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White matter hyperintensities (WMH) are imaging manifestations frequently

observed in various neurological disorders, yet the clinical application of WMH

quantification is limited. In this study, we designed a series of dedicated WMH

labeling protocols and proposed a convolutional neural network named 2D

VB-Net for the segmentation of WMH and other coexisting intracranial lesions

based on a large dataset of 1,045 subjects across various demographics and

multiple scanners using 2D thick-slice protocols that are more commonly

applied in clinical practice. Using our labeling pipeline, the Dice consistency

of the WMH regions manually depicted by two observers was 0.878, which

formed a solid basis for the development and evaluation of the automatic

segmentation system. The proposed algorithm outperformed other state-of-

the-art methods (uResNet, 3D V-Net and Visual Geometry Group network) in

the segmentation of WMH and other coexisting intracranial lesions and was

well validated on datasets with thick-slice magnetic resonance (MR) images

and the 2017 medical image computing and computer assisted intervention

WMH Segmentation Challenge dataset (with thin-slice MR images), all

showing excellent effectiveness. Furthermore, our method can subclassify

WMH to display the WMH distributions and is very lightweight. Additionally,

in terms of correlation to visual rating scores, our algorithm showed excellent

consistency with the manual delineations and was overall better than those

from other competing methods. In conclusion, we developed an automatic

WMH quantification framework for multiple application scenarios, exhibiting a

promising future in clinical practice.
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Introduction

White matter hyperintensities (WMH) are common
subcortical neuroimaging findings characterized by high
signals in fluid-attenuated inversion recovery (FLAIR) and
T2-weighted images (Wardlaw et al., 2013; Prins and Scheltens,
2015). With a high prevalence in senior individuals (more than
95%), WMH are primarily considered to be established markers
of cerebral small vessel disease (CSVD) and are strongly
correlated with an increased risk of cognitive impairment,
ischemic stroke, and mood and gait disturbance (Simoni et al.,
2012; Prins and Scheltens, 2015; Ter Telgte et al., 2018). In
addition to its vascular etiology, WMH are also incidentally
attributed to the pathology of other disorders, such as
multiple sclerosis (MS), hypoxic-ischemic encephalopathy, and
leukodystrophy. Hence, an accurate and reproducible method
for WMH assessment is important. Manual delineation of the
WMH by a neuroradiologist was thought to be a viable way to
evaluate and quantify white matter abnormalities quantifiably.
However, it is not only tedious and time consuming, but
also has disadvantages such as large intra- and inter-observer
variabilities, ranging from 10 to 68% (Grimaud et al., 1996;
Zijdenbos et al., 2002; Styner et al., 2008), making it infeasible
for clinical applications and large-scale studies.

In recent years, deep learning (DL) has attracted strong
attention due to its powerful modeling capacities and the ability
to automatically learn advanced features from data once given a
task and has demonstrated great success in image classification
(Krizhevsky et al., 2012), target detection (Ren et al., 2017),
and image segmentation (Long et al., 2015). Studies have also
focused on WMH segmentation using DL methods, including
convolutional neural networks (CNNs; Ghafoorian et al., 2017),
the lesion prediction algorithm (Schmidt, 2017), and U-Net
(Li et al., 2018). In addition, Guerrero et al. (2018) introduced
residual units into U-Net (uResNet) to reduce model complexity
and accelerate convergence. Although many algorithms have
been proposed for WMH segmentation, few could be applied
for clinical use for the following reasons. First, most algorithms
proposed previously were developed based on data with both
3D T1-weighted and FLAIR images of a thin thickness (1–
3 mm) using 3D networks (Ghafoorian et al., 2017; Valverde
et al., 2017; Li et al., 2018; Moeskops et al., 2018; Kuijf
et al., 2019). Nevertheless, in both clinical practice and recent
important cohort studies focused on CSVD (van Norden et al.,
2011; Lawrence et al., 2013; Lambert et al., 2016; Su et al.,
2017, 2018; Tay et al., 2020), magnetic resonance (MR) images
were more frequently acquired based on thick-slice protocols
(2D FLAIR images with a layer thickness of approximately
5 mm), according to the authorized recommendation for CSVD
(STandards for ReportIng Vascular changes on nEuroimaging,
STRIVE; Wardlaw et al., 2013). Furthermore, although 3D T1-
weighted and FLAIR MRI with scanning protocols of thin-slice
layers have been widely applied in some developed countries,

2D MRI scans with thick-slice layers are still most commonly
performed in developing countries. Evidence suggests that
3D convolutions are less intuitive and may perform poorly
(Abulnaga and Rubin, 2018) on 2D data, especially for WMH
segmentation on 2D MR images with thick-slice protocols
(Dadar et al., 2017). Second, the data of former studies
(Gibson et al., 2010; Klöppel et al., 2011; Schmidt et al.,
2012; Brosch et al., 2016; Griffanti et al., 2016; Bowles et al.,
2017; Ghafoorian et al., 2017; Schmidt, 2017; Valverde et al.,
2017; Guerrero et al., 2018; Li et al., 2018; Moeskops et al.,
2018; Park et al., 2018; Kuijf et al., 2019) contain relatively
small sample sizes (20∼200) limited to some specific groups,
such as patients with CSVD and MS. Third, WMH usually
coexist and coalesce with other types of brain lesions that have
decided clinical values and sometimes also appear hyperintense
on FLAIR or T2-weighted images, such as lacunes and large
stroke lesions (Gouw et al., 2011), and these lesions were
rarely identified and segmented simultaneously in prior works
(Wang et al., 2012; Guerrero et al., 2018). Finally, the partial
volume effect is stronger in 2D MR data with thick layer
thickness for routine clinical practice and poses great challenges
both in data labeling and algorithm development. Thus, the
previously reported algorithms that were developed based
on a single FLAIR sequence may also not be suitable for
clinical practice.

