the tumor cell, μW,aer [hr-1] is the maximum growth rate of the

Warburg phenotype under normoxia, μhypogly [hr-1] is the maximum growth rate under hypo-

glycemia, and μRW,ana [hr-1] is the maximum growth rate under hypoxia; CG, CO, and CL [g/L]

are the concentrations of glucose, oxygen and lactate, and KG, KO and KL [g/L] are the half sat-

uration constants of glucose, oxygen and lactate (S1 Table).

Eq 9 encodes the following characteristics of our interpretation of the reverse Warburg

hypothesis: 1) when lactate is abundant (CL>> KL), the tumor cells preferably uptake lactate

over glucose and undergo OXPHOS aided by oxygen to grow under normoxia (blue in Fig 2B

ii), normoxic reverse Warburg phenotype, term 1 in Eq 9, aerobic growth, μRW,aer = 0.018 hr-1).

2) When lactate is limited (CL<< KL), we allow the tumor cells under the hypothesis of reverse

Warburg effect to revert back to the Warburg phenotype described above and grow by taking

up glucose while producing lactate (term 2 in Eq 9, aerobic growth, μW,aer = 0.018 hr-1). We

note that due to the equality in the maximum growth rates in both Reverse Warburg and War-

burg phenotypes, term 1 and 2 in Eq 9 can be combined leading to an independence of lactate

in the aerobic growth conditions. 3) When glucose is limiting, we allow the tumor cells to stay

quiescent (orange in Fig 2B ii), hypoglycemic phenotype, term 3 in Eq 9, μhypogly = 1×10−6 hr-1)

by having lactate and oxygen generate the energy necessary for cell maintenance. We achieve

this hypoglycemic metabolic phenotype by imposing the same objective function and con-

straints as the reverse Warburg phenotype in FBA but at a growth rate, μhypogly = 1×10−6 hr-1

(see Methods). 4) The reverse Warburg tumor cells are also sensitive to local oxygen concentra-

tion. When oxygen becomes limiting, they utilize glucose in anaerobic fermentation to stay qui-

escent (black in Fig 2B ii), hypoxic phenotype, term 4 in Eq 9, μRW,ana = 1×10−6 hr-1), same as

the Warburg tumor cell, and healthy stromal cells under hypoxic conditions (also see Methods).

Glutamine addiction. Glutamine addiction has emerged as one of the most acknowl-

edged hypotheses in the field of cancer metabolism [6]: Although glutamine addiction is not

observed in all tumor cells, the community has started to recognize the role of glutamine in

growth as a hallmark of metabolic rewiring in cancer [6,13,56,57]. Numerous studies reported

that tumor cells consume glutamine via glutaminolysis to feed their TCA cycle, a process

termed anaplerosis (Fig 1A). In this study, we aim to explore specifically the role of glutamine

in anaplerosis by considering glutamine as an alternative substrate for glucose-derived carbon

in the mitochondria of tumor cells. Here, we make a simplified assumption that the growth of

tumor cells is hindered under glucose deprivation due to the dependence on upstream glycoly-

sis and the pentose phosphate pathway, capturing a coupled utilization of glucose and gluta-

mine in cancer metabolism [56]. Following this assumption, we model glutamine-addicted

tumor cells that cannot survive on glutamine as the sole carbon source, consistent with the

behavior of MYC-positive tumor cells [58,59]. Since the Warburg effect and glutamine addic-

tion are not mutually exclusive hypotheses [60], we created the glutamine-addicted tumor cells

by adding the dependence of glutamine to the previously defined Warburg phenotype of

Impact of metabolism on solid tumors

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006584 December 7, 2018 12 / 30

https://doi.org/10.1371/journal.pcbi.1006584


tumor cells (with a WN of 2). Hence, glutamine-addicted tumor cells utilize both glucose and

glutamine as non-equivalent carbon sources to grow, with glutamine used in anaplerosis only.

To define the glutamine-addicted phenotype of tumor cells, at the intracellular level with

FBA, in addition to the constraints that results in a WN of 2, we also constrained the network

such that the ratio of glutamine to glucose uptake rates was 3 to 10 as observed experimentally

[49]. This specific constraint forces the FBA network to uptake glutamine as a carbon source

that would not occur autonomously. Specifically, we set the growth rate to be 0.018 hr-1,

increased the upper bound of the constraint on glucose while decreasing the upper bound of

the constraint on oxygen and sought for a value for glutamine uptake by changing the upper

bound of the constraint on glutamine that allowed the ratio of fluxes of glutamine to glucose to

be 3 to 10 and WN = 2 (blue in Fig 2C ii)). As in the treatment of Reverse Warburg tumor

cells, we allow the glutamine-addicted tumor cells to remain quiescent under hypoglycemic

conditions by having both glutamine and oxygen fuel their mitochondria to generate the

energy necessary for cell maintenance (orange in Fig 2C ii)). We achieve this hypoglycemic

metabolic phenotype by setting the objective function to minimize glucose uptake rate while

constraining the growth rate at 1×10−6 hr-1 as well as allowing uptake of glutamine (also see

