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ABSTRACT
This paper presents the numerical damage analysis of concrete structures using higher-order
beam theories based on Carrera Unified Formulation (CUF). The concrete constitutive relation is
modeled using continuum damage mechanics based on a modified Mazars concrete damage
model, in which both the tensile and compressive softening behaviors are regularized with clas-
sical fracture energy methodology. An expression is proposed to estimate the characteristic length
in higher-order beam theories, to prevent mesh dependency. Both softening constitutive laws and
fracture energy calculations are obtained according to Model Code 2010. To assess the efficiency
of the proposed model, three classical benchmark quasi-static experiments are taken for validation.
From the comparison between numerical and experimental results, the proposed CUF model
using continuum damage mechanics can present 3D accuracy with low computational costs and
reduce the mesh dependency.
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1. Introduction

In quasi brittle materials, such as concrete, the crack propa-
gation is a nonlinear problem because the fracture process
zone (FPZ) is non-negligible and mainly an irreversible pro-
cess. The difficulty of concrete finite element (FE) modeling
is that the tensile strain presents a softening constitutive
response at the FPZ due to the generation and propagation
of microcracks, which could lead to localization instability.

1.1. Literature review

Over the past years, several researchers proposed different
theories to simulate concrete behavior successfully in the
framework of continuum media, such as plasticity [1] and
continuum damage mechanics (CDM). In the framework of
CDM, the most popular models are: isotropic damage mod-
els [2, 3], anisotropic damage models [4, 5], and plastic-
damage models [6–8].

Though the above approaches can work in some specific
cases, localization instability with consequent zero energy
dissipation and sensitivity to mesh size are severe difficulties
in finite element simulations of quasi-brittle failure [9]. To
overcome those challenges, a well-known approach is the
nonlocal models, including integral [10, 11] and gradient
models [12], where a material point is associated with the
stress both from local point and neighbor points. This

model can prevent spurious localization from converging to
failure at zero energy dissipation. However, the treatments
of weighting function near the structural boundary are diffi-
cult. Some improvements are taken, such as the nonlocal
boundary layer model [13], to eliminate the boundary prob-
lem, but they are not based on physical arguments [14].

Inspired by the cohesive crack model or fictitious crack
model that was proposed by Hillerborg [15], Ba�zant and Oh
developed another approach called crack band model
(CBM) [16]. In this approach, a tensorial damage constitu-
tive law is applied to consider the effect of the normal
stresses parallel to the crack plane [13]. To preserve the frac-
ture energy and mitigate the spurious mesh dependence, a
material characteristic size he is introduced to adjust the
material’s constitutive relations of each Gauss point. The
value of he normally sets to be equal to the crack bandwidth.
In [13], he is defined as the minimum possible spacing of
parallel cracks when the cracks do not localize. Later, Le
[17] and Gorgogianni [18] extended the CBM to stochastic
FE simulations and rate-dependent constitutive behavior
when meeting the mesh size or material length is larger
than the crack bandwidth.

Among the previous damage models, the isotropic dam-
age model with a tension and compression damage variable
developed by Mazars [3] is quite useful because it can
describe the strain-softening of the concrete only by using
two scalar damage variables, while others need numerous
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parameters whose physical meaning may be unclear. Mazars
damage model [3] is convenient for non-linear structural
design, due to its simple formulation and few input values.

So far, the Mazars damage model has been coupled with
various regularization techniques such as non-local regular-
ization [19] and tensile fracture energy regularization [20].
However, the previously adopted stress-strain constitutive
relations in [20] are not representative of engineering design.
Besides, the method from [20] is not truly mesh independent
by limiting the maximum mesh size. Recently, Arruda [21]
made a great improvement by implementing the stress-strain
constitutive laws from practical concrete design code, such as
fib Model Code 2010 (MC2010) [22]. Furthermore, Arruda
[21] used a fracture energy regularization, for tensile and
compressive behavior, by considering the post-peak slope of
the constitutive curve as a function of the element size.
Though it worked well in [21], only two-dimensional (2D)
analysis with reduced integration was conducted via ABAQUS
user subroutines, which means full three-dimensional (3D)
analysis will take heavy computational costs.

