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Abstract

Background: Intraosseous (IO) infusion is a life-preserving technique when intra-

venous access is unobtainable. Successful IO infusion requires sufficiently high flow

rates to preserve life but at low enough pressures to avoid complications. However, IO

catheter tips are oftenmisplaced, and the relative flow rates and pressures between IO

catheter tips placed in medullary, trabecular, and cortical bone are not well described,

which has important implications for clinical practice.

Objectives: We developed the Zone Theory of IO Catheter Tip Placement based on

bone density and proximity to the venous central sinus and then tested the influence

of catheter tip placement locations on flow rates and pressures in a cadaveric swine

model.

Methods: Three cross-trained participants infused 500 mL of crystalloid fluid into

cadaveric swine humerus and sternum (N = 210 trials total) using a push‒pull method

with a 60 cm3 syringe. Computed tomography scans were scored by radiologists and

categorized as zone 1 (medullary space), zone 2 (trabecular bone), or zone 3 (cortical
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bone) catheter tip placements. Differences between zones in flow rates, mean pres-

sures, and peak pressures were assessed using analysis of variance and analysis of

covariance to account for participant and site differences at the p< 0.05 threshold.

Results: Zone 1 and zone 2 placements were essentially identical in flow rates, mean

pressures, and peak pressures (each p > 0.05). Zone 1 and zone 2 placements were

significantly higher in flow rates and lower in pressures than zone 3 placements (each

p< 0.05 or less).

Conclusion: Within the limitations of an unpressurized cadaveric swine model, the

present findings suggest that IO catheter tip placements neednot be perfect to acquire

high flow rates at low pressures, only accurate enough to avoid the dense cortical

bone of zone 3. Future research using in vivo animal and human models is needed to

better define the clinical impact of IO catheter placement on infusion flow rates and

pressures.

1 INTRODUCTION

1.1 Background

Difficult intravenous access is a common challenge encountered in

emergency departments and prehospital settings.1–3 When periph-

eral venous access is not quickly established in critically ill or

injured patients, intraosseous (IO) catheters play an important role

in the administration of blood, fluids, and medications during ini-

tial resuscitation.4–6 Driving fluids directly into the bone marrow

through anatomic, landmark-based placement of IO catheters as a

bridge to definitive vascular access is endorsed by major resuscita-

tion trainings.7–10 Successful IO infusion requires a balance between

flow rates and pressures, as infusion flow rates must be sufficiently

high for effective treatment but at pressures low enough to avoid

complications, including shear stresses from excessive infusion pres-

sures causing intravascular hemolysis or fat embolism.11,12 However,

the clinical impact of proper placement of the IO catheter tip within

the medullary space versus the denser trabecular or cortical bone was

unclear.

IO catheterization reportedly has high first-attempt insertion suc-

cess rates.13,14 However, IO access confirmation is currently guided

only by the return of blood and the ease of saline flush without

evidence of surrounding extravasation.15 Published reports in the

adult and pediatric literature indicate that a significant proportion of

landmark-based IO catheter placements are suboptimal.16–22 Varia-

tion in IO catheter tip placement might explain, at least in part, why

flow rates vary greatly within IO studies.23,24

We therefore developed the Zone Theory of IO Catheter Tip Place-

ment to measure the clinical significance of IO tip placement location.

Zones are distinguished based on two factors: relative bone den-

sity (porosity) and proximity to the venous central sinus. Zone 1 is

the medullary space, where high flow rates and low infusion pres-

sures might be expected because of high bone porosity and immediate

proximity to the sinus. Zone 2 is the trabecular space, where inter-

mediate flow and pressure performance might be expected because

the cancellous bone is further from the sinus and less porous than

the medullary cavity. Zone 3 is the cortical space, where poorest flow

and pressure performance might be expected because of low bone

porosity and furthest distance from the sinus. The present study was

specifically designed to assess differences between zones in infusion

flow rates and pressures to better inform prehospital and emergency

medicine providers on the clinical importance of accurate IO catheter

tip placement.

1.2 Importance

Studying the role of catheter tip placement on IO flow rates and pres-

sures is of great importance toward reducing morbidity and mortality

in critically ill and injured patients. Optimizing IO catheter perfor-

mance can improve the efficacy of therapies delivered in the initial

moments of resuscitation. Prior research has established that IO

catheters are inconsistently placed in humans,17,20–22,25 but whether

IO catheter tip placement variability translates to systematic differ-

ences in infusion flows and pressures was unclear. The present study

represents the first step in filling this important gap.