Methods). We note that due to the requirement of oxygen for the utilization of glutamine in

energy production, growth of glutamine-addicted tumor cells under hypoxia depends on oxy-

gen. Hence, we describe the growth kinetics of glutamine-addicted tumor cells at the cellular

scale as follows:

dXGA

dt
¼ ðmGA;aer

CG

KG þ CG

CN

KN þ CN

CO

KO þ CO
þ mhypogly

CN

KN þ CN

CO

KO þ CO

KG

KG þ CG
ÞXGA ð10Þ

where N refers to glutamine, μGA,aer [hr-1] is the maximum growth rate of the glutamine-

addicted phenotype under normoxia, μhypogly [hr-1] is the maximum growth rate under hypo-

glycemic conditions, CN [g/L] is the concentration of glutamine and KN [g/L] is the half satura-

tion constant of glutamine (S1 Table).

Again, we used healthy quiescent cells to define the tissue that hosts the tumor cells (Fig 2A

i) and 2C i)).

Results

Radial simulations

To gain a qualitative understanding of the impact of the various metabolic scenarios on tumor

growth in a diffusion-limited microenvironment, we first ran simulations in an unconstrained

2-D domain, as shown in Fig 1C i); metabolites were delivered through a diffusive boundary

layer of fixed thickness that surrounds the growing tissue (see Methods). Fig 3 presents the

form of the tumors at initiation (t = 0) and after 100 days of growth for Warburg tumor cells

(WN = 2) with healthy stromal cells (top row), Reverse Warburg cells with hijacked stromal

cells (middle row), and glutamine-addicted tumor cells with healthy stromal cells (bottom

row). The three columns are for initial seeding of tumor cells beneath 1, 3, and 5 layers of stro-

mal cells, as indicated in the images of the initial configuration of the cells (t = 0). As the num-

ber of layers of stromal cells increases, the growth of tumor cells becomes compromised due to

the reduced access to the metabolites. By hindering diffusion and consuming oxygen and glu-

cose, the stromal cells decrease the accessibility of these metabolites to the tumor cells. In all

cases, we note that the proliferation of the tumor cells led to their breaking through the layers

of stromal cells; for the cases with significant growth, the stromal cells became engulfed within

the tumor, as is frequently observed in actual tumors [61]. We also note the emergence of

irregular front of the tumor in the scenario of Reverse Warburg effect. We suspect that this
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irregularity arises from growth instability due to the moderate availability of metabolites at the

growth front [35]. We note qualitatively different effects of the addition of layers of stromal

cells on tumor growth for the different scenarios: with 5 layers of stromal cells, the growths of

both Warburg and Glutamine-addicted tumor cells were strongly delayed, whereas the impact

on the growth of Reverse Warburg cells was modest. These observations motivate a deeper

investigation of the mechanisms that control response to metabolic stress in these scenarios.

Impact of reaction-diffusion on tumor growth

We proceeded to dissect the metabolic scenarios further with simulations in a confined geome-

try in which solute (i.e., metabolite) diffusion and tissue expansion were constrained along a

single direction, as shown in Fig 1C ii). This axial scenario approximates the local environment

adjacent to a blood vessel (upper boundary). Fig 4 presents an overview of the growth behavior

in this geometry. For this overview, we simulated the Warburg scenario, with Warburg tumor

cells (WN = 2) and healthy stromal cells (also see Fig 2).

Fig 4A shows the snapshots of tumor growth and the corresponding concentration fields of

oxygen and glucose at various time-points for tumors initiated beneath 1, 3, and 5 layers of

stromal cells. In the colormaps of the concentration fields, we see that when the tumor initiated

closer to the source (top row with 1 layer of stromal cells), the Warburg tumor cells had access

to ample oxygen and glucose to fuel their growth at early time (t = 0, empty circle); at late time

Fig 3. Distribution of cells in radial simulations. Initial conditions (t = 0) and end points (t = 100 days) are shown for the three hypotheses with cells seeded initially

with 1, 3 and 5 layers of stromal cells surrounding the tumor cells.

https://doi.org/10.1371/journal.pcbi.1006584.g003
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(t = 25 days, filled circle), significant depletion of both oxygen and glucose occurred, but the

uppermost layer of tumor cells still benefited from high metabolite concentrations to grow.

However, when the tumor initiated farther away from the source (middle and bottom rows),

the diffusion limitations and consumption by the stromal cells limited the metabolites available

to the tumor cells, even at early times (empty diamond, empty square). This limitation per-

sisted until the tumor cells broke through the stromal layer and gained access to higher con-

centrations of metabolites (filled diamond, filled square).