When it comes to the efficiency of finite element calcula-
tion, the Carrera unified formulation (CUF) [23] is a power-
ful tool that considers the order of the model as an input of
the analysis. Classical beam theories, Euler–Bernoulli beam
model (EBBM) [24] and Timoshenko beam model (TBM)
[25], can be obtained as particular cases. In CUF, higher-
order one-dimensional (1D) models are adopted and the 3D
displacement field can be evaluated compactly as an arbi-
trary order expansion in terms of generic functions. The
comprehensive discussion about CUF can be found in [26].
More recently, Lagrange polynomials have been used to dis-
cretize the cross-sectional kinematics [27, 28]. So far, CUF
has been employed to the progressive damage analysis of
composite structures with the crack band theory [29–31].
Regarding to civil structures, CUF was also employed for
the investigation of reinforced concrete structures [32, 33]
and steel-concrete composite structures [34], but with limi-
tations either on the use of linear analysis or on limited sec-
tions with a equivalent single layer.

1.2. Research significance

Motivated by the foregoing discussion, the authors try to
expand the CUF to the nonlinear fracture analysis of con-
crete structures because CUF is a powerful formulation that
can produce accurate results with lower computational costs.
To avoid mesh sensitivity and other ill-posed problems, a
general and robust fracture energy regularization in CUF is
developed and proposed. For this concrete damage model,
fib Model Code 2010 [22] provides the practical tensile and
compressive stress-strain constitutive relations of concrete.
The post-peak region of the stress-strain relation for each
Gauss point is relevant with the characteristic element length
Lc, which ensures the larger elements will own smaller volu-
metric fracture energy and the smaller elements will have
larger volumetric fracture energy. A new formula for calcu-
lating Lc, which is different from those in [29, 30], is pro-
posed to do fracture energy regularization with higher-order

theories in CUF. This work will fill the gap in knowledge
about nonlinear concrete fracture analysis via CUF.

1.3. Organization

This paper is organized as follows: First, the Lagrange
expansion (LE) CUF model is presented. Then, the original
damage model and modified damage model are introduced
receptively. Meanwhile, the discussion on Lc in CUF is pre-
sented. Next, the model validation and associated concrete
damage examples are shown to prove the accuracy of the
proposed model, and directly compared with experimental
values. Finally, some meaningful conclusions based on the
above analysis are obtained.

2. Higher-order beam models

The finite elements that are formulated based on CUF are
introduced first. A one-dimensional beam model is applied
and some polynomial expansions are adopted to express
cross-sectional kinematics approximation. Therefore, the full
3D results can be attained with quite low computational
costs. The basic ideas and the main advantages of CUF are
shown in this section.

2.1. Carrera unified formulation

Assuming a structure is aligned along the y axis, and the
cross-section X is normal to the axis y. Then, in the frame-
work of the CUF, the 3D displacement field of a beam
model can be expressed as follows:

uðx, y, zÞ ¼ Fsðx, zÞus ðyÞ, s ¼ 1, 2, ::::,M (1)

where Fs varies within the cross-section; us is the general-
ized displacements vector and M stands for the number of
terms in the expansion. According to the Einstein notation,
the repeated subscript s indicates summation. The choice of
Fs and M is arbitrary, that is, different base functions of any
order can be taken into account to model the kinematic
field of a beam above the cross-section [26].

In this work, Lagrange-like polynomials are adopted as
cross-section expanding functions Fs, which is called the
Lagrange expansion (LE). They are useful to deal with the
arbitrary-shaped cross-section. Several Lagrange polynomials
can be employed to develop higher-order beam theories,
such as three-point linear (L3), four-point bilinear (L4),
nine-point quadratic (L9), sixteen-point cubic (L16), etc. All
Lagrange polynomials and their corresponding functions
can be found in [26]. Here, the interpolation functions for
the nine-point (L9) quadratic polynomial element are shown
as an example:

Fs ¼ 1
4
ðr2 þ r rsÞðs2 þ s ssÞ, s ¼ 1, 3, 5, 7

Fs ¼ 1
2
s2sðs2 þ s ssÞð1� r2Þ þ 1

2
r2sðr2 þ r rsÞð1� s2Þ, s ¼ 2, 4, 6, 8

Fs ¼ ð1� r2Þð1� s2Þ, s ¼ 9

(2)
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where r and s are the normalized coordinates that vary from �1
to 1 and rs and ss are the actual coordinates of the nine nodes.

Then, the complete displacement field Eq. (1) can be
given by one single L9 element as follows:

uxðx, y, zÞ ¼ F1ðx, zÞux1ðyÞ þ F2ðx, zÞux2ðyÞ þ � � � þ F9ðx, zÞux9ðyÞ
uyðx, y, zÞ ¼ F1ðx, zÞuy1ðyÞ þ F2ðx, zÞuy2ðyÞ þ � � � þ F9ðx, zÞuy9ðyÞ
uzðx, y, zÞ ¼ F1ðx, zÞuz1ðyÞ þ F2ðx, zÞuz2ðyÞ þ � � � þ F9ðx, zÞuz9ðyÞ

(3)

where ux1ðyÞ, :::, uz9ðyÞ are the unknown variables of the
problem and represent the translational displacement com-
ponents of nine points for each L9 element.