1.3 Goals of this investigation

The goal of this investigation was to put the Zone Theory of IO

Tip Placement to an empirical test by contrasting flow rates, mean

pressures, and peak pressures in zone 1, zone 2, and zone 3 in a transla-

tional cadaveric swine humerus and sternal model with bone densities

approximating adult humans. Our null hypotheses were that the flow

rates, mean pressures, and peak pressures would not significantly vary

based on the zone location of IO catheter tips.
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2 MATERIALS AND METHODS

2.1 Study design and setting

This study employed a prospective design to contrast flow rates, mean

infusion pressures, and peak infusion pressures between catheter tips

placed in the three zones. This study was conducted in a translational

research laboratory at Naval Medical Center San Diego (NMCSD).

The NMCSD Institutional Review Board (IRB #NMCSD.2020.0044)

approved this study pursuant to Federal Policy for the Protection

of Human Subjects (the Common Rule) and the revised Common

Rule, effective January 21, 2019, HHS 45 CFR 46.102, and DoD

32 CFR 219.101. The protocol was also reviewed by the NMCSD

Institutional Animal Care and Use Committee and was determined

to not fall under the category of live animal research. All activi-

ties were conducted in compliance with the Department of Defense

regulations.

2.2 Model selection and preparation

Cadaveric swine (Sus scrofa) in the 70‒90 kg range were selected

because their proximal humerus bone density (>1 g/cm2) approxi-

mates that of an average 20‒40-year-old male trauma patient.11,26–28

We utilized recently euthanized cadaveric swine samples to fos-

ter the “Refine, Reduce, Reuse” principle of animal research29,30

and because cadaveric swine models have demonstrated great util-

ity in previous investigations of IO infusion.31,32 In this translational

model, we chose one long bone (proximal humerus) and one non-

load-bearing bone (sternum) to test the relationship between catheter

tip location, flow rates, and infusion pressure. Proximal humerus and

sternal samples were chosen because these sites have previously

demonstrated the highest transfusion rates among potential anatomic

locations.23,33

Specimens were acquired from a third-party vendor (Sierra Med-

ical) that specializes in biologic tissue procurement for the research

and development industry. The proximal humeri and sternums were

harvested and chilled after euthanasia, and then any fascia or mus-

cle remnants were carefully removed prior to the study to prevent

obstruction of emissary vessels on the surface of the bone. Bones with

apparent damaged cortex fromharvestingwere excluded. A new swine

proximal humerus or sternumwas used for each trial.

As part of a larger study, we utilized 15-gauge IO catheters from

commercially available IOaccess devices: EZ-IO (TeleflexMedical, Co.),

Jamshidi IO (Becton Dickinson), PerSys NIO2 (PerSys Medical), SAM

IO (SAMMedical), TALON (Teleflex Medical, Co.), and PYNG IO (Tele-

flex Medical, Co.). All devices except for PYNG were used on humeri,

with TALON and PYNG used on sternums (30 each, 210 total). The

catheters from these IO access devices are essentially identical, so the

access devices are not further considered here because the present

study focused exclusively on the impact of catheter tip placement

location.

The Bottom Line

Intraosseous (IO) catheter tip placement can significantly

influence infusion flow rates and pressure. In this prospec-

tive cadaveric study, IO catheters placed into or near cortical

bone were associated with 30% lower flow rates and 15%–

25% higher pressures. Training programs should emphasize

proper technique to avoid IO placement into cortical bone.

2.3 Study participants

IO infusion trials were performed by amale fourth-year resident (A.E.),

a male third-year resident (J.G.), and a female second-year resident

(V.K.). All participants had prior experience using IO catheters. An edu-

cational session including demonstrations was performed prior to the

study and participants were cross-trained so that they would be as

identical as possible in IO infusion.

2.4 Interventions

IO catheters were inserted either into the greater tubercle of the

proximal humerus at a45◦ angleor into the sternumat a90◦ angle. Suc-

cessful placement was confirmed by flushing 10 mL of crystalloid fluid

and observing adequate flow out of at least three emissary vessels on

the surface of the bone. To ensure that samples accurately mimicked

clinical parameters, those without fluid flowing out of at least three

emissary vessels were excluded.

