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Abstract: Inoculation of sourdough allows the fermentation medium to be dominated by desired
microorganisms, which enables determining the kinetics of the conversion of chemical compounds
by individual microorganisms. This knowledge may allow the design of functional food products
with health features dedicated to consumers with special needs. The aim of the study was to assess
the dynamics of transformations of fermentable oligosaccharide, disaccharide, monosaccharide and
polyol (FODMAP) compounds from wheat flour as well as their antioxidant activity during inoculated
and spontaneous sourdough fermentation. The FODMAP content in grain products was determined
by the fructan content with negligible amounts of sugars and polyols. To produce a low-FODMAP
cereal product, the fermentation time is essential. The 72 h fermentation time of L. plantarum-
inoculated sourdough reduced the FODMAP content by 91%. The sourdough fermentation time of
at least 72 h also positively influenced the content of polyphenols and antioxidant activity, regardless
of the type of fermentation. The inoculation of both L. plantarum and L. casei contributed to a similar
degree to the reduction in FODMAP in sourdough compared to spontaneous fermentation.

Keywords: sourdough fermentation; inoculation; lactic acid bacteria; FODMAP; fructans; antioxi-
dant activity

1. Introduction

Sourdough is traditionally prepared by mixing flour with water, and subjecting this
mixture to a multi-stage spontaneous fermentation, which is carried out by exogenous flour
microflora, including mainly 104–107 CFU/g of bacteria and yeast [1]. In order to shorten
the technological process and increase its repeatability, it is an increasingly common practice
to add starter cultures to sourdough. A group of lactic acid bacteria (LAB) plays a key role
in these processes and has a long and safe history of use and consumption in fermented
foods and beverages [2]. Another solution is to inoculate fermented products, including
bakery sourdoughs, with pure cultures of bacteria or yeast proliferated to a desired number
of colony-forming units [3,4]. Sourdough fermentation allows the fermentation medium
to be dominated by desired microorganisms, which enables determining the kinetics of
the conversion of chemical compounds of flour by individual microorganisms, and their
targeted selection [5].

Cereal products make up a significant proportion of food consumed by the worldwide
population. Wheat bread is considered a rich source of fermentable oligosaccharides,
disaccharides, monosaccharides and polyols (FODMAPs) due to a high content of fructans,
formed by the aggregation of fructose molecules. FODMAPs are easily fermentable, highly
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osmotic carbohydrates, including fructooligosaccharides (FOSs), galactooligosaccharides
(GOSs), lactose, fructose and polyols (notably sorbitol and mannitol) [6–8].

The effect of FODMAPs on human health is determined by the amount of sugar deliv-
ered to the body within food. The appropriate intake of FODMAPs has a positive impact on
human health because certain FODMAP sugars exhibit prebiotic effects [9,10]. The excess
intake of FODMAP-rich products (above 20 g/day) can lead to sugar accumulation in the
intestines, which in turn may induce various gastric ailments, which are acute in people
suffering from irritable bowel syndrome [6,8].

Irritable bowel syndrome (IBS) is a gastrointestinal disorder that can appear in persons
of various ages, genders and ethnical origins. It affects 4–20% of the population. Its typical
symptoms usually appear after the intake of FODMAP-containing food products and
include abdominal discomfort and stomachache, accompanied by flatulence, constipation
or diarrhea [11,12]. Simple sugars and polyols exhibit a stronger osmotic effect, whereas
saccharides such as fructans, FOSs and GOSs are more susceptible to fermentation by the
intestinal microbiome [8,13].

Research has shown that FODMAP components trigger clinical symptoms in IBS
patients [14–16]. One of the diets most often recommended by dietitians to help combat IBS
symptoms is the low-FODMAP diet. Its principle is to reduce the intake of food products
containing short-chain carbohydrates, which are rapidly absorbable in the human gastroin-
testinal tract [17]. In addtion, dietitians advise paying attention to the fructose:glucose
ratio in consumed food products and recommend that their levels are similar or a higher
glucose content. This can help improve the intestine’s capability to absorb fructose [6].
Food products rich in these compounds include cereal products rich in fructans [11].