2.2. Finite element approach

The finite element approach can be adopted here to
approximate the generalized displacements us by using the
classical beam shape functions. Then, the displacement field
Eq. (1) can be expressed as:

uðx, y, zÞ ¼ Fsðx, zÞNiðyÞusi, i ¼ 1, :::,NNE (4)

where Ni stands for the shape functions of beam elements,
NNE is the number of nodes per beam element, and usi is
the nodal displacement vector.

Normally, beam elements with two nodes (B2), three
nodes (B3), and four nodes (B4) are available for choice
according to the structural problem. In other words, the
beam finite elements’ choice is entirely independent of the
cross-section discretization.

The governing equation of static problems can be derived
by the Principle of Virtual Displacements (PVD), which is
shown as follows:

dLint ¼ dLext (5)

where Lint is the internal elastic work, Lext is the work done
by the external forces, and d indicates the virtual variation.
The virtual variation of the internal work is

dLint ¼
ð
V
deTr dV (6)

where e is the strain vector, r is the stress vector. Substituting
the constitutive relations and Eq. (4) into Eq. (6) and the
internal work can be rewritten in the following compact form:

dLint ¼ duTsjK
ssijusi (7)

where Kssij is the element stiffness matrix in the form of the
3� 3 fundamental nucleus. Each element stiffness matrix
can be formulated automatically according to four indexes s,
s, i, and j. The detailed derivation and the explicit expression
of stiffness matrix can be found in [26].

The virtual work done by the external loads is

dLext ¼
ð
V
duTg dV þ

ð
S
duTp dSþ

ð
L
duTq dyþ duTP (8)

where g are the volume forces, p are the surface forces, q
are the line forces and P are the concentrated loads. For the
sake of simplicity, the external work can be rewritten in a
weak form:

dLext ¼ duTsjF (9)

where F is the nodal external force vector contributed by all
external forces.

Finally, substituting Eqs. (7) and (9) into Eq. (5), the gov-
erning equation can be attained as:

Kssijusi ¼ F (10)

3. Mazars damage model

The elastic damage isotropic model for concrete proposed
by Mazars [3] has the following characteristics: (1) Concrete
behavior is a combination of elasticity and damage without
permanent strains; (2) One scalar damage variable is
assumed to be isotropic and directly influences the stiffness
of the material; (3) The positive strain-based damage criteria
are adopted. In real structures, the plastic strains from steel
bars play a more important role than that from concrete
when studying the cyclic or dynamic behaviors. Therefore,
the Mazars damage model can work well when the concrete
structures are under monotonic static load, though no per-
manent strains are taken into account.

3.1. Model formulation

The concrete damage constitutive law of Mazars [3] was
defined as:

r ¼ ð1� dÞE0e (11)

where matrix E0 is the local stiffness matrix for the undam-
aged concrete material and d is the variable of damage that
is used to monitor the degradation of the material elasticity.

Mazars [3] expressed that the accumulated positive tensile
principal strains accounted for damage evolution. Therefore,
the damage evolution conditions are determined by the fol-
lowing loading function:

f ¼ eeq � ed0ðdÞ (12)

where eeq represents the equivalent strain which can be calcu-
lated according to Eq. (13) using the positive principle effect-
ive strain vector because only positive strains produce damage
in the Mazars model. The variable ed0ðdÞ is the hardening-
softening parameter that determines the onset of elastic deg-
radation of concrete material. The value of ed0ðdÞ is constant
according to the ultimate tensile strain of material and will be
updated as the equivalent strain after the damage occurs.

eeq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
he1i2þ þ he2i2þ þ he3i2þ

q
(13)

with

hai6 ¼ 1
2
ða6jajÞ (14)

3.2. Original damage evolution

Damage onset is governed by the loading function. If f < 0
in Eq. (12), the structure works in elastic behavior and no

4584 J. SHEN ET AL.



damage is detected. Once f � 0 in Eq. (12), the damage is
activated and the value of d is defined as Eq. (15), which
represents a linear combination of two scalar variables dt
and dc.

d ¼ abt dt þ abc dc (15)

where b is a coefficient introduced to consider shear behav-
ior, which can be set as 1.0 from [19] to underestimate the
shear strength of the material. The variables dt and dc repre-
sent the damages caused by tensile and compressive behav-
ior, respectively. To avoid any iterative process, Mazars [3]
suggested both variables from Eq. (15) can be calculated dir-
ectly using the following equations:

dt ¼ 1� 1� Atð Þed0
eeq

� At exp �Bt eeq � ed0ð Þ� �
dc ¼ 1� 1� Acð Þed0

eeq
� Ac exp �Bc eeq � ed0ð Þ� � (16)

where At, Ac, Bt and Bc are the concrete material coefficients
that can be obtained by fitting to data from classical uniaxial
experiments [35].