Fig 4B presents the trajectories of tumor growth from 11 simulation runs in each case

shown in Fig 4A. We first note that for all initial conditions, the growth appears to proceed

through two phases, starting with slower growth that then transitions to faster growth; these

two regimes are most evident for 3 and 5 layers of stromal cells. By observing the cellular con-

figurations in the simulations (see S1–S3 Movies), we identify that the transition occurs when

the tumor cells break through the layers of stromal cells and gain access to high concentrations

of metabolites. When the tumor cells started to grow, the reaction-diffusion in the intact layers

of stromal cells limited the supply of metabolites to the tumor cells. Under such conditions,

the growth of tumor cells was significantly compromised due to the lack of oxygen (note the

more severe depletion of oxygen relative to glucose in Fig 4A, also see Eq 7 in Model); the

microtumor was nearly quiescent. Once this slow growth led to the penetration of one or more

tumor cells through the layers of stromal cells, those tumor cells transitioned toward their aer-

obic growth regime (term 1 in Eq 7) and quickly overwhelmed the stroma. Interestingly, the

growth rates after breakthrough were constant (the growth curves are linear in time) and inde-

pendent of initial conditions (all late-time slopes are the same in Fig 4B). This constant growth

rate is distinct from the exponential growth that one would expect resulting from saturating

Monod-like growth kinetics (Eq 5–10 in Model). This observation illustrates an important

consequence of a diffusion limited microenvironment. We will comment further on the origin

of this constant rate below.

Fig 4. Axial agent-based model of growth of Warburg tumor cells in a perivascular tissue. (A) Snapshots of predicted cellular

structure and concentration fields of metabolites at different times. Tumor cells with one, three, and five of layers of healthy stromal

cells separating them from the source of nutrients (top, representing interface with blood). Color bars present concentrations of

oxygen and glucose in g/L. (B) Growth trajectories of tumor cells from simulations in three cases in (A). For each case, the

trajectories for 11 independent simulations are shown. Initial positions of cells were randomly generated within the corresponding

stromal or tumor compartment (see Methods). Empty circle: one layer of stromal cells; time = 0 day. Filled circle: one layer of

stromal cells, t = 25 days. Empty diamond: three layers of stromal cells; t = 25 days. Filled diamond: three layers of stromal cells;

t = 50 days. Empty square: five layers of stromal cells; time = 50 days. Filled square: five layer of stromal cells; t = 200 days.

https://doi.org/10.1371/journal.pcbi.1006584.g004
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In the case of 1 layer of stromal cells (black curves), the growth transitions rapidly (within

the first days) to a high, constant rate. Furthermore, the trajectories of all the random initial

seeding conditions are very similar. For 3 and 5 layers of stromal cells (blue and red curves),

the first, slow phase lasts longer because the tumor cells experienced more severe limitations in

their initial configurations. Additionally, in these cases, the trajectories of different initial con-

ditions diverge strongly from one another due to the differences in the moment of transition

from slow to fast growth. This observation reflects the fact that the time for tumor cells to

break through the stroma is sensitive to small differences in the initial configuration of cells.

Fitness conferred by metabolic scenarios

We now proceed to use axial simulations like those in Figs 1C ii) and 4 to investigate the

growth dynamics in each of the three metabolic scenarios.

The Warburg effect. In order to investigate the impact of the strength of Warburg effect

on tumor growth in a resource-limited microenvironment, Fig 5 presents growth in the axial

simulation (as in Fig 4) run with tumor cells that display various levels of the Warburg effect,

as defined by the value of the Warburg Number (WN = 0, 2, 10, 34). Although all four different

metabolic phenotypes of tumor cells grow at the same maximum growth rate under aerobic

growth regime, due to different flux distributions of metabolites, tumor cells with higher WN

have higher yield coefficients of oxygen and lower yield coefficients of glucose, as shown in

Table 1.

Fig 5A–5C present the comparison of growth curves of tumor cells with three different

thicknesses of stromal cells (Fig 4; circle: 1 layer of stromal cells; diamond: 3 layers of stromal

cells; square: 5 layers of stromal cells). We first note that the two-phase growth regime is pres-

ent for 3 and 5 layers of stromal cells across all four metabolic tumor phenotypes (Fig 5B and

5C). As before, the late-time rates are constant (linear growth curves). We note that the rate of

late-stage growth increases with increasing WN up to WN = 10, before saturating or decreas-

ing slightly (WN = 34).

To further quantify both early- and late-stage growths across these scenarios, Fig 5D pres-

ents growth rates extracted from the average curves in Fig 5A–5C (see Methods). In the cases

of 1 and 3 layers of stromal cells at early times (Fig 5D, “1, early”, “3, early”), we observe that

higher WN leads to faster growth. This observation suggests that when tumor cells experience

moderate to high concentrations of metabolites near the blood vessels, the higher yields on

oxygen at higher WNs provide a growth advantage. However, this trend is not obvious in the

early-time growth rate of tumor cells in the case of 5 layers of stromal cells: the growth rates

increase monotonically with WN, such that breakthrough occurs earlier for the more glyco-

lytic cells (WN = 34, see Fig 4C). The late-time growth rates (Fig 5D, “late”) represent the cell

growth after breaking through layers of stromal cells, when the outermost tumor cells have

direct access to high concentrations of both oxygen and glucose regardless of the initial num-

ber of layers of stromal cells; these growth rates are a strong function of WN. Distinct from the

early time behavior, the late-time growth rate of tumor cells is non-monotonic in WN: it rises

from 0 to a maximum at WN = 10 before falling again at WN 34.