To address the above issues, in this study, a large MR
dataset of 1,045 WMH subjects was collected; these subjects
had WMH of any degree and exhibited a wide range of
demographic characteristics. The MR images were acquired
by seven different scanners (3 T or 1.5 T), and each subject
had T1-weighted, T2-weighted, and FLAIR images. We first
proposed a series of semi-automated labeling protocols for
manually labeling WMH and other intracranial lesions based
on multi-modality images. We then presented a novel 2D
CNN named 2D VB-Net (Figure 1) that incorporates the
advantages of an efficient encoder-decoder framework for
feature embedding, residual connections for information flow,
and bottleneck layers for model compression. To validate
the robustness and generalization of our algorithm, thorough
experiments were performed on two independent in-house
datasets (with thick-slice MR layers) and on the dataset from
the 2017 medical image computing and computer assisted
intervention (MICCAI) WMH Segmentation Challenge (with
thin-slice MR layers of 3 mm). Furthermore, direct comparisons
were performed between our method and three well-established
CNN algorithms, uResNet (Guerrero et al., 2018), 3D V-Net
(Milletari et al., 2016; Casamitjana et al., 2017), and the
Visual Geometry Group network (VGGNet; Xu et al., 2018),
in the segmentation of WMH and other intracranial lesions.
Comparisons were also conducted between the correlations
of the total and subclassified WMH volumes derived from
automatic algorithms (our algorithm or the other methods) and
manual raters with corresponding visual rating scores.
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FIGURE 1

Proposed 2D VB-Net architecture for WMH segmentation.

Materials and methods

Subjects

Magnetic resonance data were obtained from 1,045 subjects
with WMH of any degree recruited from the outpatient and
inpatient departments of Tongji Hospital, Wuhan, China. The
exclusion criteria were as follows: (1) age less than 18 years
old; (2) an intracranial space-occupying lesion or adults with
intracranial surgery; (3) poor image quality due to significant
movement artifacts or other factors; and (4) a lack of images
from any of the three sequences (T1-weighted, T2-weighted, and
FLAIR). The study was approved by the Ethics Committee of
Tongji Hospital, Tongji Medical College, Huazhong University
of Science and Technology. Written informed consent was
obtained from each participant. The research was performed in
accordance with relevant guidelines and regulations.

Data preprocessing

The images were preprocessed according to the flowchart in
Supplementary Figure 1. The steps were as follows:

a) The N4 algorithm (Tustison et al., 2010) was applied to
T1-weighted images for bias field correction to handle the
inhomogeneity of the magnetic field.

b) To address movements during scans, Advanced
Normalization Tools (Avants et al., 2008) were used
for multi-model registration. Because WMH are viewed

most clearly on the FLAIR sequence, T1-weighted and
T2-weighted images were registered to the FLAIR images
via rigid and affine transformations computed based on
the maximization of mutual information.

c) To focus network training on brain tissues, the FSL-Brain
Extraction Tool (Smith, 2002) was applied to remove the
skull from the T1-weighted images, and the corresponding
skull regions were removed from the already registered T2-
weighted and FLAIR images.

d) To minimize the variations in intensity ranges among
scanners, subjects, and modalities and to boost network
training convergence, quantile normalization was applied
to all images to normalize the voxel intensities to the range
of [0,1] using the equation:

I
′

=


0 if I < P0.001;

1 if I > P0.999;
I−P0.001

P0.999−P0.001
otherwise.

(1)

where I and I’ are the original and normalized intensities,
respectively. The original intensities were sorted, and the
intensities at 0.1% and 99.9% were marked as P0.001 and
P0.999, respectively.

Proposed image delineation protocol

Multi-modality labeling
A single FLAIR sequence may not well differentiate WMH

from lacunes, perivascular space (PVS), cortical infarctions, and
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other brain lesions (Wardlaw et al., 2013), especially in 2D MR
data with thick slices in which the partial volume effect is even
stronger. In this work, we cross-checked all three sequences for
the delineation of WMH regions and other intracranial lesions,
which were assigned as label 1 and label 2, respectively.

Use of semi-automated tools to reduce manual
error

Manual delineation of WMH is a challenging task (García-
Lorenzo et al., 2013). Cognitive differences and manual errors
of boundary delineation were the main reasons for large inter-
observer variations and low Dice consistency. To reduce the
inherent error of manual delineation and improve labeling
consistency, a histogram-based threshold was used to extract the
lesion from the FLAIR images, and experts then corrected the
results on the registered T1-weighted and T2-weighted images
using ITK-SNAP (Yushkevich et al., 2006).

Discussion to reduce cognitive differences
Two skilled observers independently delineated WMH

regions guided by a neuroradiologist with 15 years of experience
(S.B.X.). For any set of images, if the Dice value of two
WMH delineations was lower than 0.5, the two observers
discussed the case and then performed the delineation again
independently. This process was repeated until the Dice value
was consistently above 0.5. The Pearson’s correlation coefficient
(PCC) was applied to evaluate the consistency between the
two delineations.

Handling inter-observer ambiguity
Supplementary Figures 6D,E show the WMH regions

on a sample of FLAIR images labeled independently by
the two observers. The two sets of labels overlapped and
exhibited discrepancies at times. Supplementary Figure 6F
shows the union of the two delineations, and these results
were considered the ground truth. To handle inter-observer
variations, we proposed the following labeling definition. As
shown in Supplementary Figure 6G, the intersections of the
two sets of labels (marked red) were defined as the “definite”
WMH, while the regions labeled by only one of the observers
(marked blue) were defined as the “suspected” WMH. The union
of the two sets was regarded as the ground truth for training,
but the voxels in the definite and suspected WMH regions were
given unequal weights.

Silver standard dataset
In clinical images, no real ground truth is available (García-

Lorenzo et al., 2013), especially in WMH segmentation, and the
best approximation is manual delineation by experts. However,
inter-observer variation is unavoidable, and a silver standard
dataset is needed to evaluate the accuracy of segmentation. In
the present study, 20 out of the 1,045 subjects were selected to
form the silver standard dataset, covering subjects with light

to severe WMH loads. The images of each of the 20 subjects
were labeled using the method described previously by five
neuroradiologists with over 8 years of experience independently
(XL, WZ, HH, SX, and WQ). The five sets of labeled results
were merged by majority voting on every labeled voxel. The
remaining 1,025 subjects were labeled by two experienced
observers using the labeling strategy described earlier.

