Hindawi

Oxidative Medicine and Cellular Longevity
Volume 2021, Article ID 9259297, 12 pages
https://doi.org/10.1155/2021/9259297

Research Article

Comprehensive Analysis of Alteration Landscape and Its Clinical
Significance of Mitochondrial Energy Metabolism Pathway-
Related Genes in Lung Cancers

Zhen Ye,"* Huanhuan Zhang,” Fanhua Kong,* Jing Lan,” Shuying Yi,” Wenshuang Jia,’
Shu Zheng,3 Yuna Guo,’ and Xianquan Zhan 1,35

"Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu
Weigi Road, Jinan, Shandong 250021, China
“Department of Biochemistry and Molecular Biology, School of Basic Medicine, Shandong First Medical University,
6699 Qingdao Road, Jinan, Shandong 250117, China
*Medical Science and Technology Innovation Center, Shandong First Medical University, 6699 Qingdao Road, Jinan,
Shandong 250117, China
*Department of Thoracic Surgery, Tai’an City Center Hospital, Tai’an, Shandong 271000, China
*Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University,
440 Jiyan Road, Jinan, Shandong 250117, China

Correspondence should be addressed to Xianquan Zhan; yjzhan2011@gmail.com
Received 22 July 2021; Accepted 26 November 2021; Published 20 December 2021
Academic Editor: Enrico Desideri

Copyright © 2021 Zhen Ye et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. Mitochondria are the energy factories of cells. The abnormality of mitochondrial energy metabolism pathways is closely
related to the occurrence and development of lung cancer. The abnormal genes in mitochondrial energy metabolism pathways might be
the novel targets and biomarkers to diagnose and treat lung cancers. Method. Genes in major mitochondrial energy metabolism
pathways were obtained from the KEGG database. The transcriptomic, mutation, and clinical data of lung cancers were obtained
from The Cancer Genome Atlas (TCGA) database. Genes and clinical biomarkers were mined that affected lung cancer survival.
Gene enrichment analysis was performed with ClusterProfiler and the gene set enrichment analysis (GSEA). STRING database and
Cytoscape were used for protein-protein interaction (PPI) analysis. The diagnostic biomarker pattern of lung cancer was optimized,
and its accuracy was verified with 10-fold cross-validation. The four genes screened by logistic regression model were verified by
western blot in 5 pairs of lung cancer specimens collected in hospital. Results. In total, 188 mitochondrial energy metabolism
pathway-related genes (MMRGs) were included in this study. GSEA analysis found that MMRGs in the lung cancer group were
mainly enriched in the metabolic pathway of oxidative phosphorylation and electron respiratory transport chain compared to the
control group. Age did not affect the mutation frequency of MMRGs. Comparative analysis of these 188 MMRGs identified 43
differentially expressed MMRGs (24 upregulated and 19 downregulated) in the lung cancer group compared to the control group.
The survival analysis of these 43 differentially expressed MMRGs found that the survival time was better in the low-expressed
GAPDHS group than that in the high-expressed GAPDHS group of lung cancers. The advanced age, high expression of GAPDHS,
low expressions of ACSBGI1 and CYP4A11, and ACOX3 mutation were biomarkers of poor prognosis in lung cancers. PPI analysis
showed that proteins such as GAPDH and GAPDHS interacted with many proteins in mitochondrial metabolic pathways. A four-
MMRG-signature ~ model  (y =0.0069 = ACADL - 0.001 * ALDH18A1 — 0.0405 * CPT1B + 0.0008 * PPARG — 1.625)  was
established to diagnose lung cancer with the accuracy up to 98.74%, AUC value up to 0.992, and a missed diagnosis rate of only
0.6%. Western blotting showed that ALDH18A1 and CPT1B proteins were significantly overexpressed in the lung cancer group
(p <0.05), and ACADL and PPARG proteins were slightly underexpressed in the lung cancer group (p < 0.05), which were
consistent with the results of their corresponding mRNA expressions. Conclusion. Mitochondrial energy metabolism pathway
alterations are the important hallmarks of lung cancer. Age did not increase the risk of MMRG mutation. High expression of
GAPDHS, low expression of ACSBG1, low expression of CYP4A11, mutated ACOX3, and old age predict a poor prognosis of lung


https://orcid.org/0000-0002-4984-3549
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/9259297

Oxidative Medicine and Cellular Longevity

cancer. Four differentially expressed MMRGs (ACADL, ALDH18A1, CPT1B, and PPARG) established a logistic regression model,
which could effectively diagnose lung cancer. At the protein level, ALDH18A1 and CPT1B were significantly upregulated, and
ACADL and PPARG were slightly underexpressed, in the lung cancer group compared to the control group, which were consistent

with the results of their corresponding mRNA expressions.