We utilized a push‒pull infusion technique with a 60 mL syringe

because prior research has demonstrated that pressure rarely exceeds

4000 mmHg with this technique and because this technique is cur-

rently used by a variety of prehospital medical teams.30,34

After IO insertion and confirmation, intravenous tubing was

attached with a calibrated in-line digital pressure gauge (Ashcroft Inc.)

three inches proximal to the IO insertion site. A three-way high-flow

stopcock with rotating Leur (ICU Medical) was then attached three

inches proximal to the pressure gauge. On the in-line end of the three-

way stopcock, 80-in. Y-typeblood tubingwas connected toa crystalloid

bag. An empty 60 mL BD Luer-lok Tip syringe (Becton, Dickerson, and

Co.) was attached to the 90◦ inflow port (Figure 1). The entire line was

flushed with crystalloid and the pressure gauge was zeroed prior to

each trial.

For each trial, 500 mL of crystalloid was manually infused through

the IO catheter with continuous in-line pressure monitoring. This was

accomplished by rotating the three-way stopcock to the 90◦ setting

and then pulling back the plunger to fill the 60 mL syringe from the

crystalloid bag. The stopcock was then toggled to the in-line setting,

and fluid was driven into the bone by depressing the plunger of the

filled syringe. This processwas repeateduntil 500mLof crystalloidwas
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F IGURE 1 Line set-up for demonstration only. A 60mL syringe
(right) attached to intravenous line via three-way stopcock, with
in-line pressuremonitor (center).

infused. Infusion time began after the set-up was complete and ended

when the crystalloid bag was empty or until 15min elapsed.

After infusion trialswere completed, bone specimenswere carefully

placed in a single layer in a box, with each IO catheter facing up, and

then hand-carried to an on-site radiology suite to minimize any risk of

catheter movement. Imaging was performed to localize the catheter

tip using a Siemens SOMATOM Definition Edge 128 slice computed

tomography (CT) scanner. Axial images were acquired at a thickness of

0.5mmwith volumetric coronal and sagittal reconstructions.

2.5 Outcomes

The outcomes included flow rate (mL/min), mean pressure (mmHg),

and peak pressure (mmHg). The flow rate was calculated as the total

volume infused divided by the infusion time. The mean and peak pres-

sureswere calculated via Stork solutions pressure transducer software

(Stork).

2.6 Intraosseous catheter tip location and the
Zone Theory of IO Catheter Tip Placement

In collaboration with a fluid physicist (J.V.), we developed the Zone

Theory of IO Tip Placement based on the principles of fluid dynamics,

F IGURE 2 Computed tomography (CT) scans of catheter tip
placement in zone 1 (left), zone 2 (center), and zone 3 (right) of swine
humerus.

including Darcy’s law, Hele–Shaw flows, an understanding of the cen-

trifugal nature of IO arterial flow, and the role of the central medullary

venous sinus in venous outflow. Neumann (no flow) boundary con-

ditions were applied to the outer surface of the bone model in two

dimensions, while Dirichlet conditions were applied to the central

venous sinus tomodel constant hydrostatic pressure (Appendix 1). The

central medullary venous sinus was considered midline and a planar

wall was assumed between the sinus and the outer bony cortex. In

dimensionless units of length (domain between0 and1), zone1was the

regionmost proximally located to the central medullary sinus (0‒0.33).
Zone 2 was the region of trabecular bone, including branches of the

medullary sinus (0.34‒0.66). Zone3was themost peripheral trabecular

and cortical bone (0.67‒1.00). Catheter tips in proximity to the cortex

or physis superior to the humerus (≤6 mm) or sternum (≤2 mm) were

also considered to be in zone 3. Using theCT images, IO catheterswere

rated as being placed into zone 1, zone 2, or zone 3 by one of two radi-

ologists (D.G. or J.N.), who were trained in the task but were blinded to

the purpose of the study.35 Figure 2 displays CT scans of catheter tips

placed into zone 1, zone 2, and zone 3.

2.7 Data analysis

Tests of power using G*Power software (version 3.1)36 found that,

assuming a 95% confidence interval and an effect size of f = 0.25 for

omnibus testing, statistically significant differences would be realized

on 80% of opportunities (power= 0.80), with as few as 159 trials total.

Therefore, to ensure adequate power, this study included 210 trials.

Two trials were excluded due to machine malfunction, so the sample

size for statistical analysis wasN= 208.