Proposed 2D VB-Net architecture

We previously proposed a VB-Net framework for 3D
organ segmentation on CT images. It was ranked first in
the Segmentation of Thoracic Organs at Risk in CT images
challenge held by the IEEE International Symposium on
Biomedical Imaging 2019 (Han et al., 2019). Here, we adopted
this framework and customized it into a network structure
named 2D VB-Net with weighted Dice loss to handle the WMH
segmentation problem.

Briefly, V-Net (Milletari et al., 2016) is used as the backbone
of the network, which includes the encoder, decoder, and
residual blocks. The bottleneck layer was introduced to reduce
the number of feature maps. The input to the network combined
the T1-weighted, T2-weighted, and FLAIR images because
clinically these three MRI modalities were jointly recommended
to determine the territory of WMH and differentiate WMH
from other cerebral lesions, such as lacunes, PVS and large
infarctions. The adjustments of the network are listed as follows.

1. 2D convolutional kernels replace 3D kernels since the MR
images were acquired using the 2D protocol with a layer
thickness of no less than 5 mm and the number of slices in
a series was usually 16∼20.

2. The number of bottleneck structures of the high levels was
reduced. Here, we referred to the vertical depth as the
level, with the original input and output depth as level
1; after down-sampling 4 times as level 5, the lower the
level was, the higher the spatial resolution was but with
fewer feature maps, and vice versa. Because the number of
segmentation categories is relatively small, reduction of the
bottleneck structure would not impact the segmentation
accuracy but would help reduce the model parameters and
hence improve the robustness.

3. The output block was adjusted, and two convolutional
layers were added to the original basis to generate the
segmentation probability map.

The architecture of the 2D VB-Net is shown in Figure 1.
In general, the left side of the 2D VB-Net was the contraction
path, and the right side was the expansion path. The left
contraction path reduces the size of input by down-sampling.
It consists of four blocks, which comprise two convolution
layers, bottleneck structures and residual structures. The right
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expansion path has similar structures and recovers the semantic
segmentation image by de-convolutions. Between the two paths,
a skip connection was introduced to improve the segmentations.
The numbers of input channels and output channels are not
shown in Figure 1, as these were configurable. In this study,
there were 3 input (T1-weighted, T2-weighted, and FLAIR)
and 3 output (background, WMH, other intracranial lesions)
channels and the input crop size was 256 × 256, the parameters
of 2D VB-Net were only 1.08 M, which accounted for only
3.5% of that of U-Net. Benefit from introducing the bottleneck
structures, the inference memory was 696 M. An extra benefit of
the lightweight 2D VB-Net would be its ease of deployment for
a cloud or mobile application.

Next, we introduced weighted Dice loss to focus on
definite WMH. WMH regions were very sparse compared to
background regions, causing an imbalance between positive and
negative samples. This situation was also common in medical
image segmentation problems. Hence, the Dice loss (Milletari
et al., 2016) was used to avoid local minima in the training
process based on the following equation:

Dice loss = 1−
1
C

C∑
1

(
2
∑N

i pc
i gc

i∑N
i (pc

i )
2 +

∑N
i (gc

i )
2

)
(2)

where pi ∈ P is the algorithm result, gi ∈ G is the ground
truth, and C is the number of classes. As described previously,
we defined definite WMH and suspected WMH. Regarding
Dice loss, more weight was placed on the definite WMH, and
therefore the Dice loss was modified as

Dice loss = 1−
1
C

C∑
1

(w(x))c

(
2
∑N

i pc
i gc

i∑N
i (pc

i )
2 +

∑N
i (gc

i )
2

)
(3)

where (w(x))c is the weight map.
For definite WMH, the weight was set to 2, while the weight

for the suspected WMH was set to 1 + f
(
dis
(
Def

))
, where

dis
(
Def

)
was the distance to the center of the nearest definite

WMH region. The f
(
dis
(
Def

))
ranged from 0 to 1 and was

calculated as

f
(
dis
(
Def

))
= 1−

dis
(
Def

)
dis
(
Def

)
max

(4)

Evaluation metrics

Dice, recall, and precision as common indictors for quality
image segmentation were also used in this study. Specifically,
Dice described the overlap between the segmentation regions
and the ground truth regions as

Dice =
2 ∗ TP

2 ∗ TP + FP + FN
. (5)

and recall described the portion of ground truth voxels that were
corrected segmented as

recall =
TP

TP + FN
(6)

Recall was computed for all the labeled WMH regions
combined, as well as separately for the definite WMH regions.
Precision described the portion of segmented voxels that belong
to the ground truth regions as

precision =
TP

TP + FP
(7)

In the above equations, TP, FN, and FP denote the
number of true positive, false negative and false positive
voxels, respectively.

In addition to voxel-level recall and precision, lesion-level
recall and the F1-score were also defined as performance
evaluation metrics. Each lesion was defined as a 3D connected
component, and the formula for recall for each lesion was the
same as in equation (Styner et al., 2008), but TP and FN were
redefined as the number of lesions that were correctly segmented
or missed by the algorithm. The F1-score was the harmonic
mean of recall and precision and was calculated as

F1 =
2 ∗ recall ∗ precision

recall + precision
(8)

To better distinguish recall and precision parameters at the
voxel level, the lesion-level recall and F1-score were named
lesion recall and lesion F1, respectively. Additionally, the
average volume difference (AVD, in percentage) was defined as

AVD =
|A− B|

B
∗ 100% (9)

The Hausdorff distance (95th percentile): Hausdorff95 was also
included, which indicated the distances of the two lesion voxel
sets with a percentile value of 95% and was calculated as

Hausforff 95 = max{max (95%)a∈A minb∈B||a− b||,

max (95%)b∈B mina∈A||b− a||} (10)

where A is the segmented image and B is the ground truth
image, which denotes the absolute difference in percentage. In
the above, TP, FN, and FP denoted the number of true positive,
false negative and false positive voxels, respectively.