1. Introduction

Lung cancer has become an important public health
problem due to its high morbidity and mortality. Metabolic
changes in lung cancer affect prognosis and response to
treatment [1]. Mitochondrial translation defects are the basis
of many inborn errors of metabolism, which has been linked
to multiple diseases such as cancer [2]. Mitochondrial
pathway abnormalities and metabolic disorders can lead to
gene expression changes to promote cancer development,
progression, and immune system evasion [3]. Monoubiquiti-
nation of histone H2B negatively regulates the Warburg
effect and tumorigenesis of human lung cancer cells through
controlling the expressions of multiple mitochondrial
aspiration genes [4]. Functional changes of mitochondrial
proteins have great influence on the development and
progression of lung cancer [5]. Studies have shown that
apoptosis-inducing factor regulates mitochondrial respira-
tion, and phosphorylation promotes the progression of lung
cancer [6]. Mitochondrial ribosome-related genes were iden-
tified as the highest expressed genes to associate with
metastasis-specific lethality in lung adenocarcinoma. Pyru-
vate carboxylase (PC) is a mitochondrial enzyme and is asso-
ciated with lung metastasis in breast cancer [7]. Tumor cells
rely on glycolysis and mitochondrial oxidative phosphoryla-
tion to survive. The mitochondrial oxidative phosphorylation
pathway has become an increasingly interesting area of
cancer therapy [8]. The metastatic cell state of lung adenocar-
cinoma is related to the specific changes of mitochondrial
function, which opens up a new way for the specific treat-
ment of metastatic lung adenocarcinoma [9]. Lung cancer
shows a strong mitochondrial glucose oxidation. Mitochon-
drial electron transport chain (MTC) is essential for tumor
growth. Inhibition of MTC has been proved to have antitu-
mor effect in combination with targeted therapy [10].
VDACI1, a mitochondrial protein that controls cellular
energy, is often overexpressed in many cancers. By specifi-
cally silencing VDACI gene, the growth of lung cancer cells
can be inhibited [11]. Therefore, mitochondrial energy
metabolism pathways not only affect the occurrence and
development of lung cancer but also are a potential target
of lung cancer therapy.

Metabolism in living organisms includes anabolism and
catabolism. The main locations of anabolism are in the cyto-
plasm of cells, such as cholesterol synthesis, fatty acid
synthesis, and glycogen synthesis. The main locations of
catabolism are in mitochondria, such as the Kreb’s cycle of
the three nutrients, the 3 oxidation of fatty acids, and the
aerobic oxidation of glucose. Many substances are metabo-
lized in the cell’s mitochondria. Common and important
metabolisms are oxidative decomposition of glucose, tricar-
boxylic acid cycle, and oxidative phosphorylation, etc. This
study focuses on mitochondrial energy metabolism pathway,
especially the major catabolic pathways in mitochondria.

One important goal of mitochondrial catabolism is to con-
vert the chemical energy stored in the three main nutrients
into energy that the body can use, such as heat and ATP.
Thus, the expression and mutation abnormalities of
mitochondrial energy metabolism pathway-related genes
(MMRGs) could cause an energy production abnormality,
which are associated with the occurrence and development
of malignant tumors. For example, GAPDHS, an important
gene in the glycolytic pathway, is highly expressed in mela-
noma and is a biomarker of poor prognosis [12]. ACSBG1,
an acyl-CoA synthetase, is originally identified in the fruit
fly mutant bubblegum. Acyl-CoA synthase activates fatty
acids to produce its coenzyme A derivatives and plays an
important role in fatty acid metabolism [13]. ACSBG1 is
involved in the metabolic pathway of fatty acids, which is
significantly downregulated in psoriatic lesions [14]. Cyto-
chrome P4504 (CYP4) family of enzymes is involved in the
metabolisms of fatty acids and signaling molecules, includ-
ing eicosanes, leukotrienes, and prostatinoids. CYP4 enzyme
participates in maintenance of the normal range of fatty
acids and fatty acid-derived bioactive molecules [15], such
as CYP4A11 is downregulated in liver cancer tissues [16].
Mitochondrial energy metabolism pathway abnormali-
ties are also associated with oxidative stress that is derived
from various reasons, including production of too many free
radicals, releasing of a large number of reactive oxygen spe-
cies (ROS), and the body’s own ability to resist oxidation,
which causes the accumulation of excessive ROS, and imbal-
ance of oxidation and antioxidation abilities. Oxidative
stress is a hallmark of many cancers. Generally, cancer cells
have higher levels of ROS than normal cells [17, 18]. Mito-
chondrial respiration is a major source of ROS, and the
high-level ROS can damage organelles [19]. The electron
leakage of electron transport chain complexes I and III
located in the mitochondrial inner membrane leads to
partial oxygen reduction to form superoxides, which sponta-
neously mutates to form hydrogen peroxide [20]. Mitochon-
drial DNA is vulnerable to damage caused by somatic
mutations, which causes dysfunction of mitochondrial respi-
ratory chain and energy production to promote ROS
production and enhance tumorigenicity [21]. Cancer cells
are highly metabolically active and hypoxic. Due to continu-
ous growth and inadequate vascular perfusion, cancer cells
are prone to increase ROS that can diffuse through mito-
chondrial membrane and destroy DNAs [22]. Mitochondria
play an important role in the occurrence, development, and
metastasis of cancers, which might be therapeutic targets of
drugs [23]. In addition, the redox signaling produced by
mitochondrial ROS is related to the occurrence and develop-
ment of cancer [24]. Targeted nicotinamide adenine dinu-
cleotide metabolism has emerged as a potential treatment
to improve age-related diseases and extend human healthy
life spans [25]. The acid-activated mitochondria-targeting
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and redox-responsive nanomicelles could be a new hope for
cancer treatment. Some studies found that PDIC-NC might
target mitochondria as a respiratory inhibitor, induce ATP
production deficiency, increase calcium overload, and effec-
tively trigger the synergistic apoptosis of lung cancer cells
[26]. Also, the use of powerful antioxidants to reduce oxida-
tive stress has been used to prevent cancer [27]. Comprehen-
sive study of the elevated ROS in cancer cells, ROS-regulated
signaling pathways, and identification of specific antioxi-
dants as targets could develop the selective and effective
therapies for cancer cells [27]. Moreover, direct production
of ROS is also one of the mechanisms for common antican-
cer therapies [28]. Therefore, oxidative stress can cause
DNA damage, internal environmental homeostasis damage,
and tumorigenicity; and, in turn, oxidative stress pathways
might be therapeutic targets for treatment of cancers.