The variables at and ac from Eq. (15) are two parameters
that can account for the influence of tensile and compressive
behavior on total damage, respectively. Before obtaining
their values, it is necessary to adjust the tensile strain vector
et and compressive strain vector ec using the principle posi-
tive effective stresses as follows:

eti ¼
1þ �

E
hr̂iiþ � �

E

X
k

hr̂kiþ

eci ¼
1þ �

E
hr̂ii� � �

E

X
k

hr̂ki�
(17)

where � and E represent Poisson’s ratio and elastic modulus
of concrete materials, respectively.

Then, the total adjusted positive strain eþV can be calculated by
summing up all positive elements from vector et and ec:

Furthermore, the variables at and ac are obtained using Eq. (18).

eþV ¼
X
i

hetiiþ þ
X
i

heciiþ

at ¼
P

i hetiiþ
eþV

; ac ¼
P

i heciiþ
eþV

(18)

3.3. Modification via regularization of fracture energy

The fracture energy regularization is an essential concept in
the conventional CBM [16], which can be adopted here for
the Mazars damage model to update the damage evolution
laws for tensile and compressive behavior and further to
avoid unrealistic collapses in FE simulations.

The stress-strain constitutive relation of concrete can be
characterized by the elastic modulus E, the tensile strength
fctm or compressive strength fcm, and the fracture energy
containing the tensile one Gft and the compressive one Gfc.
The softening branch of stress-strain curve is determined by
fracture energy. Once the mesh size get changed in FE

simulation, the post-peak part of the stress-strain curve also
needs adjustment to preserve the fracture energy.

In fracture energy regularization, the material element
size he is introduced to get the total energy dissipation dens-
ity containing the tensile one gft and the compressive one
gfc. The total energy dissipation density, also named the
volumetric fracture energy in [21], is defined as the area
under the uniaxial stress-strain curve. Then, the softening
branch of stress-strain relation for each Gauss point in FE
simulation will depend on the volumetric fracture energy
rather than fracture energy. The tensile softening branch of
stress-strain curve can be rescaled by the material element
size he, which is expressed as:

gft ¼
Gft

he
(19)

and the corresponding compressive softening relation for
each Gauss point can be rescaled as:

gfc ¼
Gfc

he
(20)

3.3.1. Characteristic element lengths
Evidently, the material element size he is determined by the
FE mesh size. For CDM models in a FE framework, a scalar
characteristic element length Lc is provided to the material
model [36], which means the he in Eqs. (19) and (20) can
be replaced with Lc.

The definition of Lc is the cube root of the element vol-
ume V for a 3D element or the square root of the element
area A for a 2D element in commercial software tools such
as ABAQUS [37], which can be expressed as:

Lc,V ¼
ffiffiffiffi
V3

p
or Lc,A ¼

ffiffiffiffi
A

p
(21)

According to [38], the characteristic length (Lc) is affected
by element type, shape, orientation, and the order of ele-
ments. It is referred that damage could localize into a single
Gauss point for higher-order finite elements [38]. Thus, it is
essential to take a proper adjustment for the Lc so that the
global energy dissipation is captured correctly.

Other works [29, 30] on CUF for progressive damage of
composite structures considered Lc ¼ ðVGPÞ1=3, where VGP is
the Gauss point volume of the given element. The Gauss point
volume is the share of the element volume at each Gauss point.

Given the aforementioned consideration, one beam elem-
ent and one Lagrange element in CUF can be considered to
form a 3D element with a volume. Then the volume should
be divided by one parameter to consider the influence of
element order. Therefore, the following equation is assumed
to get Lc in CUF based FE simulations:

Lc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ae � Le
ð ffiffiffiffiffi

M
p � 1Þ2 � NNE � 1ð Þ

3

s
(22)

where Ae and Le represent the area of one Lagrange element from
cross-section and the length of one beam element, respectively.