Subclassification of white matter
hyperintensities

On the basis of traditional classification, which divided
WMH into periventricular WMH (PWMH) and deep WMH
(DWMH; Fazekas et al., 1987), literature further proposed
subclassifying WMH into 4 categories based on their distance
from the ventricle, including juxtaventricular WMH (JVWMH),
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PWMH, DWMH, and juxtacortical WMH (JCWMH; Kim et al.,
2008; Li et al., 2019). Briefly, JVWMH is defined as the area
within 3 mm from the ventricle, and PWMH ranges from
3 mm to 13 mm; JCWMH refers to WMH within 4 mm from
the corticomedullary junction, and DWMH is defined as the
region between PWMH and JCWMH (Kim et al., 2008). In
our system, we provided such subclassification of WMH, and
thus, their specific volumes could be obtained as extra features.
To accomplish this analysis, we first segmented the ventricles
from MR images by using the 2D VB-Net structure and then
constructed a distance map where voxels in the ventricle have
a distance of 0 and all other brain voxels are assigned values
as their nearest distances from any ventricle voxel. The whole-
brain WMH was thus subclassified into these 4 categories based
on the distance map. In addition, we also subclassified WMH
into only 2 categories in line with the traditional classification
(PWMH, defined as WMH within 10 mm of the lateral ventricle,
and other WMH defined as DWMH; DeCarli et al., 2005; Godin
et al., 2010; Lampe et al., 2019; Sundaresan et al., 2019) based
on the criteria proposed by Fazekas et al., and showed the
segmentation maps.

Correlation analysis with the visual
rating score

Furthermore, to investigate the clinical value of these WMH
volume features proposed in this study, we evaluated their
correlations with the Fazekas visual rating scale, the most
widely used visual inspection approach for WMH assessment
in the combined two independent datasets (Fazekas et al.,
1987). The total Fazekas score (0–6) is defined as the sum of
the PWMH score (0–3) and the DWMH score (0–3; Fazekas
et al., 1987; Helenius and Henninger, 2015). For each subject,
the Fazekas scores of PWMH, DWMH, and the total Fazekas
score were obtained from the consensus from two experienced
neuroradiologists (WZ and HH) who were blinded to the
clinical information and the segmentation maps.

To clinically validate our method, we further evaluated the
correlations between WMH volumes (extracted with our system
or manual raters) and the Fazekas scale. The statistical analysis
was performed in R version 4.1.1 (http://www.R-project.org)1.
Correlation analysis was conducted between the volumes of the
total WMH, PWMH or DWMH (expressed as a percentage
of the total intracranial volume) and the corresponding
Fazekas score using Spearman’s correlation. To verify whether
the proposed algorithm is a valid alternative method to
manual annotations and whether the algorithm is better than
other competing methods in clinical correlation analysis, we
compared the correlation coefficients between Fazekas scores
and WMH volumes generated by 2D VB-Net or other state-
of-the-art algorithms and the correlation coefficients between

1 www.R-project.org

Fazekas scores and WMH volumes generated by experienced
manual raters assisted with semi-automatic tools (used as
the ground truth for the algorithm training). A bootstrap
approach was used to estimate the 95% confidence interval
(CI) of the correlation (N = 1,000), and a significant difference
between two Spearman’s correlation coefficients was defined by
a 95% CI that did not include 0 (Efron, 1987; Wood, 2004).
Additionally, we also repeated the analyses above using the
extracted PWMH and DWMH according to the widely used
definition mentioned above.

Results

The in-house dataset included the image data of 1,045
subjects using seven types of MRI scanners, including GE Signa
HDxt 3.0 T, GE Discovery MR750 3.0 T, UIH uMR 780 3.0
T, GE Signa Excite 1.5 T, GE Signa HDxt 1.5 T, GE Signa
Creator 1.5 T, and GE Brivo MR355 1.5 T. The scanning
protocols were all 2D axial, and the details of the protocols
and the subjects’ distribution over imaging devices are listed
in Supplementary Tables 1, 2. Supplementary Figure 2 shows
the data used in this work from different views and modalities.
The dataset was divided into the following subsets for algorithm
testing and validation: (1) the multi-scanner set (849 subjects
with data from both 3 T and 1.5 T MR scanners); (2) the
independent dataset 1 (IDS 1, 102 subjects with data acquired
from a 3 T MR scanner); (3) the independent dataset 2 (IDS
2, 74 subjects with data acquired from a 1.5 T MR scanner);
and (4) the silver standard dataset (20 subjects randomly chosen
from both 3 T and 1.5 T MR scanners). The demographic
characteristics of the subjects in each dataset are summarized in
Table 1.

Image delineation

We proposed a series of advanced labeling strategies.
The multi-modality images were used to differentiate WMH
and other intracranial lesions and were effective in reducing
the false-positive parts of WMH regions (ventricular regions
were correctly avoided in this example) and improving the
accuracy of labeling other intracranial lesions (PVSs in this case;
Figure 2A). As shown in Figure 2B, the strategy of using semi-
automatic tools was utilized for manual delineation to reduce
manual errors of boundary delineation and the Dice consistency
was significantly improved with the help of semi-automatic
tools. Compared to the completely manual method, using our
labeling strategies, the Dice consistency significantly improved
from 0.538 to 0.878, and the PCC improved from 0.963 to
0.993 for WMH delineation in 280 randomly chosen subjects.
For other intracranial lesions, the Dice consistency significantly
improved from 0.475 to 0.602, and the PCC improved from
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TABLE 1 Demographic features of the in-house datasets.

Multi-scanner dataset IDS 1 IDS 2 Silver standard dataset Total

(N = 869) (N = 102) (N = 74) (N = 20) (N = 1045)

Age (Years) 62.19± 11.33 64.72± 9.71 60.19± 11.50 62.30± 9.97 62.30± 11.20

Gender (M/F) 457/392 51/51 36/38 15/5 559/486

IDS, independent dataset.

FIGURE 2

Improved delineation with our labeling strategies. (A) Multi-modality images (T1-weighted, T2-weighted, and FLAIR) applied to differentiate
WMH and other intracranial lesions and reduce false positives. The ventricular regions were correctly avoided. The perivascular space, marked in
green, was also labeled jointly on all three modalities. (B) With the use of semi-automatic tools, the difference between the two delineations
declined, and the Dice improved from 0.75 to 0.943.

0.955 to 0.992 (P < 0.01). We have released a portion of
delineation data at https://github.com/haohaohuang-tj/WMH.