Fructans are not digested nor absorbed in the human digestive tract [6]. When ingested
in small amounts, fructans have some health benefits but their excess can cause various
ailments of the digestive tract [9]. The low-FODMAP dietary guidelines recommend
substituting traditional bread with gluten-free products [11,14,18]. Wheat bakery products
have significantly higher contents of protein, dietary fiber, minerals and vitamins than the
gluten-free ones. Therefore, the exclusive consumption of gluten-free products can lead to
deficiencies of these compounds in the body [19].

The FODMAP content in bread depends on both flour type and bread-making method [20].
The content in bread can be reduced in many ways, one of which is to use sourdough
in the bread-making process. Another means is to appropriately select microorganisms
responsible for the fermentation and degradation of sugars that trigger the gastrointestinal
disorders [8]. In wheat bread, the above goal can also be achieved by extending fermenta-
tion time, which not only improves the flavor values of bread but also effectively decreases
FODMAP content [20]. Fructans present in high quantities in cereal kernels can be de-
graded during sourdough fermentation. The consumption of sourdough bread has been
proved to have a beneficial effect on mitigating irritable bowel syndrome symptoms [8].
In order to produce a low-FODMAP bread, LAB should also be added to the sourdough
as they enhance the metabolic activity of fermenting flora. Apart from their capability
to metabolize fructans, LAB can also convert free fructose to mannitol. In addition, they
produce α-galactosidase, i.e., an enzyme responsible for breaking the bonds between the
molecules of sugars constituting GOSs [8]. In turn, the enzymes capable of mannitol
conversion are secreted by, e.g., Lactobacillus delbrueckii, Lactobacillus casei, Lactobacillus plan-
tarum and Lactobacillus salivarius [7,21]. Bread produced with sourdough requires longer
fermentation, which entails multiple changes in the carbohydrate composition. Microbial
invertase rapidly degrades flour saccharose into glucose and fructose. Afterward, glucose
is consumed as a source of energy, whereas fructose can be reduced by heterofermentative
LAB to mannitol. All fermentable carbohydrates are rapidly depleted in the first hours of
fermentation, whereas the carbohydrates featuring a high degree of polymerization (like
fructans) are consumed later [8,22].

Sourdough fermentation used in bread making improves the nutritional value and
antioxidative properties of bread, as well as its taste, aroma, texture and stability, and
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finally the bioaccessibility of its elements [23]. The antioxidant activity of the components
of sourdough depends on the type of inoculum used for fermentation [24] and sourdough
fermentation time [25]. The aim of the study was to assess the dynamics of transformations
of FODMAP compounds from wheat flour as well as the antioxidant activity of nutrients
of flour during inoculated and spontaneous sourdough fermentation.

2. Results and Discussion
2.1. Dynamics of pH Changes during Fermentation

Table 1 shows the results of the pH measurement of spontaneously fermented and
lactobacilli-inoculated wheat sourdoughs. In each type of sourdough, the greatest decrease
in pH was observed after the first 24 h of fermentation. During fermentation, LAB produce
lactic acid, which results in a lower pH level [26]. In spontaneously fermenting and L. casei-
inoculated sourdough after the first day of fermentation, pH remained at a similar level. A
further slight decrease in pH was observed in L. plantarum-inoculated sourdough when
the fermentation time was extended to 72 h. The study by Menezes et al. [8] also showed
the greatest decrease in the pH level in the first hours of wheat dough fermentation, until
relatively stable values were achieved after several stages. Fluctuations in the pH level
affect the action of amylases. A study by Struyf et al. [27], showed that lowering the pH
level has an effect on maltose release but has no effect on other saccharides.

Table 1. pH of wheat sourdough during fermentation.

Fermentation Time
[h]/Sourdough Type

Spontaneous
Fermentation Lactobacillus casei Lactobacillus

plantarum

0 6.159 a 6.159 a 6.159 a

24 3.410 c 3.592 b 3.566 b

48 3.441 b 3.506 c 3.437 c

72 3.410 c 3.593 b 3.416 d
Values represent the means of four replicates. Mean values in columns with different letters are significantly
different according to Duncan test at p ≤ 0.05.

