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ABSTRACT

The nuclear cap-binding protein complex (CBC)
participates in 5 splice site selection of introns
that are proximal to the mRNA cap. However, it is
not known whether CBC has a role in alternative
splicing. Using an RT-PCR alternative splicing
panel, we analysed 435 alternative splicing events
in Arabidopsis thaliana genes, encoding mainly tran-
scription factors, splicing factors and stress-related
proteins. Splicing profiles were determined in wild
type plants, the cbp20 and cbp80(abh1) single
mutants and the cbp20/80 double mutant. The alter-
native splicing events included alternative 5 and 3
splice site selection, exon skipping and intron reten-
tion. Significant changes in the ratios of alternative
splicing isoforms were found in 101 genes. Of these,
41% were common to all three CBC mutants and
15% were observed only in the double mutant. The
cbp80(abh1) and cbp20/80 mutants had many more
changes in alternative splicing in common than did
cbp20 and cbp20/80 suggesting that CBP80 plays a
more significant role in alternative splicing than
CBP20, probably being a platform for interactions
with other splicing factors. Cap-binding proteins
and the CBC are therefore directly involved in alter-
native splicing of some Arabidopsis genes and in
most cases influenced alternative splicing of the
first intron, particularly at the 5 splice site.

INTRODUCTION

Alternative splicing is a widespread process that generates
more than one spliced mRNA isoform from the same gene
and expands both transcriptome and proteome diversity.
Alternative events include alternative 5 and 3’ splice site
selection, intron retention, exon skipping and mutually
exclusive exon splicing (1-3). Current estimates from
both experimental and bioinformatic analyses are that
30-35% of Arabidopsis thaliana and rice genes undergo
alternative splicing (4,5), while in human up to 95% of
multi-exon genes undergo alternative splicing (6). The
number of alternatively spliced plant genes is still likely
to be an underestimate because of the relatively low
EST coverage and depth of sequencing for many plant
transcripts (5). In addition, many alternative splicing
events occur only in specific cells and tissues, at specific
stages of development and/or under certain physiological
conditions and are therefore under-represented in EST
databases. In plants, intron retention is the most
frequent alternative event (45-56% of A. thaliana alterna-
tive splicing events) (4,7-10). Alternative 3" and 5 splice
site selection accounts for ~22 and 10% of events, respec-
tively, and ~4% have both 5" and 3’ alternatively spliced
sites. Only 8% of alternative splicing events in plants
involve exon skipping (inclusion/exclusion of an exon) in
contrast to animals where exon skipping is the most
common form of alternative splicing (58% of genes)
(8,11,12). The two major consequences of alternative
splicing are to increase protein diversity by the inclusion
or exclusion of peptide sequences or protein domains or
to modulate gene expression through the production of
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mRNA isoforms which are degraded by nonsense-
mediated decay (NMD). More than 75% of alternative
splicing events are within the coding sequence of the
gene and can generate proteins with new structures and
biological functions (2,8,13). However, in both plants and
animals, a significant number of AS events in the coding
regions have a premature termination codon and are the
potential targets of NMD (8,14,15). In plants, ~21% of all
alternative splicing events take place within the 5 UTR
(15%) or 3" UTR (6%) which can affect transport and
stability of mRNAs, create new initiation codons or
polyadenylation sites, generate upstream open reading
frames or shift the reading frame (7,11). Regulation of
alternative splicing in plants has been reported for many
genes and evolutionary conserved regulation of alternative
splicing of plant SR proteins which themselves are splicing
regulators points to important roles of alternative splicing
in plant development (16). For example, the circadian
clock RNA-binding protein, AtGRP7, autoregulates its
transcript levels by binding its pre-mRNA to cause alter-
native splicing and generate an isoform that is turned over
by NMD (17). The rice Waxy gene encodes a granule-
bound starch synthase for which alternative splicing is
temperature sensitive, potentially contributing to poor
grain quality when seed maturation occurs at low temper-
ature (18). Alternative splicing of the first intron of the
isoaspartyl methyltransferase 2 gene creates different
protein variants found in different subcellular compart-
ments where they are involved in protein repair processes
(19). Some transcripts can be alternatively spliced in plants
in response to wounding or virus infection (20-22). Alter-
native splicing can also be regulated in a temperature-
dependent manner, such as the A. thaliana SR1 splicing
factor (23), or in a tissue-dependent manner, for example,
tobacco RGP (24) and spinach and tobacco chloroplast
ascorbate peroxidase transcripts (25).