2D VB-Net

The proposed 2D VB-Net fully convolutional network
(FCN; Figure 1) was implemented in the PyTorch DL

framework, with weighted Dice loss as the loss function.
To handle the variations in pixel spacing among scanners,
the images and labeled regions were uniformly resampled in
both the x- and y-directions to a spacing of 0.5. The pixel
spacing in the z-direction remained intact. The input 2D
patches for training were 256 × 256 and randomly sampled
from the image volume. The initialization of weights used
the Kaiming initialization strategy (He et al., 2015), and the
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optimizer was adaptive moments estimation (Adam; Kingma
and Ba, 2014) with the first moment coefficient = 0.9, second
moment coefficient = 0.999, learning rate = 0.001, and mini-
batch size = 48. The training was carried out on 2 NVIDIA
Titan Xp 12 GB graphics processing units. In addition, we
added a detailed network layer description table to facilitate the
readers’ performance (Supplementary Table 3). The code and
pre-trained model are publicly available at https://github.com/
simonsf/wmh-segmentation.

Five-fold cross-evaluation on the
multi-scanner dataset

The results of five-fold cross-validation of the proposed
multi-modality algorithm (noted as 2D VB-Net_multi), FLAIR-
only algorithm (noted as 2D VB-Net_S), uResNet, 3D V-Net,
and VGGNet (note: these three algorithms for comparison
were all trained using multi-modality MR images), are shown
in Figure 3 and Supplementary Table 4. Overall, the 2D
VB-Net_multi algorithm achieved the best results among the
five algorithms, as measured by Dice, Hausdorff and lesion
F1 measurements, indicating the great effectiveness of the
2D VB-Net algorithm on the segmentation of WMH and
coexisting intracranial lesions. Two examples of segmentation
maps using the different methods are shown in Figure 4.
which demonstrates that the single-modality algorithm (2D
VB-Net_S) misidentified some regions (a portion of anterior
horns of the lateral ventricles in example 1 and cerebral
infarction located in brain areas of the cortex and cortical-
subcortical junction in example 2) showing hyperintensity on
the FLAIR sequence as WMH. Furthermore, with reference
to the manual delineations, the 2D VB-Net_multi algorithm
overall segmented WMH and other intracranial lesions better
than the competitive methods.

Validation on two independent
datasets

To further evaluate the generalization capability of the
multi-modality algorithms, the 2D VB-Net and the other 3
state-of-the-art algorithms were trained on IDS 1 and IDS 2,
respectively. Here, the 2D VB-Net also achieved fairly good
performance and outperformed the other three well-established
algorithms, showing fewer performance drops compared to
the other algorithms (Figure 5 and Supplementary Table 5).
Furthermore, we subdivided the samples in IDS 1&2 into three
groups with different WMH volumes of <5 ml, 5–15 ml, and
>15 ml. Generally, performance was demonstrably higher on
larger lesions, which was also the case for human delineations.
On both independent datasets, the 2D VB-Net algorithm
showed significantly better performance in all three groups

compared to that of the other three competitive algorithms as
measured by Dice except in the group with severe WMH (WMH
volume > 15 ml) of IDS 2 compared to that of uResNet and
VGGNet (Supplementary Table 6).

Validation on the medical image
computing and computer assisted
intervention white matter
hyperintensities challenge dataset

The algorithms were also evaluated using the 2017 MICCAI
WMH Segmentation Challenge dataset with a 5-fold cross-
evaluation. As listed in Supplementary Table 7, the dataset
consisted of 60 subjects from 3 hospitals, and each case
contained FLAIR and T1-weighted images. The public data had
been subjected to field correction and were already registered.
Skull stripping and intensity normalization were conducted on
these data in the same way as that during the preprocessing
step regarding our data. The data were then resampled in the
axial direction to a resolution of 1 mm, and the input patch was
adjusted to 128× 128. The performance of the top 4 algorithms
(Kuijf et al., 2019) in the 2017 MICCAI WMH Segmentation
Challenge is listed in Table 2. The proposed 2D VB-Net
algorithm also showed good performance (Dice = 0.789, lesion
F1 = 0.764) on this small dataset with thin-slice MR images.

Subclassification of white matter
hyperintensities and correlation
analysis with the visual rating score

As shown in Figure 6, the WMH was divided into
four parts: the JVWMH, the PWMH, the DWMH, and the
JCWMH. Each subclassification of WMH is labeled in a
different color, and the volume of each area is also displayed.
Furthermore, we calculated the correlations between the volume
of WMH obtained by manual delineation or the automatic
methods and the Fazekas scores. In terms of correlation to
Fazekas scores, our algorithm showed excellent consistency with
the manual delineations, and compared to other competing
methods, the correlation coefficients using volumes generated
by our algorithm showed overall better consistency with
the coefficients using volumes derived from manual raters,
especially for DWMH (Table 3). In addition, when WMH
were only subdivided into two parts (PWMH and DWMH)
based on the criteria proposed by Fazekas et al. (1987),
the results of the correlation analysis using the volumes of
PWMH and DWMH according to the definitions widely
used in previous studies (within or outside 10 mm from
the lateral ventricle; DeCarli et al., 2005; Godin et al., 2010;
Seo et al., 2012; Griffanti et al., 2018; Lampe et al., 2019)
were very similar to the results of the correlation analysis

Frontiers in Aging Neuroscience 08 frontiersin.org

https://doi.org/10.3389/fnagi.2022.915009
https://github.com/simonsf/wmh-segmentation
https://github.com/simonsf/wmh-segmentation
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/


fnagi-14-915009 July 25, 2022 Time: 16:35 # 9

Zhu et al. 10.3389/fnagi.2022.915009

FIGURE 3

Performance differences among the algorithms on the multi-scanner dataset. (A) Differences in the performance of WMH segmentation among
the five methods; (B) Differences in the segmentation performance of other intracranial pathologies among the five methods. The performance
of each algorithm was measured by Dice, lesion F1, Hausdorff, and AVD, respectively. Of note, the 2D VB Net_multi, uResNet, 3D V-Net, and
VGGNet were trained and evaluated based on multi-modality MR images (T1-weighted, T2-weighted, and FLAIR), whereas the 2D VB Net_S was
trained and evaluated based on only FLAIR images. A lower value of Hausdorff and AVD indicates better performance of the algorithm. *, **
P-value of two-tailed paired t-test between the performance of the 2D VB-Net _multi and the other algorithms; *, P < 0.05 significance level;
**, P < 0.001 significance level.

using the volumes of PWMH and DWMH based on Kim’s
criteria (Kim et al., 2008; Supplementary Figure 3 and
Supplementary Table 8).