This study analyzed the association of genes in major
mitochondrial energy metabolism pathways, extracted from
TCGA database of lung cancers, with mutation and clinical
characteristics of lung cancers, established the poor progno-
sis model based on these MMRGs in lung cancers, and
further verified the accuracy of this poor prognostic model
in lung cancers. These findings will be the promising data
for patient stratification, precise prognostic assessment, and
personalized treatment of lung cancers.

2. Materials and Methods

2.1. Dataset and Data Processing. MMRGs were obtained
from KEGG PATHWAY database (https://www.kegg.jp/
kegg/pathway.html). The related metabolic pathways
included glucose oxidative metabolism, fat catabolism,
ketone body catabolism, tricarboxylic acid cycle, and oxida-
tive phosphorylation. The gene data of these MMRGs were
extracted from The Cancer Genome Atlas (TCGA) database
of lung cancers, including transcriptomic, mutation, and
complete clinical data of lung cancers. Ensembl of genes
was converted with two methods—“clusterProfiler” package
transformation, and the online software “ensembl” for the
conversion (http://asia.ensembl.org/biomart/martview/
€7582a05a6867dc85btb32852349816b).

2.2. GSEA Enrichment Analysis. The gene set enrichment
analysis (GSEA) analysis was performed with GSEA soft-
ware (http://www.gsea-msigdb.org/gsea/index.jsp). GSEA
was a computational method that determined whether a
priori defined set of genes showed statistically significant
and concordant differences between control and experimen-
tal groups. First, the transcriptomic data of lung cancer
adjacent control tissues were compared to lung cancer
tissues, and GSEA analysis was performed to find out the
enriched pathways with statistical significance. Second,
GSEA analysis was performed with comparison of transcrip-
tomic data between stages I and II of lung cancer tissues. The
MMRG SYMBOL was converted to ENTREZID form
(https://asia.ensembl.org/index.html) to input GSEA soft-
ware; then, GSEA analysis was performed in the gseGO
(Gene Set Enrichment Analysis of Gene Ontology) model.

2.3. Mutation Analysis of MMRGs. The software package
“maftools” was used for mutation analysis of MMRGs to
identify mutation frequency and characteristics of gene
mutations. Lung cancer mutation data in the TCGA
database are the mutation annotation format (MAF) data.
“maftools” can effectively analyze, annotate, and visualize
the mutation data in the MAF format. The long-term sur-
vival group means that the survival time was >1000 days.
The short-term survival group means that the survival time
was <1000 days. The mutation rates of genes in two different
survival groups were compared with Student ¢-test between
two independent samples.

2.4. Correlation Analysis between Age and MMRG Mutation
Frequency and between Age and MMRG Expressions. To
explore whether MMRGs are associated with age, Pearson
correlation analysis was performed between age and MMRG
mutation frequency and between age and MMRG expres-
sions, with statistical significance of p < 0.05.

2.5. Differential Expression Analysis of MMRGs. The flexible
and powerful Edger software package was used for differen-
tial expression analysis of MMRGs. The popular quasi-
likelihood F-test was used to determine the significance
level. Due to the large amount of RNA-seq data for lung
cancer, the quasi-likelihood method was used because it pro-
vided a stricter error rate control with consideration of the
uncertainty in the dispersion estimation. Each differentially
expressed MMRG was determined with the ratio change
>2 or <0.5, and p value < 0.05.