The eukaryotic nuclear cap-binding complex (CBC)
consists of two subunits (CBP20 and CBP80) that, as a
complex, bind to the cap structure of RNA polymerase
II transcripts (26). The cap and the CBC have multiple
functions in mRNA biogenesis including splicing (26-31),
3’-end formation by stabilizing the interaction of the 3’-end
processing machinery (32,33), nuclear export (34-37) and
protection of the transcripts from nuclease degradation
(38-39). Constitutive and alternative splicing is mediated
by the spliceosome which is assembled on an intron in a
stepwise process. An early event in spliceosome assembly is
the interaction of UlsnRNP with the 5 splice site of the
intron. In mammals and yeast, the CBC at the 5'-end of the
pre-mRNA transcript promotes the initial interaction
between UlsnRNP and the 5 splice site of the first
intron in the transcript, and enhances the formation of
spliced mRNAs (26-31,40-44). CBP proteins remain
bound to the mRNA during the pioneer round of transla-
tion playing an essential role in mRNA quality control
(45). Moreover, in mammalian cells, CBP80 recruits the
NMD factor Upfl and promotes the interaction of Upfl
with the NMD factor Upf2 (46).

The plant CBC also consists of two subunits: AtCBP20
and AtCBP80. AtCBP20 has a calculated molecular mass
of 29.9 kDa and exhibits 68% identity and 82% similarity

to its human orthologue and 53% identity and 77% sim-
ilarity to the yeast protein. The larger CBP80 subunit is
96.5kDa and exhibits lower identity (28 and 22%) and
similarity (50 and 42%) to its human and yeast ortho-
logues, respectively. AtCBP20 contains a canonical RNA
binding domain (RBD) and AtCBP80 contains a protein—
protein and protein—nucleic acid interaction domain,
MIF4G (47). Additionally, in contrast to human and
yeast, AtCBP20 has a long C-terminal extension with two
nuclear localisation signals (NLSs) and is actively trans-
ported to the nucleus, while AtCBP80 can reach the
nucleus only in a complex with AtCBP20. This feature
distinguishes the mechanism of CBP transport in plants
and animals where the nuclear import of human CBC
requires a bipartite NLS on CBP80 (48). Moreover,
neither CBP20 nor CBP80 is involved in NMD in
A. thaliana (49).

Both plant CBC proteins are encoded by single-copy
genes on Arabidopsis chromosomes V and 11, respectively
(47) and T-DNA insertion mutants which disrupt either
the AtCBP20 or AtCBPSO(ABHI) genes show identical
phenotypes: slow growth and serrated leaf margins. Both
mutants are abscisic acid (ABA) hypersensitive and can
tolerate water deficiency much better than wild type plants
(50-53). The mutants also affect flowering time and the
processing and splicing of mRNA of factors involved in
the regulation of flowering time in Arabidopsis is affected
(41,54,55). The increase in the occurrence of unspliced
introns demonstrates a further effect of the CBC on
pre-mRNA splicing (40,41,56). Finally, the plant CBC
has recently been shown to mediate the biogenesis
of microRNAs (miRNA) (40,53,57). Both ¢bp20 and
cbp80(abhl) mutants have reduced miRNA levels and
increased pri-miRNA levels. CBP20 and CBP80 are
suggested to bind to capped pri-miRNA transcripts and
play role in their processing (53). The CBC interaction
with the miRNA processing machinery appears to
involve SERRATE (40) and is likely to facilitate the
loading of the miRNA processing machinery onto pri-
miRNA, in analogy with its role in recruiting the
splicing commitment complex onto pre-mRNA (40,57).
The role of CBP80 in miRNA-mediated RNA silencing
pathway may also be conserved in animals (58). Finally,
both proteins also participate in ta-siRNA biogenesis
through regulating the biogenesis of miR173 and
miR390 (53).