Evaluation on the silver standard
dataset

2D VB-Net was evaluated on the silver standard dataset,
which was labeled by 5 neuroradiologists with over 8 years
of experience and merged by majority voting. The network
was first re-trained on all the data in the multi-scanner set
and the two independent datasets and then tested on the
silver standard dataset. The algorithm again demonstrated its
effectiveness in WMH segmentation, delivering Dice, Hausdorff,
AVD and lesion recall values of 0.782, 10.266, 44,635, and
0.853, respectively (Supplementary Table 9). Segmentation
performance was less accurate for other intracranial lesions
than for WMH, but lesion recall was as high as 0.908,
indicating its good capacity in lesion detection. For more
detailed observation, the WMH load of each case and
the Dice value achieved by the algorithm are listed in
Supplementary Table 10. The best case and the worst case
are also shown in Supplementary Figures 4, 5. Furthermore,
we conducted a direct comparison of the performance of
the manual delineations using semi-automatic tools by an
experienced observer independently and the proposed fully
automated method in the silver standard dataset since the
delineation results by using the two methods could be
compared to the “silver standard.” The results showed that
our proposed fully automated method achieved overall better
performance on the task of WMH segmentation compared
to that of the semi-automatic method when the data were

independently labeled by an experienced observer (see details in
Supplementary Table 11).

Discussion

In this study, a robust system for automated WMH
segmentation in multiple application scenarios was proposed.
A novel automated algorithm, 2D VB-Net FCN, was developed
and evaluated for the segmentation of WMH based on multi-
modal MR images in a large dataset of 1,045 subjects across
various demographics. With a series of advanced labeling
strategies, the 2D VB-Net algorithm, adopted from the VB-
Net solution for 3D volume data, achieved higher accuracy
regarding WMH segmentation of 2D MR images on data with
various imaging protocols and clinical diagnoses compared
to the accuracy of other state-of-the-art methods. Notably,
this WMH segmentation system was constructed based on
the 2D thick-slice protocol, which is more frequently applied
for routine clinical acquisition, using multiple scanners and
could suitably identify and segment other commonly coexisting
intracranial lesions of vascular origin (i.e., lacunes, cortical
infarcts, intracranial hemorrhage, and PVS). Furthermore, to
display detailed information of the WMH distribution, the
system can subclassify WMH into 4 categories and provide a
visual interface to show the segmentation map and volumes
of each subclassified WMH. In the validated analysis, the
proposed method was well hick-svalidated on two independent
datasets with tlice MR images and the 2017 MICCAI WMH
Segmentation Challenge dataset with a thin layer slice of
3 mm. In addition, in terms of correlation to Fazekas scores,
our algorithm showed excellent consistency with the manual
delineations and overall correlated better with the visual
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FIGURE 4

Examples of different segmentation methods used to illustrate the segmentation of WMH and cerebral infarction. The blue arrows show
hyperintensities adjacent to the bilateral anterior horn of lateral ventricles on the FLAIR sequence. A portion of these hyperintensities is located
in the lateral ventricles because of the partial volume effect, which was misidentified as WMH by using the 2D VB-Net_S algorithm. The yellow
arrows indicate cerebral infarctions located in the brain areas of the cortex and cortical-subcortical junction. The 2D VB-Net_S algorithm
misidentified these lesions as WMH. All the other algorithms correctly identified the stroke lesions, and the 2D VB-Net_multi algorithm provided
better segmentation than the other three state-of-the-art algorithms.

rating scores than other competing methods, highlighting the
robustness and clinical value of our algorithm.

The main strength of our study is that we proposed a
clinically usable and competitive method for the automatic
segmentation of WMH in multiple application scenarios,
including WMH coexisting with other intracranial lesions
and using MR images with various imaging protocols.
Constructed based on the largest dataset to date with the
improvement for the WMH segmentation, our algorithm

can well segment WMH using MR images with both thin-
slice and think-slice layers. Furthermore, with the multi-
modal labeling and training protocols, other intracranial
lesions of vascular origin usually coexisting with WMH were
properly labeled and segmented by our method. Of note,
some pathologies also appear hyperintense on the FLAIR
sequence and are difficult to distinguish from WMH, such
as large stroke lesions located in cortical-subcortical areas
and lacunes without the suppression of the central cavity
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FIGURE 5

Performance differences between 2D VB-Net and the other state-of-the-art algorithms on the two independent in-house datasets. The upper
row shows the differences in segmentation performance in WMH (A) and other intracranial pathologies (B) among the four methods on IDS 1;
(B) the lower row shows the differences in segmentation performance of WMH (C) and other pathologies (D) among the four methods on IDS
2. The performance of each algorithm was measured by Dice, lesion F1, Hausdorff, and AVD. Of note, the four algorithms were trained and
evaluated based on multi-modality MR images (T1-weighted, T2-weighted, and FLAIR), and a lower value of Hausdorff and AVD indicates better
performance of the algorithm. IDS, independent dataset. *, ** P-value of two-tailed paired t-test between the performance of 2D VB-Net _multi
and the other algorithms; *, P < 0.05 significance level; **, P < 0.001 significance level.

TABLE 2 Performance of the algorithms for WMH segmentation on the challenge public dataset.