2.6. Functional Enrichment Analysis of Differentially
Expressed MMRGs. For Gene Ontology (GO) enrichment
analysis, the “clusterProfiler” software package was used to
explore the enrichment degree of biological process (BP),
cellular component (CC), and molecular function (MF) of
the differentially expressed MMRGs. Data visualization was
performed with dotplot function.

2.7. Survival Analysis of Differentially Expressed MMRGs.
The survival time and status of lung cancer patients were
extracted from the TCGA database. Univariate and multi-
variate analyses were carried out for the screened differen-
tially expressed MMRGs. According to the median value of
each differentially expressed MMRG, lung cancer patients
were divided into high- and low-value groups. Kaplan-
Meier survival analysis based on log-rank method was used
to analyze each differentially expressed MMRG, with the
“survminer” and “survival” R-language packages. Multivari-
ate Cox regression method was used to further determine
the factors of poor prognosis.

2.8. Immunohistochemical Analysis of Survival-Related
Differentially Expressed MMRGs. The immunohistochemical
staining results of the proteins corresponding to survival-
related differentially expressed MMRGs were obtained from
The Human Protein Atlas database (https://www
.proteinatlas.org/). The human protein atlas consists of six
separate sections (tissue atlas, single cell type atlas, pathology
atlas, blood atlas, brain atlas, and cell atlas), each of which
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focused on a specific aspect of the whole genome analysis of
human proteins. The tissue atlas can be used to screen the
selected genes for expression in normal lung tissue at the
protein level.

2.9. Verification of Survival-Related Differentially Expressed
MMRGs with Different Datasets. The expressions of
survival-related differentially expressed MMRGs between lung
cancer and normal groups, as well as between different tumor
progression stages, were also tested with different datasets
from the online website GEPIA2 (http://gepia2.cancer-pku
.cn/#index), this online website included the data in cancer
group from the TCGA database, and the data in normal group
from the TCGA and GTEX database. Moreover, another data-
sets including 21 lung cancers and 21 controls (GSE21933
data) from the GEO database were used to verify the expres-
sions of survival-related differentially expressed MMRGs, with
the online analysis software GEO2R (https://www.ncbi.nlm
.nih.gov/geo/geo2r/?acc=GSE21933).

2.10. Protein-Protein Interaction among Differentially
Expressed MMRGs. The proteins corresponding to differen-
tially expressed MMRGs were used to construct protein-
protein interaction (PPI) network with the STRING database.
The Cytohubba plug-in in Cytoscape 3.7.2 software was used
to analyze the PPI network to obtain hub molecules [29]. The
maximal clique centrality (MCC) algorithm was used to
obtain the top 10 genes as the hub genes [29].

2.11. Establishment a Model for Diagnosis of Lung Cancer.
To establish a mathematical model for the diagnosis of lung
cancer, 43 differentially expresssd MMRGs were further
screened by ridge regression and logistic regression method,
and differentially expressed MMRGs with p <0.01 were
included in subsequent modeling with Weka 3.85 software.
The 10-fold cross-validation was performed to verify the
diagnostic performance of this model. The “caret" R-
language package was used to calculate the importance of
each variable in the logistic regression model.

2.12. Western Blotting. Four differentially expressed MMRGs
included in logistic regression model were verified with
western blot. The fresh lung cancer tissues (n =5) and their
corresponding adjacent control tissues (1 = 5) were collected
after surgery in Tai’an central hospital, China. The proteins
were extracted and quantified with bicinchoninic acid
(BCA) assay method. Five cancer protein samples were
equally mixed as tumor protein samples, and five adjacent
control protein samples were equally mixed as control pro-
tein samples. ALDH18A1 primary antibody was purchased
from Beijing Boasen Biotechnology Co., Ltd. (http://www
.bioss.com.cn/), and the primary antibodies against ACADL,
PPARG, and CPT1B were purchased from Wuhan Abclonal
company (https://abclonal.com.cn/). All primary antibodies
were rabbit antihuman antibodies. The second antibody
was goat antirabbit antibodies. Briefly, an amount (40 ug)
of proteins (tumor; control) were separated with one-
dimensional 10% PAGE electrophoresis and then were
transferred to the PVDF membrane. The proteins on the
PVDF membrane were incubated with primary antibody
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(ALDH18A1, ACADL, PPARG, or CPTI1B) and then
incubated with secondary antibody, followed by visualiza-
tion. ACTIN was used as internal reference for western
blotting analysis.

2.13. Statistical Analysis. For differentially expressed
MMRG, GSEA, GO enrichment, KEGG, and western blot
analyses, the statistical significance was set as p < 0.05.

3. Results

3.1. MMRG Landscape in Lung Cancer. In total, 188
MMRGs were obtained from the KEGG pathway database,
which were analyzed between lung cancer (n=1006) and
control lung (n=107) tissues from the TCGA database
(Supplementary Table 1).