The CBC is important in pre-mRNA splicing and other
aspects of RNA processing in plants. To date, there is no
evidence that the nuclear cap-binding complex is involved
in alternative splicing and whether the plant CBC exerts
an effect on splicing by a similar mechanism to animals—
promoting spliceosome assembly on the first intron—is
unknown. In this article, we have addressed the influence
of the nuclear cap-binding complex on alternative splicing
of 252 A. thaliana gene transcripts showing alternative
splicing, using the T-DNA insertion knock-out mutants:
the single chp20 and chp80(abhl) mutants and the double
¢bp20/80 mutant. In the cases that showed significant
changes in AS, the mutants preferentially affect alternative
splicing of the first intron and particularly at the 5" splice
site. Similar changes in the alternative splicing profiles of



many gene transcripts were observed in all three cbp
mutants suggesting that the CBC is directly involved in
alternative splicing of these pre-mRNAs. Interestingly,
our results revealed that AtCBP80 plays a more significant
role in alternative splicing than AtCBP20.

MATERIALS AND METHODS
Plant material and growth conditions

Arabidopsis thaliana (wild-type Columbia and chp mutant)
seeds were placed in a bell-jar and sterilised using hydro-
chloric acid fumes generated from a solution containing
100 ml ACE bleach (5.25% v/v, Procter and Gamble) and
3ml concentrated HCI. Sterilised seeds were sown in soil
treated with Amistar fungicide (Syngenta), and were kept
at 4°C for 72 hin the dark. After vernalisation, plants were
grown in a growth chamber (SANYO MLR-350H) under
controlled environmental parameters: 70% humidity, tem-
perature 22°C, 16 h light/8 h dark photoperiod regime at
150200 pE/m?. Five-week-old plants were harvested and
leaf tissue was flash frozen in liquid nitrogen and stored at
—80°C. The A. thaliana wild-type Columbia was originally
obtained from Lehle Seeds; the ¢hp20 and cbp80(abhl)
mutants were as described in Papp et al. (52) and
Hugouvieux et al. (50), respectively. The ¢bp20/80
double mutant was obtained by crossing chp20 and
¢bp80(abhl), and the homozygous line was isolated
based on PCR assays.

RNA extraction and RT-PCR

Total RNA was extracted from 100mg, five-week-old
leaves using the RNeasy Plant Mini Kit (Qiagen) and
quantified spectrophotometrically at 260 nm. RT-PCR
experiments were performed on total RNA isolated after
DNase RQI1 treatment, according to the manufacturer’s
instructions (Promega). Reverse transcription by M-MLV
RT (RNase H-) (Promega) was performed using oligo
d(T)"® oligonucleotide as a primer. First, 5 pg of extracted
RNA and 1 pl oligo d(T)"® (10mM) were mixed in a total
volume of 26 ul, incubated for Smin at 65°C to melt sec-
ondary structures within the template, and cooled imme-
diately for 10 min on ice. Subsequently, 8 ul M-MLV 5x
Reaction Buffer, 1 ul M-MLV (RNase H-) (200 U/ul), 4 ul
nucleotide mix (10mM each dNTP) and 1ul RNasin
(40 U/ul) (Promega) were added to form a 40 pl volume
reaction mix. The reaction mix was incubated for 1.5h at
42°C and further incubated at 70°C for 10 min to inacti-
vate the reverse transcriptase. The reverse transcription
reaction was diluted to a final volume of 100 pl, and 1 pl
cDNA was then aliquoted into a reaction tube along
with 2.5ul 10x PCR buffer with MgCl, (Roche), 4 pul
nucleotide mix (1.25pM of each dNTP, Promega),
0.75pul of combined alternative splicing event-specific
primers (100 uM stock) and Taq DNA Polymerase
(5U/ul, Roche). A 25-ul volume PCR reaction mix was
then subjected to the standard PCR reaction: 94°C for
2min, followed by 24 cycles of 94°C for 15s, 50°C for
30s, 70°C for 1 min and completed with 10 min at 72°C.
We have shown previously that 24 PCR cycles is in the
exponential amplification range for mRNA transcripts of
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numerous genes with a range of expression levels (59). AS-
specific primers were selected to amplify the expected
alternative spliced mRNA isoforms, and gave RT-PCR
products of sizes between 60 and 700 bp. In order to visu-
alize the RT-PCR products, the forward primer was
labelled with one of the following dyes: 6-FAM, VIC,
NED or PET (Applied Biosystems). Primer sequences
are given in Supplementary Table S1.