Team Method Dice Recall Precision Hausdorff ↓ AVD↓ Lesion recall Lesion F1

Our method 2D VB-Net 0.789 0.792 0.805 4.946 18.106 0.807 0.764

sysu media (Kuijf et al., 2019) CNN 0.80 – – 6.30 21.88 0.84 0.76

cian (Kuijf et al., 2019) MDGRU 0.78 – – 6.82 21.72 0.83 0.70

nlp logix (Kuijf et al., 2019) CNN 0.77 – – 7.16 18.37 0.73 0.78

nic-vicorob (Kuijf et al., 2019) CNN 0.77 – – 8.28 28.54 0.75 0.71

The table shows the performance of our method and the algorithms ranked in the top 4 for WMH segmentation on the 2017 MICCAI WMH Segmentation Challenge public dataset, as
reported by Kuijf et al. (2019). Lower Hausdorff and AVD values indicate better performance of the algorithm.

on the FLAIR sequence (Wardlaw et al., 2013). In most
previous studies focused on WMH segmentation, either
patients with other intracranial lesions have been excluded
or these lesions were not labeled, and the accuracy of the
algorithms in identifying other intracranial lesions was fairly
low (Supplementary Table 12). In contrast, our algorithm
could not only be applied for automatic WMH segmentation
in various diseases, but could also show the extent of other
brain lesions that often coexist with WMH intuitively and
accurately, which may provide clinicians with more information

and effective reminders to recognize subtle lesions and make a
proper diagnosis.

Another highlight and strategy for improving the accuracy
and generalization of our study is the proposed novel labeling
pipeline. Dedicated labeling of WMH is difficult according
to the obscure boundary of WMH, other coexisting lesions
easily being confused with WMH, and the partial volume
effect which is particularly strong in thick-slice MR images.
For these reasons, the consistency of manual WMH labeling
between two experienced observers was mediocre, especially
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FIGURE 6

An example of segmentation results for subclassified WMH according to Kim’s criteria. (A) FLAIR images; (B) display of the segmentation map
and the volumes of each subclassified WMH area according to Kim’s criteria. The regions of each subclassified WMH are represented by
different colors. DWMH, deep white matter hyperintensities; JVWMH, juxtaventricular white matter hyperintensities; JCWMH, juxtacortical white
matter hyperintensities; and PWMH, periventricular white matter hyperintensities.

TABLE 3 Correlation analysis of WMH volumes based on Kim’s criteria extracted from manual delineation and algorithms with Fazekas scores and
comparisons between correlation coefficients.

Total WMH PWMH DWMH

r 1r 95% Bootstrap CI of 1r r 1r 95% Bootstrap CI of 1r r 1r 95% Bootstrap CI of 1r

Manual delineation 0.895 0.870 0.850

2D VB-Net 0.900 –0.005 (–0.0251, 0.0132) 0.879 –0.009 (–0.0227, 0.0013) 0.834 0.016 (–0.0010, 0.0356)

uResNet 0.890 0.005 (–0.0221, 0.0309) 0.864 0.006 (–0.0133, 0.0340) 0.817 0.033 (0.0035, 0.0774)

3D V-Net 0.872 0.023 (–0.0043, 0.0571) 0.857 0.013 (–0.0079, 0.0398) 0.802 0.048 (0.0101, 0.0999)

VGGNet 0.868 0.027 (–0.0003, 0.0678) 0.865 0.005 (–0.0131, 0.0296) 0.793 0.057 (0.0218, 0.1187)

r refers to Spearman’s correlation coefficient of WMH volumes extracted from manual delineations or algorithms with corresponding Fazekas visual rating scores. 1r refers to the
difference between Spearman’s correlation coefficient of manual-annotated WMH volumes with Fazekas scores and Spearman’s correlation coefficient of WMH volumes extracted from
each automatic algorithm with Fazekas scores, using a Bootstrap method for 1,000 bootstrapping times. Bold values represent a significance of 1r that is defined by a 95% Bootstrap
CI entirely above or below 0 (uncorrected, considering that the comparative analysis is exploratory). CI, confidence interval; DWMH, deep white matter hyperintensities; and PWMH,
periventricular white matter hyperintensities.
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for subjects with mild WMH load. In this study, we proposed
a series of labeling strategies, including using semi-automatic
tools to assist labeling, and labeling on multi-modality images
to reduce the possibility of misjudging other lesions and normal
intracranial structures as WMH, and discussion of largely
discrepant regions followed by independent delineation helped
reduce cognitive differences. After applying these rules during
delineation, inter-observer consistency showed a dramatic
improvement in the large dataset, which forms the basis
for the development and evaluation of a solid automated
segmentation system.

2D VB-Net is a new network structure proposed in this
paper, adopted from 3D VB-Net (Han et al., 2019), with
adjustments made to fit the task of WMH segmentation. VB-
Net (Han et al., 2019) performed well in the segmentation
of medical volume data, indicating that sampling 3D patches
from images could obtain inter-slice information and provide
better segmentation accuracy. In this study, the data we
utilized for developing the algorithm were 2D thick-slice
MR images from real-world clinical practice, leading to the
relatively low relationship between consecutive slices. Because
the number of slices was small, if a 3D network was used,
resampling on the Z-axis was warranted to increase the
number of slices, which would greatly increase the amount of
calculation and bring accuracy error problems (Dadar et al.,
2017; Abulnaga and Rubin, 2018). Hence, here, we used the
2D convolution kernel instead of the 3D convolution kernel.
In the architecture of the network, the proposed 2D VB-
Net made several modifications for improvement: (1) skip
connections are added in each layer to integrate low- and
high-level information; (2) bottleneck layers are added to
reduce the size of feature maps and thus increase the network
efficiency; (3) the loss function is redesigned to promote
the Dice loss of the WMH region, and (4) appropriate
weights are assigned for the regions where two manual raters
agree. After these adjustments, compared to other standard
fully supervised CNNs, the proposed method incorporated
the advantages of an efficient encoder-decoder framework
for feature embedding, residual connections for information
flow, bottleneck layers for model compression and is more
appropriate for automatic segmentation of WMH and other
intracranial lesions, and the method is also more lightweight
for WMH segmentation than other competitive methods, which
would be easier to deploy for a cloud or mobile application
(Supplementary Table 13).

A large number of experiments were conducted to
evaluate the accuracy and generalization of 2D VB-Net.
Three state-of-the-art algorithms, uResNet, 3D V-Net,
and VGGNet, which have shown good performance in
WMH segmentation, as reported (Casamitjana et al., 2017;
Xu et al., 2018), were used as comparable algorithms in
some of the experiments. To make a fair comparison, the

spacing and patch size parameters were adjusted for all the
algorithms to reach the best performance on our data. The
performance seemed to improve as the patch size increased,
but a large patch size meant more computing resources
(Supplementary Table 14).