3.2. MMRG-Mediated Signaling Pathways. GSEA enrich-
ment analysis of 188 MMRGs found 151 statistically signifi-
cant gene sets including 76 gene sets (nominal p value < 1%)
in lung cancer tissues and 19 statistically significant gene sets
including 14 gene sets (nominal p value < 1%) in control
tissues. Among them, lipid metabolism pathways were
mainly enriched in the control lung group (Supplementary
Figure 1), and ATP energy generation-related pathways
(for example, oxidative phosphorylation, ATP electron
transport chain, lactic acidosis, and acid-base balance
disorder pathways) were mainly enriched in the lung
cancer group (Supplementary Figure 2). These findings
clearly demonstrated mitochondrial energy metabolism
pathway changes in lung cancer tissues.

Moreover, GSEA enrichment analysis of 188 MMRGs
was also performed for lung cancer stages I (n=>592
patients) and II (n =385 patients). An interesting result
was that lipid metabolism gene set was mainly enriched in
stage I (Supplementary Figure 3a), and ATP energy
generation process, oxidative phosphorylation pathway,
and cell respiration gene sets were mainly enriched in stage
II (Supplementary Figures 3b and 3c). These findings also
clearly demonstrated mitochondrial energy metabolism
pathway changes in advanced stage of lung cancer tissues.

3.3. Mutation Status of MMRGs in Lung Cancer. Mutation
analysis of 188 MMRGs in lung cancer found that almost
all mutated bases were cytosine, and the first three high-
mutation bases were C->A, C->T, and C-G
(Figure 1(a)). These findings showed that cytosine was very
unstable, and the amino group of cytosine was easily oxi-
dized. In addition, the overall mutation rate of MMRGs
was not high, and the highest mutation rate was only 4%
(Figure 1(b)). Moreover, mutation analysis of 188 MMRGs
between the short-survival group (<1000 days) and long-
survival group (>1000 days) found that the mutation rate of
ACOX3 was significantly higher in the short-survival group
relative to the long-survival group, and that the mutationrate
of OGDH was significantly higher in long-survival group
relative toshort-survival group (p <0.05, Supplementary
Table 2, Figure 1(c)). The survival analysis was significant
between mutation and wild-type groups of ACOX3 in lung
cancers, which was associated with a worse prognosis of lung
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FIGURE 1: Mutation analysis of 188 mitochondrial energy metabolism pathway-related genes (MMRGs). (a) Mutated genes, change of base
distribution. Different colors represent different base mutations. Blue means that base C is mutated to base A. Red means that base C is
mutated to base T. Dark blue means that base C is mutated to base G. (b) Oncoplots of 188 MMRGs in lung cancer tissues. (c)
Comparison of mutation frequency of different MMRGs in long survival group (>1000 days) vs. short survival group (<1000 days). (d)
The survival of the ACOX3 mutant group was better than that of the wild-type group. (e) The survival of the OGDH mutant group was
not significant than that of the wild group.
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cancer (p < 0.05, Figure 1(d)). The survival analysis was not
significant between mutation and wild-type groups of
OGDH in lung cancers (p > 0.05, Figure 1(e)).

3.4. Associations of Age with Expression Level and Mutation
Frequency of MMRGs in Lung Cancers. For the lung cancer
group, correlation analysis between age and MMRGs found
that no any MMRGs were significantly related to age
(p>0.05), with a correlation coefficient ranged from -0.1
to 0.1 (Supplementary Table 3). For the control group,
correlation analysis between age and MMRGs found that
five MMRGs were relatively weak associated with age, with
a correlation coefficient greater than 0.2 (Supplementary
Table 4). These findings clearly demonstrated that age did
not affect MMRGs in lung cancer. Moreover, no statistical
significance in mutation frequency was found between
younger (<60 years) and older (>60 years) patients, which
suggested that age did not affect mutation frequency of
MMRGs in lung cancer.

3.5. Differentially Expressed MMRGs in Lung Cancer.
Among thosel88 MMRGs, 43 differentially expressed
MMRGs were identified between lung cancers and controls,
including 24 upregulated and 19 downregulated MMRGs in
lung cancers compared to control lung tissues (p < 0.05) (Sup-
plementary Table 1; Figure 2(a)). Those 24 upregulated
MMRGs were ATP4A, ALDH3B2, ATP4B, ALDH3AI,
CYP4A22-AS1, ADHIC, GAPDH, PKLR, PPAT, CPTI1B,
PFKP, PC, PFKP-DT, ALDHI1L1, ADH4, GPI, ALDHS8AI,
ALDHI18A1, ATP12A, GAPDHS, NDUFES6, OXCT2, CYC1,
and ALDHI1L2; and those 19 downregulated MMRGs were
ADHI1B, ACADL, ADHI1A, CYP4A26P, PPARG,
ALDHI1A2, ALDH2, ALDH3B1, CYP4All, MDHIB,
ACSBG1, ACSL4, CYP2U1, CYP4A22, CYP4A27P, ACSLI,
PPARGCI1A, ACAA2, and PFKFB2.