Splicing analysis

Labelled RT-PCR product (1ul) from the RT-PCR
reactions was mixed with 8.95ul Hi Di Formamide
(Applied Biosystems) and with 0.05ul of GeneScan 500
LIZ or GeneScan 600 LIZ internal size standard
(Applied Biosystems). Using an ABI3730 DNA Analyzer
(Applied Biosystems), capillary electrophoresis of RT—
PCR fragments was performed. Peak size and area data
was analysed with GeneMapper or PeakScanner software
(Applied Biosystems). RT-PCR products were accurately
identified with =+ I nt resolution. The relative fluorescent
peak areas for RT-PCR products with expected sizes for
the alternatively spliced products were extracted, and a
ratio for the AS events was calculated by dividing the
value for the spliced products by the sum of the values
for the alternatively spliced products. For an accurate
measurement of AS ratios, three biological repeats were
performed for all experiments. Mean alternative splicing
efficiencies with standard errors were calculated for three
separate biological repetitions. Means were compared by
analysis of variance between wild type plants and the
different CBP mutant lines and P-values generated. AS
events with significant variation (P < 0.10) were selected.

RESULTS
Alternative splicing RT-PCR panel

The influence of nuclear cap-binding proteins was
examined by analyzing 435 Arabidopsis alternative
splicing events on a custom high resolution RT-PCR
panel. The AS RT-PCR panel was based on that
described previously which contained 89 AS events and
seven controls (59). This panel was expanded to contain
428 AS events and seven controls. The AS events were in
transcripts from genes encoding transcription factors
(179), splicing factors (88), stress-related proteins (ABA)
(51), stomatal ABA signaling (10), flowering time regu-
lating proteins (16) and other miscellaneous proteins
(91). The events were selected from either published AS
events or from five different Arabidopsis/plant bioinfor-
matics databases: ASIP (http://www.plantgdb.org/ASIP/
EnterDB.php), TIGR (http://www.tigr.org/tdb/e2k1/
athl/), RIKEN (http://rarge.gsc.riken.jp/a_splicing/index
.pl), ASTRA (http://alterna.cbrc.jp/) and TAIR 7.0
(http://www.arabidopsis.org/index.jsp). Seven genes were
used as controls and amplified intronless regions
(At5g03240, At5g60670, At3g61860), constitutively
spliced introns (At3gl12110, At5g13480) or a Ul2-depen-
dent intron (At4g02560). Additionally, RuBisCo activase
(At2g39730) is an alternative splicing control that con-
sistently shows equal selection of two alternative 3’
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splice sites in transcripts in all the tissues tested so far and
was used as an alternative splicing control.

The splicing profiles were determined by RT-PCR with
fluorescently labelled primers for each AS event using
total RNA from wild type plants and from the single
mutants: chp20 and cbp80(abhl) and the double mutant:
¢bp20/80. The double mutant has a similar phenotype to
the single mutants: slow growth and serrated leaf margins,
ABA hypersensitivity and greater resistance to water
deficiency than wild type plants. PCR products were
separated on an ABI3730 automated DNA sequencer
and analysed by GeneMapper or PeakScanner software
(Applied Biosystems). The ratio of the peak areas of the
alternatively spliced isoforms for each gene in the wild
type plant was compared to the ratio of the peak areas
of products in the cbp mutants. Means and standard
errors were calculated for three separate experiments.