To understand this non-monotonic dependence on WN, Fig 5E presents the late-time con-

centration fields of metabolites for the case of 5 layers of stromal cells. These distributions

show that the depletion of oxygen becomes significantly less severe as WN increases due to the

increase in yield coefficients on oxygen (Table 1). More subtly, the depletion of glucose

increases with increasing WN. We further calculated the Krogh lengths of metabolites based

on tumor cell consumptions to provide insights into the predictions of growth rate from simu-

lations at late times. Fig 5F shows the changes in Krogh lengths of oxygen (solid line) and
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glucose (dotted line) as WN increases. At low WN, the Krogh length of oxygen is smaller, indi-

cating that the growth of tumor cells is mainly limited by the availability of oxygen. As WN

increases, the Krogh length of oxygen increases (with increasing yield coefficient) whereas

Krogh length of glucose decreases, and the two cross at WNffi 10. At higher WNs, growth is

glucose-limited and the growth rate decreases with the decreasing Krogh length for glucose, as

Fig 5. The Warburg effect. (A-C) Comparisons of growth curves from axial simulations as in Fig 4A for Warburg tumor cells

with Warburg Number, WN = 0 (Control), 2, 10, and 34 with 1, 3 and 5 layers of stromal cells on top. Each time point represents

the average of 11 simulations; error bars represent standard deviation. Note differences in vertical scales on plots. (D) Comparison

of growth rate of tumor cells at early and late times (see Methods), extracted from the average growth curves in (A-C). (E)

Concentration fields of metabolites in the case of 5 layers of stromal cells at t = 150 days. (F) Krogh lengths of oxygen and glucose

based on consumption of tumor cells vs. Warburg Number. Solid line: Oxygen. Dotted line: Glucose.

https://doi.org/10.1371/journal.pcbi.1006584.g005
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observed in the simulations (Fig 5D–“late”). Interestingly, this observation suggests that tumor

cells may have optimal growth fitness at intermediate WN.

The observations of the late-time concentration fields in Fig 5E and the consideration of

Krogh lengths allow us to explain the constant, late-time growth rates that we have noted

above. The depletion of metabolites (oxygen and glucose) over a fixed distance within the

growing tumor means that only cells within this peripheral zone (i.e., within a Krogh length of

the source) grow while cells deeper within the tissue are essentially quiescent. A fixed number

of cells growing at a constant rate lead to the constant growth of the tumor, in contrast to the

more familiar scenario in which a homogeneous population grows exponentially with individ-

ual cell growing at a fixed rate. Our model thus captures and explains an important character-

istic of solid tumor growth that has been observed experimentally [62,63].

The reverse Warburg effect. To study the population-scale effects of the reverse Warburg

effect under resource limitations, we performed agent-based simulations by seeding hijacked

stromal cells (Fig 2B i)) and the reverse Warburg tumor cells (Fig 2B ii)) in the axial geometry

(Figs 1C ii) and 4A).

Fig 6A–6C present the comparison of the growth curves of reverse Warburg tumor cells

with their hijacked stromal cells (orange) to that of Warburg tumor cells with healthy stromal

cells (WN = 2; black; same as black curves in Fig 5A–5C) with 1, 3, and 5 layers of stromal

cells. Again, we observe two phases of growth, as in Figs 4B, 5A and 5C. As we concluded pre-

viously, the two stages of growth correspond to the pre- and post-breakthrough of tumor cells

(see S1–S3 Movies). For 1 layer of stromal cells (Fig 6A), it appears that Warburg tumor cells

grew faster in both regimes. On the other hand, for 3 and 5 layers of stromal cells (Fig 6B and

6C), reverse Warburg tumor cells grew faster at early times when they were buried beneath the

layers of hijacked stromal cells (i.e., pre-breakthrough), whereas Warburg tumor cells grew

faster in the second regime, once breakthrough had occurred.

To investigate these distinctions further, we present the growth rates of tumor cells under

these two metabolic scenarios at early and late times in Fig 6D. At early times, we confirm that

Warburg tumor cells grew faster than reverse Warburg tumor cells in the case of 1 layer of

stromal cells. In this case, the availability of metabolites in tumor-cell compartment was not

significantly compromised by diffusion limitations and the consumption by the stromal cells;

both phenotypes adopted the aerobic growth regime. According to Eqs 7 and 9, both pheno-

types of tumor cells depend on both oxygen and glucose to grow under aerobic conditions.

Looking at the yield coefficients on oxygen and glucose shown in Table 1, we can see that

reverse Warburg tumor cells have slightly lower yields on oxygen (YO2/aer = 0.247 g-DW/g for

the reverse Warburg phenotype vs. YO2/aer = 0.349 g-DW/g for the Warburg phenotype,

WN = 2) and much higher yields on glucose (YGlu/aer = 2.68 g-DW/g for the reverse Warburg

phenotype vs. YGlu/aer = 0.098 for the Warburg phenotype, WN = 2). This lower yield on oxy-

gen is a cost of using lactate instead of glucose in the TCA cycle (which in turn affects the ATP

production in OXPHOS), underlining the fact that lactate is not an equivalent carbon source

to glucose for tumor cells. Therefore, within a favorable metabolic environment (e.g., 1 layer of

stromal cells), Warburg tumor cells grew faster due to their better yields on oxygen. Further,

upon breaking through the layer of stroma, they obtained direct access to higher concentra-

tions of metabolites, and their growth advantage was amplified, as is reflected in the larger dis-

parity in growth rates at all late times (Fig 6D).