2.2. Dynamics of FODMAP Content Change during Fermentation

Changes in the FODMAP content in the sourdoughs during their fermentation are
presented in Table 2. Fructans constituted the majority of these compounds in the tested
samples. The content of fructans in the sourdough was influenced by the fermentation
time and the type of LAB used. Each extension of the fermentation time resulted in a
significant decrease in the content of fructans in the sourdough compared to the control,
which was non-fermented sourdough. For each of the sourdough types, the content of
fructans decreased with the fermentation time and reached the lowest values after 72 h
of fermentation. A similar relationship between the extension of the fermentation time
and the decrease in the content of fructans was observed by Struyf et al. [28], where after
1 h of fermentation, more than half of the fructans were degraded in the dough compared
to the content of fructans present in the flour. In the study by Gélinas et al. [29], it was
found that 20% of fructans were degraded after the dough-mixing process. Then, by
fermenting the dough with yeast for 180 min, the fructan content was reduced by 82%
compared to the amount of fructans present after mixing the dough. For fermentation
lasting 24 h, the sourdough fermented with L. plantarum achieved the lowest content
of fructans among the analyzed sourdoughs. However, in the case of 48 h and 72 h
fermentation, the lowest fructan content was observed in sourdoughs inoculated with
L. casei. Fraberger et al. [30] tested 13 strains of microorganisms for their ability to reduce
fructans and found that the metabolism of microflora contributed to a significant reduction
in the content of fructans in the dough compared to the control sample. Sourdough
fermented with L. casei bacteria reached a lower content of fructans faster compared to
sourdough fermented with L. plantarum and this could be due to the higher activity of
L. casei enzymes than L. plantarum [7].
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Table 2. The content of FODMAP components (g/100 g d.m.) in wheat sourdough.

Sourdough Type Fermentation Time [h] Fructan Glucose Fructose Mannitol Sum of FODMAPs

unfermented sourdough 0 1.15 a 0.00 e nd 0.000 d 1.15 a

spontanous fermentation

24 0.42 b 0.06 c nd 0.000 d 0.48 b

48 0.28 d 0.08 b nd 0.000 d 0.35 c

72 0.18 e 0.00 e nd 0.007 a 0.19 d

Lactobacillus casei

24 0.39 bc 0.20 a nd 0.000 d 0.45 b

48 0.11 ef 0.00 e nd 0.006 b 0.12 de

72 0.07 f 0.00 e nd 0.002 c 0.08 e

Lactobacillus plantarum

24 0.31 cd 0.05 d nd 0.000 d 0.36 c

48 0.31 cd 0.05 d nd 0.000 d 0.36 c

72 0.10 ef 0.00 e nd 0.000 d 0.10 de

Nd: not detected. Values represent the means of two replicates. Mean values in columns with different letters are significantly different
according to Duncan test at p ≤ 0.05.

The non-fermented sourdough control sample did not contain free glucose (Table 2).
After 24 h of spontaneous fermentation, the glucose content was 0.06 g/100 g d.m., then
after 48 h its value increased to 0.08 g/100 g d.m., and after 72 h it dropped back to 0. In the
case of sourdough inoculated with L. plantarum, after 24 h and after 48 h of fermentation,
the glucose content was 0.05 g/100 g, and after 72 h, its content in the sourdough decreased
to 0. In the case of sourdough fermented with L. casei, the content of glucose increased to
0.2 g/100 g d.m. after 24 h of fermentation, and after both 48 and 72, its value dropped
to 0. The glucose level in sourdough is determined by the content of damaged starch
and the activity of β-amylase and amyloglucosidase [22]. It was also found that it is a
factor blocking the transformations of, among others, sucrose, raffinose and mannitol. A
fermentation time of 72 h led to a complete reduction of glucose in the sourdough. Further
changes in glucose may result in the formation of CO2, lactate, acetate and ethanol [7,21,27].
No fructose content was observed in any of the analyzed sourdough. It is consumed
quickly and can also be converted into mannitol by lactobacilli [7].