3.6. Functional Characteristics of Differentially Expressed
MMRGs. GO enrichment analysis of 43 differentially

expressed MMRGs found 148 statistically significant BPs, 2
CCs, and 30 MFs (Supplementary Table 5; Supplementary
Figure 4). Of them, the significant BPs were mainly involved
in small molecule catabolic process, fatty acid metabolic
process, and nucleotide metabolic processes (Supplementary
Figure 4a). The significant CCs were mainly related to
mitochondrial matrix and lipid droplet (Supplementary
Figure 4b). The significant MFs were mainly involved in
oxidoreductase activity acting on the aldehyde or oxo group
of donors, NAD or NADP as acceptor, oxidoreductase
activity acting on the aldehyde or oxo group of donors,
aldehyde dehydrogenase [NAD(P)+] activity, and aldehyde
dehydrogenase (NAD+) activity (Supplementary Figure 4c).

3.7. Protein-Protein Interaction Network of Differentially
Expressed MMRGs. A total of 43 differentially expressed
MMRGs were used to construct the PPI network
(Figure 2(b)). Further analysis of this PPI network with Cytos-
cape found 10 hub molecules, including GAPDH, GAPDHS,
PC, PKLR, ALDH18A1, GPI, PFKP, ACADL, ACSL1, and
CPT1B (Figure 2(c)). These hub molecules were the crucial
enzymes and molecules in glycolysis, TCA, and oxidative
phosphorylation. It clearly demonstrated that mitochondrial
energy metabolism pathways changed in lung cancer.

3.8. Survival Analysis of Differentially Expressed MMRGs in
Lung Cancer. Survival analysis of 43 differentially expressed
MMRGs in lung cancer found that 3 differentially expressed
MMRGs (GAPDHS, ACSBGI, and CYP4A11) had survival
significance (Supplementary Table 6; Figure 3). (i) The
survival prognosis of lung cancer patients was better in the
low-expression group than high expression group of
GAPDHS (p<0.05). Further, for lung squamous cell
carcinomas, the survival prognosis was not statistically
significant between low- and high-expression groups of
GAPDHS (p=0.094, Supplementary Figure 5a); and for
lung adenocarcinomas, the survival prognosis was not
statistically significant between low- and high-expression
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FIGURE 4: Immunohistochemistry analysis of GAPDHS in lung normal tissues and bronchial tissues.

groups of GAPDHS (p = 0.39, Supplementary Figure 5a). (ii)
The survival prognosis of lung cancer patients was better in
the high expression group than low expression group of
ACSBG1 (p<0.05). Further, for lung squamous cell
carcinomas, the survival prognosis was not statistically
significant between low- and high-expression groups of
ACSBGI1 (p=0.31, Supplementary Figure 5b); and for lung
adenocarcinomas, the survival prognosis was better in the
high expression group than low expression group of
ACSBG1 (p=0.013, Supplementary Figure 5b). (iii) The
survival prognosis of lung cancer patients was better in the
high expression group than low expression group of

CYP4Al1l (p<0.05). Further, for lung squamous cell
carcinomas, the survival prognosis was significantly better
in high expression group than low expression group of
CYP4A11 (p=0.02, Supplementary Figure 5c); for lung
adenocarcinomas, the survival prognosis was not
statistically significant between low- and high expression
groups of CYP4A11 (p = 0.47; Supplementary Figure 5c¢).

Moreover, the survival prognosis was significantly better
in younger (<60 years) patients than older (>60 years)
patients (p = 0.025; Supplementary Figure 6a), and was not
significant different between lung cancer stages I and II
(p =0.77; Supplementary Figure 6b).
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Multivariate Cox regression analysis of gender, age,
stage, cancer type, GAPDHS, ACSBG1, and CYP4A11 found
that older (>60 years) age, highly expressed GAPDHS, low
expressed ACSBGI, and low expressed CYP4All were
high-risk factors for lung cancer prognosis (Supplementary
Table 6; Supplementary Figure 7).

3.9. Immunohistochemistry Analysis of Survival-Related
Differentially Expressed MMRGs in Lung Cancer. In the
human protein atlas online database, the staining of
GAPDHS protein in normal lung tissues was examined.
The normal bronchial or lung tissues were stained in 5 sub-
jects, and GAPDHS protein was negative (Figure 4).
ACSBGI1 protein in 6 normal lung tissues showed moderate
staining intensity in alveolar cells or macrophages in lung
tissues (Supplementary Figure 8).