Alternative splicing is affected in chp mutants

Of the 435 genes tested, 99 genes did not show RT-PCR
products. This is most likely to be due to very low level of
expression of these particular genes in the plant tissue
analysed (35-days-old leaves). For 84 cases only one
splicing isoform was observed. This suggested that the
alternative splicing events did not occur in the tissue and
developmental stage analysed or represented extremely
rare events even though supported by EST/cDNA
sequences. As neither of the above groups provide alter-
native splicing information in the tissue analysed, these
events were not included in further analysis.

Of the 252 remaining different AS events 101 showed
significant (P <0.10) changes in the ratio of alternatively
spliced isoforms of over 3% between wild type plants and
the ¢bp20, cbp80(abhl) or cbp20/80 mutants. Of these
events, 41 were common to all three mutants, nine were
found in both the cbp80(abhl) and c¢bp20/80 mutants,
four were common to cbp20 and cbp20/80, five were
common to ¢hp20 and c¢bp80(abhl), 15 were found only
in the double mutant, and 6 and 21 only in the single
¢bp20 and cbp80(abhl) mutants, respectively (Figure 1).
Different types of alternative splicing events were affected
in the chp mutants (Table 1). The majority of the alterna-
tive splicing events involved two alternative products
(Table 2) and four events involved three alternative
products (Table 3). Thus, the majority of AS events
showing significant changes in alternative splicing

profiles (41 events—41%) were found in all three cbp
mutants. For example, in At5g43270, both single
mutants showed a similar significant change in AS but
the largest change was seen in the double mutant where
the ratio of the two alternatively spliced isoforms changed
from 76%:24% to 51%:49% (Figure 2A). In Atlg31500,
the degree of change was similar in all three mutants
changing from 61%:39% to ~70%:30% (Figure 2B).
In At5g02470, there were different degrees of significant
changes in all three mutants but again the biggest change
in the ratio of AS1:AS2 was in the double mutant (from
53:47 to 80:20%) (Figure 2C). Knocking out the CBC
could potentially have a general affect on mRNA stability
leading to the observed changes in alternative splicing. We
therefore analysed by microarray analysis the expression
levels of genes in the ¢bp20 and cbp80 mutants com-
pared to wild-type. Across all genes, >97% showed no
differences in expression and in the genes containing the
101 significantly different alternative splicing events, only
one had a reduced expression level and two had increased
expression (data not shown). Thus, the CBC directly
influences the selection of alternative splice sites and the
extent and pattern of changes varied among the AS events
and the different mutants.

Alternative splicing is mainly affected in the chp80 and
cbp20/80 double mutants

Forty-one AS events were significantly changed in all three
cbp mutants. Of the remaining 60 events which showed

cbp20/80

cbp20 chp80

Figure 1. Distribution of alternative splicing events with significant
changes in alternative splicing profiles in the chp mutants.

Table 1. Distribution of different alternative splicing events with significantly changed alternative splicing profile among the ¢hp mutants