The presence of mannitol was not found in any of the analyzed sourdough during the
first 24 h of fermentation, because mannitol is formed from the degradation of fructose,
which is transformed in the later stages of fermentation [31]. No mannitol was detected
in the spontaneously fermented sourdough for 24 as well as 48 h, and after 72 h its value
increased to 0.007 g/100 g d.m. In the sourdough with the addition of L. casei bacteria, after
48 h, the mannitol content was found at the level of 0.006 g/100 g of dry matter, and after
72 h, the content decreased to 0.002 g/100 g d.m. In sourdough fermented with L. plantarum,
the level of mannitol remained at 0 during 72 h of fermentation. Gänzle [21] claims that
the degradation of mannitol requires the enzymes of lactobacilli found, among others, in
L. casei bacteria. In the spontaneously fermented sourdough, mannitol was present only
after 72 h of fermentation, which results from the metabolism of fructose. It is converted
into mannitol by lactobacilli, therefore in pure bacterial cultures fructose was degraded
to mannitol faster than in the case of spontaneously fermenting sourdough. Mannitol
metabolism, however, may be inhibited by the presence of glucose [7,21].

The total FODMAP content before fermentation was 1.153% d.m. and was determined
by the fructan content of the flour. The FODMAP content of wheat is influenced by its
variety. Ziegler et al. [20] studied the content of compounds from the FODMAP group in
two wheat flour varieties and showed that it is from 1.24 ± 0.38 to 2.01 ± 0.42 g/100 g d.m.
The fermentation of the flour always resulted in a significant decrease in the FODMAP con-
tent, but with a different effect depending on the type of sourdough used and its duration.
In the spontaneously fermenting sourdough, the FODMAP content decreased with the ex-
tension of the fermentation time, and it reached the lowest value after 72 h. The FODMAP
content in the spontaneously fermenting sourdough in the study by Menezes et al. [8] was
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0.553 g/100 g d.m. and 0.603 g/100 g d.m. depending on various parameters of sourdough
fermentation. A similar effect was observed in L. casei-inoculated sourdough, but with
slight difference in FODMAP content after 48 and 72 h of fermentation. Sourdough fermen-
tation with the addition of L. plantarum resulted in the lowest FODMAP content after 72 h
and was constant after 24 and 48 h. In the study of Menezes et al. [8], it is claimed that
the sourdough biotechnology requires a longer fermentation time than is usually used in
bread making (0.5–3 h). Carbohydrates such as sucrose, maltose, glucose and fructose are
depleted quickly during the first hours of fermentation, while higher-polymerized carbo-
hydrates such as fructans are used later, so longer fermentation of sourdough will degrade
all FODMAP components more efficiently. Comparing sourdoughs after 24 h of fermenta-
tion, the one with the addition of L. plantarum had the lowest content of FODMAP, while
after 48 and 72 h of fermentation, the lowest FODMAP concentration was in sourdough
with L. casei. Finally, after 72 h of fermentation with the addition of L. casei, the lowest
FODMAP level of 0.076 g/100 g d.m. was achieved, which is a reduction of their content
by 93%. It is important to select the microorganisms responsible for the fermentation of
the sourdough. Appropriate LAB have enzymes that degrade FODMAP components, and
they also have the ability to lower the pH of the environment, thanks to which the activity
of the enzymes increases, which leads to a reduction in the FODMAP content. By lowering
the FODMAP content in wheat bread, it is possible to reduce the symptoms of irritable
bowel syndrome [7,8,30].

2.3. Dynamics of Polyphenolic Compounds and Antioxidant Activity Changes during Fermentation

The total content of polyphenols and the antioxidant activity of sourdoughs are
presented in Table 3. The content of polyphenols in the sourdough was higher after each
type of fermentation than before. However, the content of polyphenols in the analyzed
material did not totally change. The matrix of the components of flour and sourdough
was loosened during fermentation and water-extractable polyphenols were released. The
fermentation process may increase the antioxidant activity by increasing the amount of
easily extractable phenolic compounds [24]. Spontaneously fermenting sourdough reached
the highest content of polyphenols after 24 h of fermentation, after which their amount
remained on a similar level. L. casei-inoculated sourdough contained the highest amounts of
polyphenols after 48 and 72 h of fermentation. The content of polyphenols in L. plantarum-
inoculated sourdough increased significantly after 24 h of fermentation and then again
after 72 h. Chis, et al. [32] observed an increase in the content of polyphenols with the
fermentation time with the addition of L. plantarum, which is explained by their proteolytic
activity’s influence on the polyphenol profile. LAB can affect polyphenols, improving their
solubility [33].