3.10. Verification of Survival-Related Differentially Expressed
MMRGs in Different Datasets of Lung Cancer. No significant
difference was found between LUAD (n = 483) and control
(n=347) groups, and between LUSC (n =486) and control
(n=338) groups for GAPDHS, ACSBGI1, and CYP4All
(Supplementary Figure 9). There was no significant
difference in the expression of GAPDHS in different tumor
stages (stages I, II, III, and IV) of lung cancer (p>0.05,
Figure 5). However, the expressions of ACSBGl and
CYP4A11 in four tumor stages (stages I, II, III, and IV)
were statistically significant  difference, respectively
(p <0.05, Figure 5). Further verification in the independent
data set GSE21933 showed that ACSBGl was a
significantly low expression in the lung cancer group, and
LogFC was 0.81 (p <0.05, Supplementary Table 7). There
was no significant difference in GAPDHS and CYP4All
between the lung cancer group and the normal group
(p > 0.05, Supplementary Table 7).

3.11. Construction Machine Learning Model Based on
Differentially Expressed MMRGs for Lung Cancer. Ridge
regression was used to further reduce the dimension, and
six genes (ACADL, ADH1B, ALDH18A1, CPT1B, CYP2U1,
and PPARG) were screened out. Then, four characteristic
genes were screened out through logistic regression model-
ing (Supplementary Table 8). Weka3.8.5 software modeling

was used to classify adjacent normal tissues and lung
cancer tissues. Four models were established, which were
decision stump, logistic regression, naive Bayes, and
multilayer perceptron in order (Figure 6(a)). A 10-fold
cross-validation shows that the correct classification rate
was 96.13% for decision stump model, 98.74% for logistic
regression model, 97.57% for naive Bayes model, and
98.29% for multilayer perceptron model. ROC analysis
showed that the AUC values of four 4 corresponding
models were 0.902, 0.992, 0.990, and 0.992, respectively.
The logistic regression model had a missed diagnosis rate
of only 0.6%. Also, logical regression formula was y=
0.0069 * ACADL - 0.001 + ALDH18A1 — 0.0405 « CPT1B

+0.0008 * PPARG — 1.625. It could be seen the importance
of the various variables in the logistic regression model
(Figure 6(b)). It was easy to find that the importance of 4
differentially expressed MMRGs in the logistic regression
model was ACADL > CPT1B > ALDH18A1 > PPARG.

3.12. Verification of Four Differentially Expressed MMRGs in
Machine Learning Model with Western Blot. Western blot
showed that, compared to the control group, the expression
levels of CPT1B and ALDH18A1 proteins were significantly
upregulated (p <0.05), and the expression levels of
ACADL and PPARG protein were slightly downregulated
with p <0.05 (Figure 7).

4. Discussion

Mitochondrial energy metabolism abnormality is the impor-
tant hallmark of lung cancer. The mitochondrial energy
metabolism-related pathways mainly included glycolysis,
tricarboxylic acid cycle, oxidative phosphorylation, ketone
body metabolism, fat metabolism, and gluconeogenesis.
Although glycolysis occurs in cytoplasm, however, glycolysis
is the first stage of the aerobic oxidation of sugar, and it was
included in this study. Thus, a total of 188 MMRGs in these
pathways was used to analyze the alteration landscape and
their clinical significance in lung cancers. This study also
identified a risk factor for poor prognosis of lung cancer
from mitochondrial energy metabolism pathway.
Compared to control lung tissues, 43 differentially
expressed MMRGs were identified in lung cancer tissues,
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including 24 upregulated (ATP4A, ALDH3B2, ATP4B,
ALDH3A1, CYP4A22-AS1, ADHIC, GAPDH, PKLR,
PPAT, CPT1B, PFKP, PC, PFKP-DT, ALDHI1L1, ADH4,
GPI, ALDHS8Al, ALDHI18A1, ATP12A, GAPDHS,
NDUES6, OXCT2, CYCI, and ALDH1L2) and 19 downreg-
ulated MMRGs (ADHI1B, ACADL, ADHIA, CYP4A26P,
PPARG, ALDHIA2, ALDH2, ALDH3B1, CYP4All,
MDHI1B, ACSBGI1, ACSL4, CYP2Ul, CYP4A22,
CYP4A27P, ACSL1, PPARGC1A, ACAA2, and PFKFB2).
Survival analysis of 43 differentially repressed MMRGs
found 3 survival-related MMRGs (GAPDHS, ACSBGI, and
CYP4A11). GAPDHS is an evolutionarily conserved essen-
tial enzyme in the glycolytic pathway [30], whose high
expression in melanoma is a biomarker of poor prognosis
[12]. ACSBGL is an acyl-CoA synthetase, plays an important
role in fatty acid metabolism [13], and is significantly down-
regulated in psoriatic lesions [14]. CYP4A11 is one member
of cytochrome P4504 (CYP4) family involved in the metab-

olisms of fatty acids, which is downregulated in liver cancer
tissues [16] and in clear-cell renal cell carcinoma tumor tis-
sues [31]. Our study found the significantly high expression
of GAPDHS, low expression of ACSBG1, and low expression
of CYP4AL11 in lung cancer tissues predicted poor prognosis
for survival, whatever with single-factor and multifactor sur-
vival analytical strategies. It clearly emphasized the scientific
merits of these three differentially expressed MMRGs in the
progression of lung cancer. The prognosis of the ACOX3
mutant group was worse than that of the wild-type group,
which suggests that the mutation in ACOX3 is a biomarker
of poor prognosis. GSEA enrichment analysis showed that
oxidative phosphorylation and ATP energy generation-
related pathways were significantly enriched in lung cancer
tissues, which may be adapted to the continuous prolifera-
tion and invasion of lung cancer cells.