The experiments on the multi-scanner dataset and the
independent datasets demonstrated superior performance of 2D
VB-Net in the segmentation of WMH and other intracranial
pathologies compared to the three competitive algorithms,
and WMH segmentation using multi-modality images had
better performance than the method using only a single
FLAIR sequence (Caligiuri et al., 2015; Li et al., 2018), as
verified in this report. The advantage was even more obvious
for the segmentation of other intracranial pathologies. The
experiments on the two independent datasets (IDS 1&2)
resulted in slight performance drops compared to the five-
fold cross-validation tests on the multi-scanner set, probably
because the data were acquired with different scanners.
However, the performance of the proposed 2D VB-Net
was still satisfactory and manifested good generalization.
It should be noted that even if compared to the manual
delineations using semi-automatic tools by an experienced
observer independently, our proposed fully automatic method
achieved overall superior performance on the segmentation of
WMH (Supplementary Table 11). Therefore, we believe that
our method would be a reliable and effective choice for WMH
segmentation in clinical practice.

Our system provided a visual interface for WMH
segmentation that integrated the functions of displaying
the segmentation map and the value of each subclassified
WMH volume. Previous studies have demonstrated that
WMH in different locations may have distinctive etiologies,
histopathologies and substantial functional relevance. Both
are considered to be probable ischemic-origin WMH, PWMH
may be more associated with cognitive impairment than
DWMH (De Groot et al., 2002; Godin et al., 2010; Zhu et al.,
2019). In addition to ischemic WMH, JVWMH and JCWMH
may have non-ischemic origins and functional correlates
(Kim et al., 2008). In particular, JVWMH, which is very
close to the ventricle and is commonly seen in most elderly
people, likely derives from CSF leakage and has different
clinical relevance from PWMH (Zijdenbos et al., 2002; Kim
et al., 2008; Li et al., 2019). There is still a lack of uniform
standards for the division of WMH distribution, and the
segmentation results of subclassified WMH conducted by
our algorithm were achieved in strict accordance with the
distance from the lateral ventricle, which would inevitably
have some limitations. Nevertheless, the segmentation map
and quantitative assessment of these subclassified WMH
provided by our system would still be promising to further
determine the etiology and clinical value of WMH progression
and distribution.
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Several complementary measures were conducted to further
validate the generalization and robustness of our methods. First,
manual segmentation is imperfect; in this sense, the use of
several manual segmentations can improve the validation by
creating an improved silver standard (García-Lorenzo et al.,
2013), for which we constructed a silver standard dataset
including patients with mild to severe WMH lesion loads.
The test results on the silver standard dataset showed that
our method and constructed dataset were effective and robust.
Furthermore, in addition to the datasets with thick-slice MR
images, further analysis on the 2017 WMH Segmentation
Challenge (Kuijf et al., 2019) dataset (with thin slices of 3 mm)
also showed an excellent performance (very close to the 1st
ranked algorithm using 3D CNN and better than the remaining
methods in the Challenge), indicating that the 2D VB-Net
we proposed could be applied to MR images with various
imaging protocols (Basile et al., 2006). Finally, in terms of the
WMH volume-Fazekas correlations, our method was as good
as manual delineation, and the consistency of the proposed
algorithm with manual delineations was overall better than
those from other competing methods (especially for DWMH),
further indicating that the proposed automatic method can be
a valid substitute for manual segmentation of WMH for clinical
practice and research.

Some limitations should also be addressed. Primarily, the
accuracy of segmentation was significantly better for WMH
than for other coexisting intracranial lesions, although the
relatively high values of lesion F1 for these other lesions
indicated effective segmentation. This result was mainly due to
the lower quality of the labeled ground truth of these pathologies
compared to that of the WMH lesions, since these lesions
were sometimes more difficult to identify (especially PVS in
thick-slice MR images) or the boundaries were too obscure to
delineate; semi-automated tools concentrated more on WMH
segmentation and could not be used to help improve the
consistency of delineation. Second, given the difficulty of the
WMH segmentation task, there is still room for the algorithm to
reach the ground truth generated by two experienced observers
with the proposed labeling strategies. Nevertheless, compared
to the previous state-of-the-art fully automatic methods and
independent manual delineation (even though assisted by semi-
automatic tools), our proposed algorithm demonstrated very
competitive performance and general application. Notably, the
recall of the “definite” WMH by our proposed 2D VB-Net
reached a value over 0.87 on the independent datasets (0.873
on IDS 1 and 0.878 on IDS 2), which indicated an even
better performance on the lesion regions commonly delineated
by both observers. Third, it should be noted that current
recommendations for brain imaging in some disorders, such as
MS (Sastre-Garriga et al., 2020) and brain tumors (Kaufmann
et al., 2020), clearly stated that images do not have to be acquired
with thickness greater than 3 mm. However, our algorithm
also achieved excellent performance for WMH segmentation on

thin-slice MR images. Fourth, in consideration of the very thick
layer and the strong partial volume effect, it is difficult to say
that there is only a single component of tissue in a certain voxel.
For these reasons and the possibly missed CSF suppression
on FLAIR images, WMH would be judged only when the
signals of all the sequences fulfilled the criteria of WMH in
the labeling process, which may cause the volumes of WMH
to be conservatively estimated. Finally, dynamic observations
in large-scale studies are still warranted to determine the
detailed role of WMH in the progression of various disorders
using our method and further verify the clinical value of the
algorithm in the future.

In conclusion, we proposed a novel 2D VB-Net algorithm
for automated WMH segmentation based on a very large
dataset with 2D thick-slice MR images that correspond to
the protocol more frequently applied in clinical practice. The
method not only showed a high segmentation accuracy but also
provided information on the subclassification of WMH and
could identify and segment other coexisting intracranial lesions
well, which was validated on both the 2017 MICCAI WMH
Segmentation Challenge (with thin MR slices) and clinical
data. The study demonstrates that the proposed 2D VB-Net
is a multi-modal, robust algorithm for WMH segmentation in
multiple application scenarios and can be a promising tool in
clinical practice.
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