The antioxidant activity measured by both ABTS and FRAP methods of the sponta-
neously fermenting sourdough increased significantly after 24 h of fermentation and then
after 72 h. In the study of Banu et al., 2010 [24], the addition of starter cultures contain-
ing Lactobacillus rhamnosus to the dough increased the antioxidant activity compared to
spontaneous fermentation. In this study, the sourdough inoculated with L. casei showed a
higher antioxidant activity against the ABTS radical after 24 h fermentation than before,
and the highest value was achieved after 72 h of fermentation. A significant increase in
the ability to reduce iron ions of this sourdough took place only after 72 h of fermentation.
The antioxidant activity of L. plantarum-inoculated sourdough increased significantly after
72 h of fermentation. In the study of Banu et al. [24], antioxidant activity (measured with
ABTS and DPPH methods) of 20 h spontaneously fermented dough was almost two times
higher than before fermentation. Colosimo et al. [25] observed a significant increase in
polyphenols and antioxidant activity with the fermentation time of the sourdough, which
should last 72 h and preferably 96 h. In a study by Rodríguez et al. [34], L. plantarum was
able to increase the antioxidant activity and improve the aroma profile of the product by
degrading certain phenolic components through the metabolic activity of the LAB. The
metabolic activity of LAB influences the levels of bioactive ingredients, which allows for an
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increase in antioxidant activity. During fermentation with their participation, antioxidant
peptides are released, which increases the amount of phenols and antioxidant activity by
acidification and hydrolysis of more complex and glycosylated forms [24,35]. Extending
fermentation to 72 h resulted in an increase in the antioxidant activity of sourdoughs by 83
to 98% compared to the samples before fermentation, regardless of the type of sourdough
fermentation. Sourdough fermentation can remove peptides associated with human in-
tolerance to grain products. It can also lead to the production of bioactive peptides with
antioxidant potential, which may affect the bioavailability of nutrients [25].

Table 3. The content of polyphenolic compounds and antioxidant activity of wheat sourdough.

Sourdough Type Fermentation Time
[h]

Polyphenolic Compounds
[mg/100 g d.m.]

ABTS [mmol
Trolox/100 g d.m.]

FRAP [mmol
Trolox/100 g d.m.]

unfermented
sourdough 0 208.30 c 1.95 c 0.96 c

spontaneous
fermentation

24 273.74 ab 2.16 bc 1.36 b

48 270.54 ab 2.18 bc 1.27 b

72 262.35 b 3.88 a 1.80 a

Lactobacillus casei

24 263.13 b 2.48 bc 1.06 c

48 270.65 ab 2.01 c 1.03 c

72 295.96 ab 3.60 a 1.85 a

Lactobacillus plantarum

24 251.38 b 1.96 c 1.09 c

48 260.07 b 1.91 c 1.11 c

72 309.59 a 3.58 a 1.89 a

Values represent the means of three replicates. Mean values in columns with different letters are significantly different according to Duncan
test at p ≤ 0.05.

3. Materials and Methods
3.1. Material

Wheat flour type 650 was supplied from GoodMills (Stradunia, Poland). The flour par-
ticle size was 93 ± 0.3 µm, it had falling number of 390.5 ± 1.0 and contained 14.72 ± 0.02%
protein (data not shown). Lyophilizates of two safe and well-described species of lactic acid
bacteria: Lactobacillus casei, catalogue number 20,011 and Lactobacillus plantarum, catalogue
number 20,174, were purchased from DSMZ—German Collection of Microorganisms and
Cell Cultures (Leibniz, Germany).

Lactobacilli were grown in Man, Rogosa and Sharp medium (MRS) (Sigma-Aldrich,
Hamburg, Germany) and incubated under aerobic conditions at 37 ◦C until the late expo-
nential growth phase was reached (about 24 h). Cells were harvested by centrifugation
at 10,000 rpm for 10 min at 4 ◦C. Dilutions were made in saline solution plated on MRS
273 agar, resulting in a concentration of about 109 CFU/mL.

The next multiplication of microorganisms took place by preparing a mixture of
100 g of flour, 300 mL of water and 20 mL of liquid microorganism culture (L. casei and
L. plantarum). A mixture without the addition of bacteria was prepared based on the
spontaneous fermentation of microorganisms found naturally in the flour. The fermentation
lasted three days at 28 ◦C.