As number of layers of stromal cells increases, the initial tumor growth is more strongly

affected by the consumption of metabolites by the stromal cells. This impact is reflected in the

opposite trend present in growth rates at early times in the case of 3 and 5 layers of stromal

cells (Fig 6D, “3, early”, “5, early”): reverse Warburg tumor cells grew faster than Warburg

tumor cells in these cases. We attribute this early-time growth advantage in reverse Warburg
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tumor cells to the reduced consumption of oxygen by hijacked stromal cells (due to their

higher yields on oxygen than healthy stromal cells, Table 1); this effect represents a host

(hijacked stromal cells)–parasite (reverse Warburg tumor cells) interaction between the two

sub-populations.

We present in Fig 6E the concentration fields of metabolites at t = 0 in the case of 5 layers of

stromal cells. At the initial stage of tumor growth, we note that oxygen penetrated deeper into

the tissue in the reverse Warburg scenario. Although a large number of stromal cells were pres-

ent, their adoption of aerobically glycolytic phenotype allowed them to use glucose to generate

ATP while producing lactate and allowing oxygen to diffuse into the tumor compartment; this

Fig 6. The Reverse Warburg Effect. (A-C) Comparison of growth curves from axial simulations of tumor cells between the Warburg

effect (WN = 2) and Reverse Warburg effect when 1, 3 and 5 layers of hijacked stromal cells are seeded between the source and tumor

cells. Each time point represents the average of 11 simulations; error bars represent standard deviation. Note differences in vertical

scales on plots. (D) Comparison of growth rate of tumor cells at early and late times, extracted from the average growth curves in

(A-C). (E) Concentration fields of metabolites in the case of 5 layers of stromal cells at t = 0.

https://doi.org/10.1371/journal.pcbi.1006584.g006
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penetration of oxygen allowed the reverse Warburg tumor cells to grow aerobically and thus

faster such that they reached breakthrough more quickly (Fig 6C). After breakthrough, due to

the lower yields of biomass on oxygen for reverse Warburg tumor cells, the Warburg tumor

cells grew faster and eventually outgrew the reverse Warburg tumor cells (Fig 6C–6D).

These observations suggest that the host-parasite relationship between hijacked stromal

cells and tumor cells that characterized the reverse Warburg effect can provide growth advan-

tage to tumors that initiate farther away from blood vessels [12], but that this advantage may

not persist after the tumor has escaped from its initial, resource-limited environment.

Glutamine addiction. Fig 7A–7C present the comparison of tumor growth between War-

burg tumor (with WN = 2) cells and glutamine-addicted tumor cells. The growth curves of

Warburg tumor cells rise above the ones of glutamine-addicted tumor cells in all three cases,

indicating a growth advantage in the Warburg scenario. This growth advantage of the War-

burg tumor cells increased as tumor cells initiated more deeply in the tissue (from 1 layer (Fig

7A) to 5 layers (Fig 7C) of stromal cells). This observation can be explained as follow: from

FBA results shown in Table 1, the use of glutamine by glutamine-addicted tumor cells allows

them to uptake much less glucose (higher yields on glucose at 0.148) compared to Warburg

tumor cells (lower yields on glucose at 0.098) under aerobic growth regime. However, the

required uptake rate of oxygen for glutamine-addicted tumor cells is higher (lower yield coeffi-

cient on oxygen at 0.305 vs. 0.349 for Warburg tumor cells in Table 1). This lower yield on oxy-

gen occurs because glutamine passes as α-ketoglutarate via glutamate into the TCA cycle to

produce biomass precursors; this pathway leads to lower demand for glucose in the TCA cycle.

Subsequently, due to the constraint of WN = 2, there is less lactate production and hence less

regeneration of NAD+ from this pathway. Therefore, more oxygen is required to maintain the

redox balance in glutamine-addicted tumor cells. As seen in Fig 7D, the higher demand of oxy-

gen by glutamine-addicted tumor cells led to lower growth rates at both the early and late

times and for all initial conditions. Additionally, as illustrated in Fig 7E, even in the case of 5

layers of stromal cells, glutamine was never limiting. We attribute this abundance of glutamine

to the growth of stromal cells being independent of glutamine and the initiation site of gluta-

mine-addicted tumor cells being oxygen depleted. We conclude that oxygen and glucose

remain the limiting metabolites in this metabolic scenario.