Ridge regression analysis of 43 differentially expressed
MMRGs identified six differentially expressed MMRGs
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(CPT1B, ACADL, PPARG, ALDHI8A1l, ADHIB, and
CYP2U1). These six differentially expressed MMRGs were
further analyzed with logistic regression modeling to obtain
significantly differentially expressed MMRGs in the logistic
regression model. The accuracy of 10-fold cross-validation
of logistic regression model in the diagnosis of lung cancer
was 98.74%. The missing rate of logistic regression model
was only 0.6%. It clearly showed that the performance of
logistic regression model was excellent. The study optimized
and screened for characteristic differentially expressed
MMRGs to establish logistic regression models that are no
less accurate in diagnosis of lung cancer than other models
[32-34]. It is possible that this model will be developed to
screen for clinical lung cancer in the future. CPT1B and
ACADL were the most important in the diagnosis of lung
cancer in logistic regression models. CPT1B, a rate-limiting
step in the catalytic oxidation of fatty acids, is upregulated
in prostate cancer and is associated with poor prognosis
[35]. ACADL is a mitochondrial enzyme that is frequently
downregulated in hepatocellular carcinoma, and its low
expression is significantly associated with poor clinical prog-
nosis in hepatocellular carcinoma patients [36]. PPARG is a
nuclear receptor regulating adipocyte differentiation [37].
PPARG is one of three members of the PPAR family of tran-
scription factors that influence the function of serine/threo-
nine kinase 3, which can lead to a more aggressive disease
phenotype in prostate cancer [38]. By targeting ALDH18A1,
GCN2-mediated phosphorylation of elF2« is increased by
decreasing intracellular proline levels, thereby inhibiting
the development of melanoma [39]. ALDHI8A1 has a
profound influence on the proliferation, self-renewal, and
tumorigenicity of NB cells and is a potential risk factor for
NB patients [40]. Some studies have shown that the decrease
of ADHIB is associated with human lung cancer [41].
ADHIB was a low expression gene in our study. There are
a large number of reports that mathematical models can be
used to predict the survival prognosis of cancer patients
[42-46], and many factors affect the prognosis. Gene expres-
sion can predict good or bad survival, but the exact survival
interval is not accurate enough for mathematical models to
predict. There are difficulties and challenges in accurately
predicting patient survival. However, considerable progress
has been made with different methods to diagnose lung
cancer. The diagnostic accuracy of lung cancer was 97.3%
when some scholars studied the lung cancer tissue sections
under weak supervision [47, 48]. It clearly demonstrates that
this four-differentially expressed MMRG-signature model
has great potential for lung cancer. Furthermore, the
results of immunoblotting experiment of these four
MMRGs were consistent with the expression trend of their
corresponding mRNAs in the logistic regression model,
which further confirmed that this model has certain diag-
nostic performance.

5. Conclusion

Mitochondrial energy metabolism pathway alterations were
the important hallmarks of lung cancer. This study analyzed
the expression levels and mutation status of 188 MMRGs in

Oxidative Medicine and Cellular Longevity

lung cancer and control tissues, which identified 43 differen-
tially expressed MMRGs (24 upregulated and 19 downregu-
lated) in lung cancers. Three survival-related differentially
expressed MMRGs were found, including GAPDHS,
ACSBGI, and CYP4Al11, in lung cancer. In lung cancer tis-
sue, high expression of GAPDHS, low expressions of
ACSBG1, CYP4A11, mutated ACOX3, and old age predict
a poor prognosis. Ridge regression analysis of these 43 dif-
ferentially expressed MMRGs constructed a four-MMRG-
signature model (y=0.0069 * ACADL —0.001 + ALDH18
A1-0.0405 = CPT1B + 0.0008 = PPARG — 1.625),  which
has an excellent capability to discriminate lung cancers from
controls with the correct classification rate up to 98.74%,
AUC value up to 0.992, and a missed diagnosis rate of only
0.6%. It has important scientific merits for diagnosis and
prognostic assessment of lung cancer. The expression levels
of CPT1B and ALDHI8Al proteins were significantly
upregulated, while the expression levels of ACADL and
PPARG proteins were slightly downregulated. It showed
that these four proteins had certain diagnostic performance
for lung cancer.
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