For the fracture energy method to be properly applied,
using the classical methodology, the elements must be near
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a square [21, 38]. For the case of higher-order beam theo-
ries, this is more complex, since the Lc from Eq. (22) may
depend on four parameters. If not proper caution is taken,
then an arbitrary use of these parameters can cause some
convergence difficulty. Therefore, the following equation
should be approximately satisfied in CUF for accuracy and
convergence: ffiffiffiffiffi

Ae
p
Le

�
ffiffiffiffiffi
M

p � 1
NNE � 1

(23)

3.3.2. Tensile damage behavior
The constitutive model of concrete tensile behavior is shown
as Figure 1, which is proposed based on the stress-strain
relation from MC2010 [22]. An initial nonlinear behavior
that should occur in branch OA in MC2010 [22] is ignored
due to the rapid cracking of the concrete at the initial stages
of the structural response. A bilinear softening law in
MC2010 [22] is replaced with a classical exponential soften-
ing law (branch BD) in Figure 1 to avoid convergence prob-
lems when the tensile stress approaches 0.0. The tension
damage evolution law is defined by:

1� dt ¼
rtp
rtp0

(24)

where rtp and rtp0 are the tensile stresses of any point P and
P0 corresponding to the constitutive model with damage and
without damage, respectively.

Substituting the stress-strain relations into Eq. (24) and
the detailed tension damage evolution law can be described
as:

dt ¼
1� ed0

eeq
exp

et1 � eeq
etu � et1

� �
if eeq 6 etres

1� pt � ed0
eeq

if eeq > etres

8>><
>>: (25)

All parameters and physical quantities present in Eq. (25)
and Figure 1 are defined by:

rtmax ¼ fctm; et1 ¼ ed0; etu ¼
Gft

Lcfctm
þ et1; pt ¼ rtres

fctm

where fctm is the mean uniaxial tensile strength of concrete;
etu is the equivalent ultimate strain for bilinear softening,
which can be computed using the tangent to the exponential
softening law at point B. rtres and etres are the residual
stresses and strains to make the value of damage not equal
1.0. The volumetric fracture energy gft is computed from the
shaded parts of Figure 1.

3.3.3. Compression damage behavior
Figure 2 shows the stress-strain relation of concrete for uni-
axial compression from MC2010 [22]. The initial relation
(path OAB) from MC2010 [22] is used at first. The follow-
ing is a simple bilinear softening branch (path BCDE) that
is referred from [39]. To minimize the convergence prob-
lem, the model adopts a residual compressive strain (ecres) to
let the value of stress never equal 0.0, which means the
stress will be constant when the strain achieves ecres: The
compression damage evolution law is defined by:

1� dc ¼
rcp
rcp0

(26)

where rcp and rcp0 are the compressive stresses of any point
P and P0 corresponding to the constitutive model with dam-
age and without damage, respectively.

Similarly, substituting the stress-strain relations into Eq.
(26) and the detailed compression damage evolution law can
be described as:

dc ¼

1� ðk� �ec � �e2c Þfcm�
1þ ðk� 2Þ � �ec

�
Ecmeeqc

if eeqc 6 ec1

1� fcm
Ecmeeqc

if ec1 < eeqc 6 ec2

1þ k1
Ecm

� k2
Ecmeeqc

if ec2 < eeqc 6 ecres

1� pcfcm
Ecmeeqc

if ecres < eeqc

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(27)

Figure 1. Stress-strain relation of concrete for uniaxial tension.

Figure 2. Stress-strain relation of concrete for uniaxial compression.
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where

rcmax ¼ fcm; eeqc ¼
eeq
�

ffiffiffi
2

p ; �ec ¼
eeqc
ec1

;

k ¼ 1:05Ecmec1
fcm

; pc ¼ rcres
fcm

k1 ¼ fcm
ðecu � ec2Þ ; k2 ¼ fcm þ k1 � ec2

(28)

In these equations, fcm represents the mean compressive
strength of the concrete; Ecm is the secant Young’s modulus;
eeqc is the equivalent compressive strain; ec1 and ec2 are the
strain parameters taken as 2:0& and 2:4&, respectively
[40]; k are the parameters to describe the softening part in
branch AB from EC2 [40]; k1 and k2 are the parameters to
describe the softening curve in path CDE; �ec is a unidimen-
sional strain ratio provided in MC2010 [22]; ecu is the
extreme strain that is computed by Eq. (29).

gfc ¼
Gfc

Lc
¼ rcmax �

ecu þ ec2 � ec1ð Þ
2

� �
(29)

When computing the volumetric fracture energy gfc, the
residual stress can be neglected from [41]. Therefore, gfc can
be computed from the shaded area in Figure 2.

4. Model validation

First, a representative single element analysis will be conducted
to verify the implementation of modified Mazars model in
CUF. A concrete cube is adopted to test the tensile and com-
pressive behavior under the uniaxial tension and compression,
respectively. The boundary conditions are shown in Figure 3.