Normality was assessed using the Shapiro‒Wilk test. The peak infu-

sion pressures were normally distributed (SW = 0.99, p = 0.58), and

themean pressures and flow rateswere not normally distributed (each

SW = 0.97, p = 0.001). However, analysis of variance (ANOVA) statis-

tics are robust against violations of normality, such that type I and type

II error rates remain stable regardless of the shape of the raw data

when sample sizes are greater than 25 per condition, as in the present

study.37
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Hypotheses were tested using ANOVA and analysis of covariance

(ANCOVA) to adjust for possible participant differences and site dif-

ferences (humerus vs. sternum), with pairwise comparisons to localize

statistically significant differences. Each ANOVA result was confirmed

using a non-parametric equivalent, Kruskal‒Wallis for omnibus test-

ing and Mann‒Whitney U-test for pairwise testing. The confirmatory

non-parametric findings were substantively similar to the parametric

findings, so for simplicity, only the parametric ANOVA and ANCOVA p-

values are provided in the results section. Because of the importance

of notmissing real differences (type II error) bymaking it more difficult

to commit type I error in this novel area of research, differences were

considered statistically significant at the p < 0.05 threshold without

correction for multiple comparisons.38

The results are expressed as themean (M)± standard deviation (SD)

in text and as the mean ± standard error of the mean (SEM) in figures.

All analyseswere conductedwith SPSS statistical software (version 23,

IBMCorp.).

3 RESULTS

3.1 Characteristics of bone samples and IO
placements

Each study participant (A.E., J.G., and V.K.) placed 70 IO catheters for

a total sample size of 210 catheters, with 150 placed in the humerus

and 60 placed in the sternum. Two humeral catheters were excluded

due to mechanical malfunction of the placement device, so the total

sample size for statistical analysis was N = 208. Of these, 69 (33%)

catheter tipswereplaced in zone1, 104 (50%) in zone2, and35 (17%) in

zone 3.

3.2 Flow rates

The flow rates for catheter tips placed in zone 1 (medullary space,

M= 146mL/min, SD= 47) and zone 2 (inner trabecular bone,M= 151,

SD = 50) were statistically similar to each other (p = 0.48). Catheter

tip placement in both zone 1 and zone 2 had >30% higher flow rates

than those placed into zone 3 (cortical and outer trabecular bone,

M = 107, SD = 38, each p < 0.001). Figure 3 shows that this pattern

remained substantively identical after adjusting for site andparticipant

(p = 0.49 for zone 1 vs. zone 2, p < 0.001 for zone 1 and zone 2 vs.

zone 3).

3.3 Mean infusion pressures

The mean infusion pressures of catheter tips placed into zone 1

(M = 635 mL/min, SD = 240) and zone 2 (M = 657, SD = 251) were

statistically similar to each other (p = 0.56) and ∼25% lower than

those of catheter tips placed into zone 3 (M = 814, SD = 42, each

p < 0.001). Figure 4 shows that this pattern remained substantively
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identical after adjusting for site and participant (p = 0.74 for zone 1

vs. zone 2, p = 0.003 for zone 1 vs. zone 3, p = 0.005 for zone 2 vs.

zone 3).

3.4 Peak infusion pressures

The peak infusion pressures for catheter tips placed into zone 1

(M = 2284 mL/min, SD = 533) and zone 2 (M = 2308, SD = 624)

were statistically similar to each other (p = 0.51) and 10%−15% lower

than those of catheter tips placed into zone 3 (M = 2527, SD = 88,

p = 0.004 and 0.005, respectively). Figure 5 shows that, after adjust-

ing for site and participant, zone 1 and zone 2 remained statistically

similar (p = 0.52), and zone 3 remained significantly higher than zone

1 (p= 0.03) but only trended higher than zone 2 (p= 0.07).

4 LIMITATIONS

The present study was limited by the cadaveric swine model, which

was chosen to balance model fidelity with the ethical concerns of
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studying 210 total trials while adhering to “Reduce, Reuse, and Refine”

principles by utilizing a model similar to previously published IO

research.11,29,30 Although swine anatomy does not directly translate

to human anatomy, porcine bone was intentionally chosen because it

has been shown to be an excellent translational model for transfu-

sion research.19,28,31,32 While the present cadaveric model lacked the

realism of skin and the challenges of identifying appropriate IO sites

based on anatomical landmarks, we chose samples from swine with

bone density closely approximating a young adult population.