Based on our assumptions and results, we infer that for a typical value of WN = 2, the role

of glutamine in anaplerosis does not confer improved fitness to tumor population relative to

Warburg effect in a geometrically confined microenvironment. Therefore, unless glutamine-

addicted tumor cells utilize oxygen at a similar efficiency as Warburg tumor cells, for example

by adopting a metabolic phenotype with higher Warburg Number than Warburg tumor cells

(e.g., being MYC-positive may allow tumor cells to have even higher glycolytic rate [60]), the

experimentally observed glutamine addiction in diverse tumor cell types cannot be explained

by its role in supplying carbon to the TCA cycle. Therefore, we suggest that some other biolog-

ical roles of glutamine, not included in the current model, must underlie this phenomenon.

Discussion

Warburg effect improves tumor fitness in resource-limited

microenvironment

Within our scope of study of the Warburg effect through the multi-scale modeling approach

(Figs 4 and 5), we confirmed a common hypothesis that Warburg effect impacts tumor cell fit-

ness in metabolically limited microenvironments [64]. Interestingly, our predictions suggest

that there may exist an optimal level of Warburg effect (reflected by the ratio of pyruvate fluxes

to lactate and to the TCA cycle; the Warburg Number) for tumor cells to adopt depending on
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the details of the metabolic microenvironment in which the tumor cells initiate. This observa-

tion may help explain the experimentally observed phenotypic heterogeneity in cancer metab-

olism [65,66]. Such adaptation could occur via modification of the fluxes of pyruvate, for

example with changes in enzymatic rates along either the TCA cycle or glycolytic pathways.

From an ecological perspective, our predictions indicate that Warburg effect may provide a

basis for adaptation of tumor cells to different environmental metabolic stresses [67].

Fig 7. Glutamine addiction. (A—C) Comparison of growth curves from axial simulations of tumor cells between the Warburg

effect and Glutamine addiction when 1, 3 and 5 layers of stromal cells are imposed in between the source and tumor cells,

respectively. Note differences in vertical scales on plots. Each time point represents the average of 11 simulations; error bars

represent standard deviation. (D) Comparison of growth rate of tumor cells at early and late times (see Methods). (E)

Concentration fields of metabolites in the case of 5 layers of stromal cells at t = 0.

https://doi.org/10.1371/journal.pcbi.1006584.g007
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Reverse Warburg effect provides tumor growth advantage depending on

the initial microenvironment

For the reverse Warburg effect scenario (Fig 6), we provide the first mathematical description

of the multi-cellular metabolic interactions proposed by Sotgia et al. [55]. We used our frame-

work to explore the intracellular and multicellular consequences of reverse Warburg effect due

to the interaction between glycolytic stromal cells (hijacked stromal cells) and lactate-consum-

ing tumor cells (reverse Warburg tumor cells). We predict that the hijacked stromal cells have

higher yields on oxygen than healthy stromal cells (Fig 2B i) and Table 1). This information

confirmed the intuitive proposal of Sotgia et al. that the hijacked stromal cells assist in the

growth of tumors that initiate deep within the stroma by allowing more oxygen to penetrate

into the tumor compartment (Fig 6C–6E). We further note that, due to the adaptive character

of reverse Warburg tumor cells, they are not sensitive to local lactate concentration in aerobic

growth regimes (term 1 and 2 on the right-hand side of Eq 9 can be combined); this character-

istic means their aerobic growth remains limited by oxygen and glucose only. Additionally,

due to the utilization of lactate as carbon source in energy production in these tumor cells,

their yield on oxygen is lower compared to tumor cells in the scenario of Warburg effect

(requiring more oxygen for the same mole of carbon consumed). Therefore, the reverse War-

burg effect leads to slower growth in favorable metabolic microenvironment (i.e., abundant

source of metabolites available). However, when tumors initiate in microenvironments where

resources are significantly reduced, the host-parasite relationship implied by the reverse War-

burg effect (via cooperative utilization of oxygen between hijacked stromal cells and tumor

cells) can provide growth advantage to tumors. Given that such growth advantage depends on

the detailed structure of the metabolic microenvironment, we suggest that one must use a

multi-scale framework like the one presented here to investigate the implications of these met-

abolic scenarios.

Glutamine addiction as a hallmark of cancer metabolism

In the exploration of glutamine addiction (Fig 7), we defined the metabolic phenotype by

hypothesizing that glutamine addiction coexists with Warburg effect. This hypothesis led us to

propose a coupled contribution to biomass synthesis of tumor cells from glucose and gluta-

mine as joint carbon sources. Specifically, we aimed to explore the role of glutamine in ana-

plerosis (as a carbon source to replenish the TCA cycle). We demonstrated with FBA that

under our interpretation, glutamine addiction led to an increase uptake of oxygen (i.e., lower

yields on oxygen) in glutamine-addicted tumor cells to maintain their redox balance and to

meet the energy demand; this lower yield on oxygen represents a cost of using glutamine in

the TCA cycle. We see the impact of this lower yield on oxygen in the reduced growth rate of

glutamine-addicted tumor cells relative to Warburg tumor cells. We thereby conclude that glu-

tamine addiction via the process of anaplerosis does not confer an advantage to the overall

tumor growth primarily due to the strong dependence on oxygen. We argue that glutamine is

not an effective alternative carbon source because tumor cells remain limited by glucose and

oxygen.