Alternative splicing event

Gene number Alt 3 splice site

Alt 5 splice site

Exon skipping Alternative position Intron retention

All chp mutants 41 20 18
¢bp80 plus ¢bp20/80 9 4 1
cbp20/80 15 9 3
cbp80 21 9 5
¢bp20 plus cbp80 5 5 0
cbp20 6 3 3
¢bp20 plus ¢bp20/80 4 3 0
Total 101 53 30
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S L2z8 228 282 28| 5 § changes in either two out of three mutants or only in one
a °9°SY 9°° ©°° °°| 2 £ of them (Figure 1), only six events involved the ¢hp20
2 1 mutant while 21 and 15 events involved either
- 5288 288 =22 828 _é‘ 2 the.: cbp80(abhl) or ' t'he cbp20/80 mutants, regpegtively
3 2335 335 335 9 ¢ g (Figure 1). In addition, nine events with significant
§ Sa®m moo amc oo f 5 changes in alternative splicing were common to the
< ScSe sSes Sec oS |& 3 g ¢bp80 and cbp20/80 mutants such that the majority of
g 23 events affected in the c¢hp mutants were found in the
g§585 555 838 38| &= cbp80 and cbp20/80 double mutants.
» SO oo S o O S oo S o [=9) = E
£ HHHH HHAH HHH HH | & =& . . .
S % b= asiy 255 Els E vt E cbp mutants preferentially affect alternative splicing
g1 colclclicololicioloaoclal | § A ] in the first intron
20 S RH . .
£ N - W ~ The CBC in animal and yeast systems promotes an effi-
= SRR - (S D ient interaction between UlsnRNP and the first int
e SSSe Sos SscS oo | Y B cient interaction between Ulsn and the first intron,
o | § Toal faow nEr fils s g and enhances production of spliced mRNAs (29,30). To
§ g o228 2Ts zZ9Z2 2o é - B examine whether Arabidopsis nuclear cap-binding proteins
5 o 873 also affected the first intron of transcripts, we compared
= =238 ==2 328 =z | & §3 the position of the introns affected by alternative splicing
E SSSS Sos <<< =< E = in the total number of events (252), the events which
T e Yoo sy Qun wo |l 22 showed a significant change at least one of the mutants
g = SsSs Sos Sso oS | & 2\.: (101) (Figure .1) and thqse events which showed a signif-
% g £ icant change in alternative splicing in all three mutants
—_ > A . ..
g z bt E{f (41). Among the 252 events showing alternative splicing
5 = g2 he RT-PCR 1, 107 events (42%) involved the first
5| 58 5 8% on the panel, events (42%) involved the firs
; EE 5 Sy intron in the gene transcript, 102 (40%) involved an
g 2« % S5 internal intron and 43 (17%) involved the last intron in
E ME _‘5’ k) % the transcript (Figure 3). In the group of 101 AS events
5 %; g g ;;}_ o with a significantly different alternative splicing profile in
SlERE| B8RS 92% 298 =3 | 4 25 at least one mutant 50% are alternatively spliced in the
El¥ES | ———a A= AQA— ~—~& o} 3 . o . .
S s = ? first intron, whereas 33 and 18% are alternatively spliced
2 v 2 Zo in the internal intron and the last intron of transcripts,
2| 5 % .58 respectively. Interestingly, of the 41 events which showed
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alternative splicing (252 AS events), AS events which changed in at
least one mutant plant (101 AS events) and those which showed signif-
icant changes in all three chp mutants (41 AS events).

Of the 252 AS events, 75 (30%) involved selection of alter-
native 5 splice sites (Figure 4A). Similarly, of the 101
AS events changed in at least one mutant plant only 30
(30%) of AS events involved 5 splice sites. Interestingly,

a greater proportion of the events where alternative
splicing changed in all three mutants (18 of the 41
events—44%,), involved alternative 5 splice sites with
fewer events involving alternative 3’ splice site selection
(Figure 4A).

Second, we looked at the number of alternative 5 splice
site selection events among those involving the first intron.
These groups consisted of 107 of the 252 total AS events,
50 of the 101 AS events changed in at least one chp mutant
and 23 of the 41 AS events with significant changes in all
three mutants. Of the 107 first intron events, 36 (34%)
involved alternative 5" splice site selection. Similarly, of
the 50 AS events changed in at least one ¢hp mutant, 16
(32%) involved 5 splice site selection. Finally, of the 23
first intron events with significant AS changes in all three
c¢bp mutants, 11 (48%) involved alternative 5 splice site
selection (Figure 4B). Thus, both the total number of
alternative splicing events which are changed in all
three mutants and those which affect the first intron are
enriched in alternative 5 splice site selection. This change
in distribution suggests that CBC proteins are pre-
ferentially, but not exclusively, involved in the regulation
of alternative 5’ splice site selection in the first intron.