The material properties are listed in Table 1, which
belongs to the C30 strength class. The residual compressive
stress and tensile stress are taken as the 0:5fcm and 0:15ftm,
respectively. The tensile fracture energy and compressive
fracture energy can be computed by Eqs. (30) and (31) from
MC2010 [22] and [42], respectively:

Gft ¼ 73� ðfcmÞ0:18 (30)

Gfc ¼ 8:6� ðfcmÞ0:25 (31)

In this case, three different sizes of the cube are calculated
whose side lengths are 1m, 0:5m, and 0:1m, respectively.
Only one L4 element and one B2 element are adopted so
that the Lc will be equal to the cube side length.

The calculated strain-stress curves are shown in Figure 4.
The curves are similar to the constitutive relations both
from the tensile behavior from Figure 1 and compressive
behavior from Figure 2. For one thing, the maximum com-
pressive and tensile stress are the same regardless of the
value of Lc. For the other, the softening parts are influenced
by the value of Lc. The smaller the Lc is, the larger the volu-
metric fracture energy is, which further leads to the model
being less brittle. In other words, the fracture energy is pre-
served successfully by using Eqs. (19) and (20).

Furthermore, a cube with a side length of 1m is taken for
further study. More configurations can be adopted here to
study the influence of the order of elements. The Lc can be
computed from Eq. (22). For example, one B3 element
and one L9 element are both quadratic, and then the corre-
sponding Lc should be 0:5m: One B4 element and one L16
element are both cubic, and then the corresponding Lc is
around 0:33m:

From the tensile curves in Figure 5(a), the model with
different orders shows the same results before the peak and
shows the different softening curves because different Lc is
produced. For compressive behavior in Figure 5(b), the
curve from a full linear model (L4þB2) is similar to that
from a full quadratic model (L9þB3). Then the full cubic
model (L16þB4) shows a different post-peak slope because
the corresponding Lc gets a sharp decrease.

Overall, the tensile and compressive stress-strain curves
are plotted as expected from [22]. The constitutive laws are
mainly influenced by the volumetric fracture energy that is
determined by Eqs. (19) and (20). Therefore, the fracture
energy regularization technique is applied successfully and
the value of Lc in CUF can be correctly calculated by
Eq. (22).

Figure 3. Boundary conditions.

Table 1. Material properties.

Material E (GPa) fctm (MPa) fcm (MPa) v

Concrete 30 2.9 38 0.2
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5. Numerical results

In this section, three known benchmarks in the scientific com-
munity are tested using the CUF formulation with CDM. The
displacement-control method is adopted to solve the quasi-
static nonlinear structural problems. To highlight the capabil-
ity of the CUF, the numerical study is performed using the
beam axis perpendicular or parallel to the analyzed structure,
something not possible with classical beam theories.

5.1. The L-shaped panel test

An experimental benchmark for the validation of plain con-
crete cracking is provided in [43]. The geometric information
and boundary conditions for numerical simulation are shown
in Figure 6. The detailed material properties are listed in
Table 2. The fracture energy is given by Gf¼ 90N/m. Two
upward vertical displacements are imposed as shown in
Figure 6. To prevent any localized effects resulting from the

prescribed displacement, steel material is adopted for the right
part boundary.

CUF models consist of Lagrange elements on cross-sec-
tion and beam elements along the y-axis, respectively, which
can be seen in Figure 7. The y-axis is along with the thick-
ness and the cross-section is on the rest x-z plane. The order
of LEs and beam elements are independent of each other,
which can be considered as inputs according to needs. The
higher-order elements are first considered here because L9
and L16 are more recommended than L4 in other applica-
tions of CUF [34]. Four kinds of model configurations are
listed in Table 3. The second-order elements, L9 and B3, are
adopted here. The number of Lagrange elements and beam
elements are determined by satisfying Eq. (23) as far
as possible.

From Figure 8, the final damage distributions of the L-
shape panel are stable though different meshes are adopted,
illustrating the mesh independence clearly. The damage
propagation of the Model 3 is plotted in Figure 9. The

Figure 4. The effect of Lc on stress-strain curves.

Figure 5. The effect of CUF expansion order on stress-strain curves.
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damage first occurs at the reentrant corner. Then it evolves
diagonally upwards, which is consistent with experimental
crack distribution from Figure 6. After that, it propagates
horizontally, which shows difference from experimental
crack distribution. However, the whole propagation is more
reasonable than that shown from [21] where traditional FE
method was used.