Cadaveric swine are not the same as pressurized in vivo prepara-

tions, and postmortem collection of study samples may have led to

slower flow rates due to some IO emissary vessels became occluded

after procurement. Despite this limitation, pressure measurements

were consistent with infusion parameters from prior in vivo IO stud-

ies and allowed for comparative assessments.11,28,39,40 Furthermore,

previous animal studies have demonstrated that IO hydrostatic pres-

sure is proportional to arterial pressure.41 This is important, because

the present study was designed to contrast flow and pressure rela-

tive to zones of catheter tip placement, not to acquire absolute flow

and pressure values, which somewhat ameliorates the limitations of

using a cadaveric model rather than a pressurized in vivo model.

Regardless, these findings should only be generalized with appropri-

ate caution pending replication with in vivo animal and human studies.

Furthermore, the in vitro model precluded assessment of intravascu-

lar hemolysis or pulmonary histology from possible damage created

by shear stresses from pressurized IO. Clinical case studies and animal

studies have reported the potential for these complications, so further

investigations using in vivo models are warranted.42,43 We only used

proximal humerus and sternal sites, with infusion of isotonic crystal-

loid using a push‒pull method. The use of blood products, different

anatomic sites, and different infusion techniques may confer different

results.23,28

This study was limited by the modest number of study participants,

whowere each emergencymedicine residents. This limitationwasmit-

igated by cross-training participants prior to commencement of the

study.

5 DISCUSSION

Difficult intravenous access is encountered in up to 11% of patients

in the emergency department.1,2 When this occurs in critically ill or

injured patients, IO catheters offer an important bridge to vascu-

lar access.4,44–46 Consensus guidelines suggest that landmark-based

placement into themedullary space should be confirmed through aspi-

ration of marrow.7–9,42 However, training on anatomic-based place-

ment in resuscitation and prehospital medicine courses is often brief,

with low-fidelity static mannequins and no placement feedback.7–10

Retrospective reviews have demonstrated that landmark-based place-

ment of IO catheters can vary significantly in trauma care settings.16,17

The clinical impact of suboptimal or errant placements of IO catheters

is poorly understood, but the limited published evidence suggests

that there may be a link between IO catheter tip location, complica-

tions, and overall infusion performance.11,12,47,48 For these reasons,

the present study was designed to determine whether there might be

systematic differences in IO flowratesdependingoncatheter tip place-

ment. If the location of the IO catheter tip affects clinical performance,

then future resuscitation and prehospital education should focus on

the importance of anatomic placement and the development of higher

fidelity IO procedural training tools.

Based upon our Zone Theory of IO Tip Placement, we expected to

find the highest flow rates and lowest infusion pressures in zone 1,

with intermediate flow rates and pressures in zone 2, and the lowest

flow rates and highest pressures in zone 3. This theory was based on

bone density/porosity and proximity to the venous central sinus. That

is, lower flow rates and higher pressureswould be expectedwhen bone

density is higher. Second, the more peripheral the IO catheter tip is

located from the central sinus of the intramedullary space, the higher

the infusion pressures required tomaintain forward flow.

Consistent with our theory, zone 3 IO placements were associated

with 30% lower flow rates and 15%‒25% higher mean and peak pres-

sures than zone 1 or zone 2 IO tip placements. These observations

were consistent with the principles of Darcy’s law, prior observations

of IO infusion, and theoretical fluid dynamics. First, the physical dis-

tance fromthe central venous sinus confers a greater lengthoverwhich

infused fluidsmust travel before exiting the IO environment and enter-

ing the peripheral circulation. Second, the presence of the IO catheter

tip in or near cortical bone requires that infused fluids traverse through

the medullary sinuses and return to the central venous sinus via cen-

tripetal (rather than linear) flow before exiting the bone through the

emissary veins.49,50 Finally, the higher surrounding density of cortical

bone requires higher pressure to produce the same flow rate.51

In contrast to our theory, zone 1 and zone 2 IO catheter tip place-

mentswere essentially identical in terms of flow rates,mean pressures,

and peak pressures. We hypothesize two possible explanations for

this observation. First, zone 1 and zone 2 may be effectively indistin-

guishable because the venous sinus extends off the central medullary

canal. Second, it is possible that the in vitro model concealed signif-

icant differences between zone 1 and zone 2. Zone 1 catheter tips

have the advantage of immediate access to the central venous sinus,

which directly flows into emissary veins that exit the bone and enter
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the peripheral circulation. Zone 2 catheter tips, present within the

trabecular bone, access an area that is rich in medullary sinuses and

hemopoietic niches. These tributaries eventually return to the central

venous sinus through centripetal flow.50,52 Overall, this result implies

that IOcatheters neednot beplacedperfectly in zone1 to achieveopti-

mal infusion performance, but should avoid the cortical and peripheral

cancellous bone of zone 3.