As the CBC preferentially affects alternative 5" splice
selection in the first intron of transcripts, we examined
whether the CBC also influenced the selection of the alter-
native 5 splice site. If the CBC promoted usage of the 5
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these sites were reduced increasing the amount of the
minor isoform. Thus, although both sites were used,
the CBC preferentially used one or other of the 5 splice
sites. Six of the 16 events followed this pattern (Table 4—
labelled as ‘Major’). In the second case, one splice site
was used preferentially in the wild-type as above, but in
the mutants, use of this splice site increased showing that
the CBC actively promoted usage of the alternative splice
site which generates the minor splice isoform. This
occurred in eight of the remaining cases (Table 4—
labelled ‘Minor’). In two events studied, it was impossible
to point out the major splicing isoform since both
alternative variants occur in equal amounts in wild type
plants. However, the ratio between both splicing isoforms
changed significantly in the chp mutants; in one case use
of the proximal 5'ss increased, and in another, use of
the proximal 5'ss decreased. Our results show that there
is no preference for the CBC to promote usage of the
5" splice site closest to it, and the CBC, therefore can
promote selection of one or other or both (or more) alter-
native 5 splice sites to increase the levels of alternative
isoforms.

Since in animals, the CBC promotes efficient splicing of
the first intron during constitutive splicing we asked
whether it also affects the efficiency of intron excision in
plants. To address this, we looked at the six intron reten-
tion events where there was a significant change in splicing
in at least one chp mutant. Of these, two events involved
retention of the first intron (Atlg01060 and At4g23260)
and two of the second intron (At5g25610 and At2g47890).
Although significant in only the ¢hpS80 or the double
mutant, all four showed a decrease in splicing of the
intron. The other two intron retention events affected
the fifth and sixth introns (At3gl13224 and At1g69250)
and splicing efficiency increased in the mutants affected.
Although only a small number of intron retention events
showed significant changes, those involving introns near
the 5’ end of the mRINA were less efficiently spliced in at
least one mutant suggesting that the CBC may influence
the efficiency of removal of such introns.

DISCUSSION

The nuclear CBC in animal systems promotes an efficient
interaction between the UlsnRNP and the first intron of a
pre-mRNA transcript, thereby enhancing spliceosome
assembly and the formation of spliced mRNAs. Using
knock-out mutants of the Arabidopsis cap-binding
proteins and an alternative splicing RT-PCR panel, we
have examined the influence of the CBC on alternative
splicing of multiple different pre-mRNAs. The CBC
significantly affected (P <0.10) the alternative splicing of
101 events from the 252 analysed and the events involved
introns at different positions in the various transcripts.
However, the chp mutants preferentially affected splicing
within the first intron in over half of the AS events which
had significant changes in the mutants. In addition, this
effect was preferentially exerted at the 5’ splice site consis-
tent with the model for animal systems that the CBC
promotes 5 splice site selection of the first intron.
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Clearly many internal or last introns also showed an influ-
ence of the CBC on splicing/alternative splicing. Indeed,
when considering events affected in all three mutants,
the proportion of last introns affected increased as well
as the proportion of first introns. The effect of the CBC
on introns other than those towards the 5-end of the
mRNA may be the result of indirect regulation of other
splicing factors affecting the splicing of these (and also
some first introns) or may reflect three-dimensional
interactions in the pre-mRNA. For example, interactions
between the cap and polyadenylation proteins to circular-
ize mRNAs increase translational efficiency (60) and have
been suggested to be involved in NMD (61). In addition,
plant genes and particularly introns are much smaller than
those in animal genes (10) potentially permitting a range
of interactions between the CBC and other regions of the
transcript.