Sourdoughs were made from a combination of flour (500 g), water (500 mL) and the
appropriate liquid sourdough prepared in the previous step (50 mL). The fermentation of
sourdoughs was carried out for 24, 48 and 72 h at a temperature of 28 ◦C.

3.2. Methods
3.2.1. Dynamic of Fermentation

The pH of the sourdoughs was determined in four replicates after 24, 48 and 72 h of
fermentation using the potentiometric method. The pH of the non-fermented sourdough
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was used as a control. The samples were frozen, freeze dried, ground and vacuum packed
for further determinations.

3.2.2. Determination of Fructans

The content of fructans in the freeze-dried sourdough samples was determined using
the fructan determination kit based on AOAC Method 999.03 [36], which is based on
the determination of the fructose content in the samples resulting from the enzymatic
breakdown of fructans. Using a spectrophotometer, the fructose content was measured at a
wavelength of λ = 410 nm. The determination was performed in duplicate.

3.2.3. Determination of Sugar and Polyol Content by HPLC-ELSD

Preparation of samples for the determination of sugar and polyol content consisted
of adding 10 g of the analyzed sample into a volumetric flask, filling the volumetric flask
to 50 mL and boiling and shaking the samples in a boiling water bath for 20 min. Then,
100 mL of cooled samples was made up with distilled water, 10 mL of the extract was
centrifuged (10,000 rpm, 10 min) and the samples were filtered on a Sep-Pak C-18.

The content of sugars and polyols was determined by the HPLC method coupled
with a light scattering detector. A 40 µL sample was injected by an autosampler (L-
7200) onto a Unison UK-Amino 3 µL (3 mm × 250 mm) column (Imtakt, Kyoto, Japan).
Detection was performed using an evaporative light scattering detector (PL-ELS 1000) with
the following input parameters: evaporator temperature −80 ◦C; nebulizer temperature
−80 ◦C; nitrogen flow −1.2 SLM. The elution was performed at 30 ◦C in an isocratic
flow using 85% acetonitrile solution at a flow rate of 0.7 mL/min. FODMAP content was
identified by comparing with standard HPLC area measurements. The measurements were
performed in duplicate and the results were expressed in grams/100 g dry weight of the
product. The sum of the FODMAPs was calculated from the fructan content and those
identified in the samples: fructose, mannitol and glucose.

3.2.4. Determination of Polyphenolic Compounds and Antioxidant Activity

The extraction for the antioxidant capacity was conducted following a protocol de-
scribed by Lachowicz et al. [37]. The total polyphenolic content of the sourdough samples
was determined using the Folin–Ciocalteu spectrophotometric method [38]. The absorbance
at 765 nm was measured after 1 h, using the UV-2401 PC spectrophotometer (Shimadzu,
Kyoto, Japan). The results were expressed as mg of gallic acid equivalents (GAE) per 100 g
of dry sourdough. Data were expressed as the mean value for three measurements. The
ABTS and FRAP methods were carried out with the methods described by Re et al. [39]
and Benzie and Strain [40]. The absorbance was measured at 734 nm and 593 nm using
the UV-2401 PC spectrophotometer (Shimadzu, Kyoto, Japan). The results of antiradical
capacity were expressed as Trolox equivalents in mmol per 100 g of dry sample. Data were
expressed as the mean value for three measurements.

3.3. Statistic Analysis

The results were statistically analyzed with the Statistica 13.3 software package (Stat-
Soft, Tulsa, OK, USA). One-way ANOVA at p ≤ 0.05 was calculated and homogeneous
groups according to the Duncan test were estimated.

4. Conclusions

The FODMAP content in grain products turned out to be determined by the fructan
content with negligible amounts of sugars and polyols. To produce a low-FODMAP cereal
product, the fermentation time is essential, and its extension to 72 h or more allows for
a strong reduction in the content of these compounds. A sourdough fermentation time
of at least 72 h also positively influences the content of polyphenols and antioxidant
activity, regardless of the type of fermentation. The inoculation of both L. plantarum
and L. casei contributed to a similar degree to the reduction of FODMAPs in sourdough
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compared to spontaneous fermentation. Knowledge of the processes that take place during
the fermentation of inoculated sourdoughs may allow the production of food products
designed according to the needs of consumers.
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