The present findings offer clarity regarding two previous studies

on IO hypertonic saline infusion that provided contradictory findings.

Alam et al. utilized clinical confirmation of landmark-based IO catheter

placement with ease of flush prior to infusing hypertonic saline. That

study utilized a Sur-Fast IO (Cook Critical Care) that required man-

ual placement and had infusion ports on the lateral aspects of the

catheter and a closed catheter tip. Overall, 80% of their subjects devel-

oped osteonecrosis or soft tissue necrosis, and the investigators noted

fluid extravasation into muscle compartments during their pressur-

ized infusion. The design of the IO catheter and atypical method of

confirmation (no marrow aspiration) in that study increased the risk

for placement of the catheter tip in the peripheral cancellous bone

or outside the cortex.47 Bebarta et al. utilized fluoroscopic placement

into the intramedullary space with the EZ IO catheter (EZ-IO, Tele-

flexMedical) with a standard catheter tip open to infusion. They found

no evidence of myonecrosis or osteonecrosis after infusion of hyper-

tonic saline.48 Our present findings correlate with these two studies

and suggest that IO catheter tip placement may have a substantial

impact on infusion performance and decrease rates of complications.

More specifically, placement into or near the cortical bone leads to sig-

nificantly lower flow rates and higher infusion pressures and should

therefore be avoided. Although it is thought that aspiration of marrow

confirms adequate placement of catheters into the medullary space,

the reliability of this qualitative measure is unclear and more research

in this area is required.42 The implications of present findings could

inform resuscitation courses to highlight the importance of accurate

anatomic-based placement in linewith themedullary sinus. In addition,

the lower flow rates and increased pressures in the more peripheral

bone could be utilized in development of higher fidelity simulation

training devices for IO insertion.

Prior research on IO pressurized infusion utilizing push‒pull infu-
sion and the Belmont Rapid Infuser (Belmont Medical) also suggested

that catheter tip location may be related to infusion performance.11

This is clinically significant because lower flow rates slow the admin-

istration of critical interventions, such as blood transfusion or delivery

ofmedications. If optimization of catheter tip positioning can positively

impact the performance of IO infusion, this would be of great impor-

tance in the resuscitation of the critically ill or injured patients whose

outcomes are impacted by the timeliness and effectiveness of medical

intervention.7,42,53 The present study makes a novel contribution by

demonstrating systematic differences in flow rates and infusion pres-

sures based on cortical bone (zone 3) versus medullary (zone 1) or

trabecular (zone 2) IO catheter tip placements.

Future research is vital for determining the clinical impact of these

findings. The present study should be replicated with larger number

of participants with various levels of experience. We only utilized the

push‒pull pressurized infusion technique, so it is important to test the

ZoneTheory of IOCatheter TipPlacementwith other pressurized infu-

sion techniques, such as in-line hand pumps, manual rapid infusers, and

pressure bag, for example.30 In addition to assessing sternumandprox-

imal humerus, it is equally important to test other IO locations, such as

proximal tibia, pelvis, and medial malleoli. Most importantly, it is cru-

cial to challenge the present cadaveric swine findings with replication

using pressurized in vivo animalmodelswith assessment of intravascu-

lar hemolysis or pulmonary histology from possible damage caused by

shear stresses from pressurized IO, and ultimately, to investigate the

Zone Theory of IO Tip Placement in human subjects.

In conclusion, IO catheter tip placement can significantly influence

infusion flow rates and pressure. Although this study was limited by

the use of a cadaveric swine model rather than a pressurized in vivo

model, present findings suggest that IO catheter tips do not need to

be perfectly placed in the medullary space (zone 1) to confer high infu-

sion flow rates and low pressures, butmerely accurate enough to avoid

denser, more peripheral cancellous or cortical bone (zone 3). Taken

together, these results have important implications for prehospital

and emergency medicine providers who use IO catheters to preserve

life.
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