Figure 10 shows the load-displacement curves of the L-
shaped panel both from CUF models and experiments. From

the stiffness, the peak load, and the softening part of curves in
Figure 10, it is obvious that all numerical results are quite
close to the experimental results, which also demonstrates the
results are independent of the mesh size. It is worth noting
that the stiffness and peak loads from different CUF models
are slightly greater than the experimental ones. This phenom-
enon is also pointed out by [21], which is reasonable. For one
thing, there was some uncertainty about the boundary condi-
tions of the experiments. For the other, an assumption that

Figure 6. Dimensions and real crack distribution of the L-shaped panel (Unit: mm).

Table 2. Material properties of concrete in L-shaped panel test.

Material E (GPa) fctm (MPa) fcm (MPa) t

Concrete 26 2.5 31 0.18

Figure 7. Mesh assignment of L-shape panel.

Table 3. Mesh configuration for L-shape panel.

Model No. Model 1 Model 2 Model 3 Model 4

Configurations 75L9þ 2B3 192L9þ 3B3 300L9þ 4B3 507L9þ 5B3
LE side length (mm) 50 30 25 20
Beam element length (mm) 50 33.3 25 20
Characteristic length (mm) 25 16 12.5 9.8
DOFs 5115 17,493 34,587 57,591
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the steel-like material is adopted close to the loading point
during simulations provides extra stiffness and load-bearing
capacity. Besides, the peak loads from Model 3 and Model 4
are marginally larger than those from Model 1 and Model 2.
This can be attributed to Eq. (23) not being fully satisfied. In
any case, Model 1 with the most coarse meshes and lowest
DOFs is still able to accurately predict the structural response
in terms of force versus displacement curve.

5.2. The Hassanzadeh test

Another well-known experimental concrete damage test called
“Hassanzadeh test” was first conducted in [44]. Figure 11
shows the geometry of the plain concrete specimen with four
edges notched in the middle. The bottom surface is fixed and
the tension is imposed on the top via displacement control.
Unlike the past similar simulations [21] where a 2D analysis is
conducted, the full 3D simulation based on CUF will be

Figure 8. Final damage distribution of panels for each model.

Figure 9. Damage propagation of panel for Model 3.

Figure 10. Load-displacement curves of the L-shaped panel test.
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Figure 11. Dimensions of specimen in Hassanzadeh test (Unit: mm).

Table 4. Material properties of concrete in Hassanzadeh test.

Material E (GPa) fctm (MPa) fcm (MPa) t

Concrete 36 3.5 40 0.2

Figure 12. Mesh assignment of the specimen in Hassanzadeh test.

Table 5. Mesh configuration of the middle notched part in Hassanzadeh test.

Model No. Model A Model B Model C Model D

Middle configuration 25L9þ 1B2 64L9þ 1B4 64L16þ 1B4 100L16þ 1B4
LE side length (mm) 8.00 5.00 5.00 4.00
Beam element length (mm) 4.00 4.00 4.00 4.00
Characteristic length (mm) 4.00 2.03 1.55 1.33
Total DOFs 6498 16,734 36,606 50,142

Figure 13. Final damage distribution for each model.
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carried out here. The material properties reported in [44] are
listed in Table 4. The fracture energy Gf can take 73.35 N/m
from [45].

Figure 12 displays the mesh assignments on each speci-
men. Similarly, four kinds of configurations are taken to
verify the mesh independence. In this case, the order of
Lagrange elements and beam elements are not always the
same and more combinations are adopted. Table 5 lists all
information about meshes.

Figure 13 shows the final damage distribution obtained
from four different models. In Model A, only one B2 element
with a length of 4mm is taken in the middle. The middle Lc
from Model A is also 4mm, illustrating the damage width
equals 4mm and further leading to the whole middle area
being damaged. However, one higher-order beam element is

used in the rest three models so that the corresponding Lc is
smaller than the beam element size, resulting in the distrib-
uted damage can be seen in the middle. Therefore, it is more
recommended to use higher-order beam elements. Otherwise,
more beam elements are needed if the linear element is
adopted. Moreover, except for Model A, the damage distribu-
tion is quite similar in Model B, Model C, and Model D,
which shows the mesh independence.

Figure 14 displays the damage evolution from several
load steps. The damage first occurs around the corner on
the notched edges, and then evolutes to the middle. Then,
the specimen fails due to the middle area is damaged, which
corresponds to the peak load. After that, the damage stops
propagation and structural behavior begins softening.