Our study constrains future considerations of the roles of glutamine addiction in tumor

growth by clearly demonstrating that the anaplerotic pathway cannot, alone, provide a growth

advantage to tumors. With our focus on the anaplerotic role of glutamine using a simplified

metabolic network, we did not account for other roles of glutamine in cellular demand explic-

itly [68,69]. For example, glutamine is known to be an important nitrogen source in nucleic

acids and amino acids synthesis [57,70,71]. Additionally, glutamine contributes to the pool of

metabolites that maintains NADPH/NADP+ balance [69,72] and to produce glutathione as an
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antioxidant to help the cell resist oxidative stress during rapid metabolism [70,72]. We con-

clude that a more detailed investigation that accounts for the multi-scale implications of these

additional pathways is needed in the future.

Multi-scale modeling framework

With our approach, the growth curves captured in our spatially resolved model (a slow growth

regime followed by a fast unidirectional linear growth) are compatible with the experimentally

observed growth of avascular solid tumors [63,73]. Previous studies attributed the linear

growth regime observed at late-time tumor growth to available space for growth and cell diffu-

sion at the edge of the tumors [73,74]. Here, our simulations and analysis indicate that this

effect can be entirely explained by diffusion limitations of metabolites.

In our exploration of Warburg and reverse Warburg effect, our approach provided a basis

for exploring the heterogeneity in metabolic phenotypes that has been suggested by recent

experiments [65,66]. For example, the crossover of growth rates that we observed from early to

late times (Figs 5C and 6C) suggests that adaptation of metabolic phenotypes (e.g., from high

to intermediate WN or from RW to Warburg) could improve overall growth potential of

tumors.

In parallel with experimental approach, computational tools allow for high throughput

investigation of hypotheses that are emerging rapidly in the field of cancer study

[24,29,33,34,68,75,76]. Particularly, a multi-scale modeling framework such as the one pre-

sented here can provide a basis for predicting cell-level to tissue-scale response to therapeutic

interventions. For example, the action of inhibitors of key regulators of cellular metabolism

such as PI3K [77] can be accounted for in FBA as flux constraints (e.g., a reduced upper bound

on glycolytic flux); the obtained uptake rates of metabolites could then be propagated through

to the tissue-scale ABM in our framework in order to examine the effect on tumor growth at

the population scale.

We finish by emphasizing that our interpretations of the three metabolic scenarios studied

here are not unique either with respect to the choices of constraints and objectives imposed for

FBA or the details of the cellular configurations within our simulations. Our modeling frame-

work can accommodate a large diversity of hypotheses and should serve as a powerful tool

with which to evaluate emerging ideas and experimental observations from the rapidly evolv-

ing field of cancer metabolism.

Methods

Intracellular–Modeling biomass production using a stoichiometric model

To capture the intracellular details of different metabolic phenotypes of cells, we adopt the

well-established framework of FBA.

In our study, the central carbon metabolism of human was constructed with 140 reactions

and 92 metabolites (S1 Fig). Of those 140 reactions, 34 consist of boundary exchange of metab-

olites such as uptake and secretion, 26 consist of mitochondrial exchange of metabolites with

the cytosol, 1 is the biomass template reaction, 1 reaction for maintenance, and the 78 remain-

ing reactions are transformations of metabolites that occur in the cytosol and mitochondrion.

The biomass template reaction for growth in the human model was adapted from the Shlomi

et al.’s genome-scale model [20]. Shlomi et al.’s biomass template reaction consists of 30 bio-

mass compounds including amino acids (0.78 g/g-DW), nucleotides (0.06 g/g-DW), and lipids

(0.16 g/g-DW). These biomass requirements were combined and reduced to their upstream

precursors for simplification in our biomass template reaction. For example, stoichiometric

equivalence of ribose-5-phosphate, the precursor of nucleic acids, was used in place of
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nucleotides in their final form. For the maintenance rate, we first sampled a range of values

from 0 to 10 mmol ATP/g-DW-hr [78–80] and concluded that the overall qualitative trend of

our FBA results was not affected by this choice. Therefore, for simplicity, a maintenance rate

of 5 mmol/g-DW-hr is used consistently for all cell types. This maintenance rate represents

73% of the total energy expenditure, comparable to what was previously reported for mamma-

lian cells, which is 65% [80]. Using our reduced biomass function, our glucose yields (YG/n)

matched closely with that of Shlomi and coworkers [20]. For example, within the metabolic

phenotype of WN = 0, at the same growth rate range and maintenance rate of 0, the yield coef-

ficient (specific growth rate per glucose) of our reduced order model (0.0984 g-DW/mmol)

was within 4% of that found with Shlomi et al.’s genome scale model (0.094 g-DW/mmol).

Metabolic phenotypes in hypoxic and hypoglycemic conditions

Under hypoxic conditions (CO << KO), we assumed a quiescent phenotype for all cell types.

To capture the hypoxic condition, we minimized the oxygen uptake rate while maintaining a

growth rate of 1 ×10−6 hr-1 to represent the quiescent state.