An effect of the CBC on alternative splicing has
not been shown previously. Consideration of the model
of the CBC promoting the interaction between the
UlsnRNP and 5 splice site of the first intron predicts
that, when alternative 5 splice sites are available, the
CBC would promote splicing by recruiting of UlsnRNP
to one or other of these sites and potentially to the 5’ splice
site nearest to the cap. Our analysis of alternative 5 splice
site selection in first introns with significant changes in AS
in the ¢bp mutants showed firstly that there was no pref-
erence for use of the cap-proximal alternative 5 splice
sites, and secondly, that the CBC either showed a prefer-
ence for one or other site or actively promoted use of a
minor site. Thus, the CBC affected usage of both major
and minor alternative 5 splice sites. This suggests that
while the CBC preferentially affects alternative 5 splice
site selection in the first intron, it can promote usage of
both alternative splice sites and thereby influence the levels
of alternative isoforms. The choice of site and degree of
use are therefore most likely to reflect the strength of the
splice sites, possibly the distance of the sites from the cap,
and the presence of splicing enhancer or silencer sequences
and interactions of other splicing factors. This is the first
demonstration that the CBC can affect alternative splicing
and is again consistent with the model of the CBC
mediating interactions between the Ul snRNP and ¥
splice site of the first intron.

Comparison of the effects of the two single mutants and
the double mutant showed that on the basis of the number
of alternatively spliced events analysed here, more AS
events were affected by mutation of AtCBPS80(ABHI)
than AtCBP20. This suggests that the larger subunit of
the plant nuclear CBC plays a more significant role in
this complex during splicing/alternative splicing regula-
tion. Given that in plants, CBP20 contains the NLSs
and that nuclear import of CBP80 is thought to depend
on CBP20, we expected that mutation of CBP20 would
be more severe in its effects on splicing. However,
although in the single mutants, no AtCBP20 or
AtCBPS80 is detected, the protein levels of the remaining
AtCBP80 and AtCBP20 respectively vary. Interestingly, in
the ¢bp80(abhl) mutant, not only is the CBP80 protein
absent but also the level of AtCBP20 protein is much
reduced suggesting that in the absence of AtCBPS0, the
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AtCBP20 subunit is unstable (48). Thus, the chp80 mutant
is very similar to the double mutant in terms of the
levels of CBP20 and CBP80 proteins and the splicing
phenotypes of these mutants. In contrast, in the ¢bp20
mutant which affected fewer of the alternative splicing
events, AtCBP20 was absent but the AtCBP80 protein
was present only at slightly reduced level to wild-type.
This suggests that in the absence of AtCBP20, the larger
subunit may still be able to interact in the splicing process
albeit less efficiently. In yeast, CBP20-deficient (chp20-A)
mutants accumulated amounts of yCBP80 similar to those
observed in the wild type strain, whereas the chp80-4
strain accumulated four-fold less yCBP20 than the wild
type, suggesting that yCBP20 is unstable in the absence
of yCBP80 (44,62). This observation suggests that protein
interaction with CBP80 may modulate the stability of its
partners. Assuming that AtCBP80 can interact with other
splicing factors, it may still recruit factors to particular
pre-mRNAs and thereby exert a stronger influence on
splicing than AtCBP20. It was previously shown that
the level of the CBC in the nucleus is precisely regulated
(48) and the composition of the protein bound to the cap
changed dynamically during a growth cycle in Arabidopsis,
playing a role in the regulation of gene expression (63).
Finally, that the single and double mutants are viable
[similar to yeast (42,62)], and that many splicing events
are unaffected in the mutants in this analysis, suggests
the splicing of some introns is more dependent on the
CBC than others. This may reflect the strength of intron
splicing signals and of splicing enhancer sequences which
can recruit splicing factors without the CBC.

Some splicing alterations were unique to the chp20 and
the c¢bp80(abhl) mutants which may reflect variation
in the degree of dependence of intron splicing on the cap
or proteins associated with the CBPs or varying ability
of other proteins to compensate in the absence of one
or other of the CBPs. Similarly, some AS changes were
observed in the double mutant only. It is also possible that
loss of one or other or both CBPs affects the splicing/
alternative splicing of transcripts of genes encoding
specific factors required for splicing of certain genes
thereby indirectly affecting splicing of these genes. The
fact that alternative splicing of transcription and splicing
factors may be regulated by the CBC complex can explain,
at least partially, the growth, developmental and physio-
logical phenotypes of the mutants. In conclusion, in
addition to constitutive splicing, the CBC is involved in
alternative splicing in plants. In both cases, the CBC
preferentially influences the first intron, particularly at
its 5’ splice site during alternative splicing in plants.
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