The reaction load and displacement curves from the experi-
ment and simulations can be plotted in Figure 15. The initial
stiffness from the experiment shows slightly higher than that
from simulations. However, the peak loads from all simulations
are close to the experimental peak load. For the softening part,
three curves except for the curve from Model B are close to the
experimental softening curve. That is because Model B does
not fully satisfy Eq. (23). Model C adopts the same number of
Lagrange elements but with higher order, which makes this
mesh configuration closer to the requirement of Eq. (23).
Model A and Model D meet the requirement of Eq. (23) strictly
so that they are close to each other, demonstrating simulation
results are independent of the mesh size using the fracture
energy regularization. In other words, meeting Eq. (23) as far as
possible is necessary to get a mesh independence result.

5.3. Three-point bending test

Another indirect tension test is the three-point bending (TPB)
test performed on notched concrete beams. One typical

Figure 14. Damage propagation for Model D.

Figure 15. Load-displacement curves from the Hassanzadeh test.
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notched concrete beam, shown in Figure 16, was experimen-
tally tested in [46]. The crack thickness and depth are 5mm
and 50mm, respectively. The material properties from experi-
ments are listed in Table 6. The experimental fracture energy
from [46] is 113N=m: However, the simulated post-peak parts
of the load-displacement curve from [47, 48] were above the
experimental curve when 113N=m was taken. Furthermore,
the same notched concrete beam was studied in [49] and frac-
ture energy in the range of 50� 150N=m was recommended
to consider the material scatter in properties. Inspired by [38]
where the reduced fracture energy was adopted to obtain the
desired load-displacement curve, the fracture energy will be
taken as 75N=m in this case.

Figure 17 shows the mesh assignment of a notched con-
crete beam. To reduce the computational cost, symmetry
considerations are adopted. One beam element with a length
of 5mm is fixed on both two ends and in the middle notch
because of their short lengths. The rest beam elements are
assigned as needed. However, more beam elements should

be assigned near the notch. Three kinds of beam element
configurations are listed in Table 7. For cross-section, L9
elements with a side length of 10mm are adopted for all
models, which is shown in Figure 17(b), to ensure the mesh
size around the notch meets the requirement of Eq. (23).

Figure 18 shows the damage propagation around the
notched part. It is expected that the damage emerges from the
notch tip and propagates vertically along the line of symmetry.

The reaction load and displacement curves are displayed
in Figure 19 and experimental results are also plotted for
comparison. From the reaction load, the numerical results
are consistent with the upper and lower experimental
results. Model 1 shows higher stiffness than the other two,
illustrating Model 1 is not enough to meet the convergence.
Increasing the number of B2 elements such as Model 2 or
using higher-order beam elements such as Model 3 can
solve this problem. For the softening part, numerical curves
also agree with the experimental results and are between the
upper and lower bound of the experimental campaign.

6. Conclusions

In this work, a modified Mazars damage model using frac-
ture energy regularization and higher-order beam theories
based on CUF are adopted to study the concrete damage

Figure 16. Dimensions of the notched beam for TPB test (Unit: mm).

Table 6. Material properties of concrete in TPB test.

Material E (GPa) fctm (MPa) fcm (MPa) t

Concrete 20 2.4 28 0.2

Figure 17. Mesh assignment of the notched beam in TPB test.

Table 7. Beam element configuration for TPB test.

Model No. Model 1 Model 2 Model 3

Beam element 3B2þ 14B2 3B2þ 50B2 3B2þ 8B4
Lc in the midspan (mm) 5.00 5.00 5.00
Total DOFs 12,870 37,950 19,800
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propagation. The concrete damage evolution laws are
obtained from tension and compression constitutive laws
from Model Code 2010. A new method for calculating char-
acteristic element length, important for fracture energy regu-
larization, is discussed in higher-order beam theories. By
comparing the numerical results and experimental results
from three well-known benchmark experiments, the follow-
ing conclusions can be obtained:

1. CUF model with a random combination of LEs and
beam elements provides 3D accuracy with low compu-
tational costs for concrete damage modeling.

2. The proposed CUF model with a modified Mazars damage
model can simulate the structural response accurately, such

as stiffness, load capacities, and softening curves, in terms of
load and displacement curves.

3. The proposed CUF model can also simulate the damage
propagation and crack pattern distribution in 3D, which
is consistent with the experimental observations.

4. The proposed calculation of characteristic element length
in the CUF model is correct and worth promoting for
further application to obtain mesh independence.

Although the robust and accurate results can be
obtained from the present model, the requirement from
Eq. (23) is not always easy to meet, which further leads to
some errors. In some particular cases, small elements are
needed to meet Eq. (23) when the notch size is quite small
so that the total DOFs will become considerably large.
Therefore, the ongoing study will investigate the available
approaches to get rid of the dependency on Eq. (23).
Besides, the plain concrete structures are few in real appli-
cations. The reinforced concrete structures will also be
studied soon.
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