For tumor cells in the metabolic scenarios of reverse Warburg effect and glutamine addic-

tion, we used a quiescent phenotype for tumor cells under hypoglycemic conditions (CG

<<KG). We achieve this condition in FBA by minimizing glucose uptake while allowing

uptake of lactate or glutamine respectively and constraining growth rate to be 1×10−6 hr-1.

Use of agent-based simulation tool at multicellular scale—iDynoMiCS

iDynoMiCS is an individual-based modeling platform originally built for the study of micro-

bial biofilms [39]. It allows computation of diffusion-reaction kinetics at individual cell level

and has multiple built-in kinetic mechanisms, including Monod forms as in Eqs 5–10. Addi-

tionally, iDynoMiCS treats the cell movement through two mechanisms: displacements due to

pressure-induced convection at the global scale based on Darcy’s law, and sterically induced

displacements that avoid overlapping during the expansion and division of neighboring cells

at a local scale. During a simulation, the pressure that is directly proportional to the rate of bio-

mass generation or degradation is computed first to induce global convection, followed by the

computation of “shoving” (random displacement) at local scale; these displacements are

selected by a relaxation algorithm to avoid steric overlap. The shoving mechanism is propa-

gated through all cells until the number of cells that are still moving is negligible, and leads to

local random displacements of cells [39].

In our case, since we are explicitly interested in studying how diffusion-reaction kinetics

impact the tumor growth under various hypotheses on cancer metabolism with no specific

consideration of molecular guidance for cell movements, the random, local cell motion pro-

vided by iDynoMiCS serves as a reasonable approximation of cell dynamics within the tissue

[81]. The 2-D simulation domain is discretized into a square grid on which the reaction-diffu-

sion equation is solved by finite difference at each time step (Eqs 2 and 4). The domain is also

divided into two compartments: the “tank” and the “biofilm”. The tank serves as the source of

metabolites; we interpret this compartment to be the blood stream with which the tissue

exchanges nutrients. The “biofilm” defines the tissue where the metabolites undergo diffusion

and reaction; the local reaction rate for each metabolite is set by the density and metabolic

character of the cells in the grid element. A boundary layer defines the resistant to diffusive

mass transfer between the blood stream (“tank”) and the cells (“biofilm”). In our axial simula-

tions, we allowed the exchange of metabolites only at the top of the domain by having zero-

flux boundary condition at the bottom of the domain and periodic boundary conditions on

the sides and in the 3rd dimension (S3 Fig). We set the concentrations of metabolites in the
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“tank” at their physiological concentrations in human blood stream (S1 Table). We selected a

grid size for solving reaction-diffusion process to match individual mammalian cell size

(~10 μm, [82]) and a boundary layer thickness, h, to represent the thickness of the vascular

endothelium (S1 Table). The size of the cell was used to determine the density of the cell based

on dry cell mass (S1 Table). With the density of the cell fixed, we calculated the spherical vol-

ume of the cell from biomass growth by conservation of mass. This volume was then used to

calculate the diameter of cells at each time step. The calculated diameter at each time step was

then used to compare to a threshold value to determine the division of the cell. Once the

computational domain was defined, we then specified the reactions that govern the cell

growth. In each reaction, we chose parameters such as half saturation constant (S1 Table).

Together with parameters such as diffusion coefficients and physiological concentrations of

metabolites obtained from the literature, we checked that the calculated value of the Krogh

length (e.g., ~40μm for oxygen) was in the right range for mammalian tissue.

Calculation of Krogh length

In the calculation of Krogh length, we treat the tissue as a continuum and represent consump-

tion of oxygen and glucose as being zeroth order within the steady state reaction-diffusion

equation. We calculated the Krogh lengths to determine the limiting metabolite in tumor cell

growth in different metabolic scenarios (i.e., different WNs, Fig 5F). The Krogh lengths repre-

sent the typical depth of penetration of metabolites into the tumor compartment. We omitted

the consumption contributed by anaerobic growth of the cells by assuming the metabolites get

completely depleted before the cells switch to anaerobic growth regime. The calculation of

Krogh lengths is illustrated in S2 Fig. The metabolite with shorter Krogh length will play a

more significant role in determining the growth dynamics of tumor cells.

Extraction of early- and late-time tumor growth rates

In Figs 5–7, we evaluated early-time growth rates as the initial slope of the growth curves by

taking the difference of the averaged number of tumor cells for the first two outputs of simula-

tion and dividing by the time interval. The time intervals are 10 days, 20 days and 50 days for

the cases of 1, 3 and 5 layers of stromal cells for all three metabolic scenarios.

Late-time growth rates were obtained in a similar fashion but evaluated at different time

intervals due to the difference in breakthrough times in different cases. A growth over 30 days

between the time points 30 and 60 days was used in the case of 1 layer of stromal cells. A

growth over 80 days between the time points of 120 and 200 days was used for calculation of

late-time growth rates in the case of 3 layers of stromal cells. A growth over 200 days between

the time points of 400 and 600 days was applied to the calculation of late-time growth rates in

the case of 5 layers of stromal cells. These choices of time ranges were applied consistently in

all three metabolic scenarios.
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