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Abstract

The functional contribution of CNV to human biology and disease pathophysiology has undergone limited exploration.
Recent observations in humans indicate a tentative link between CNV and weight regulation. Smith-Magenis syndrome
(SMS), manifesting obesity and hypercholesterolemia, results from a deletion CNV at 17p11.2, but is sometimes due to
haploinsufficiency of a single gene, RAI1. The reciprocal duplication in 17p11.2 causes Potocki-Lupski syndrome (PTLS). We
previously constructed mouse strains with a deletion, Df(11)17, or duplication, Dp(11)17, of the mouse genomic interval
syntenic to the SMS/PTLS region. We demonstrate that Dp(11)17 is obesity-opposing; it conveys a highly penetrant, strain-
independent phenotype of reduced weight, leaner body composition, lower TC/LDL, and increased insulin sensitivity that is
not due to alteration in food intake or activity level. When fed with a high-fat diet, Dp(11)17/+ mice display much less weight
gain and metabolic change than WT mice, demonstrating that the Dp(11)17 CNV protects against metabolic syndrome.
Reciprocally, Df(11)17/+ mice with the deletion CNV have increased weight, higher fat content, decreased HDL, and reduced
insulin sensitivity, manifesting a bona fide metabolic syndrome. These observations in the deficiency animal model are
supported by human data from 76 SMS subjects. Further, studies on knockout/transgenic mice showed that the metabolic
consequences of Dp(11)17 and Df(11)17 CNVs are not only due to dosage alterations of Rai1, the predominant dosage-
sensitive gene for SMS and likely also PTLS. Our experiments in chromosome-engineered mouse CNV models for human
genomic disorders demonstrate that a CNV can be causative for weight/metabolic phenotypes. Furthermore, we explored
the biology underlying the contribution of CNV to the physiology of weight control and energy metabolism. The high
penetrance, strain independence, and resistance to dietary influences associated with the CNVs in this study are features
distinct from most SNP–associated metabolic traits and further highlight the potential importance of CNV in the etiology of
both obesity and MetS as well as in the protection from these traits.
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Introduction

The significance of copy number variation (CNV) in human

genetic variation is now indisputable [1,2]. However, in contrast to

the revolutionary progress achieved in the discovery of CNVs and

delineating the mechanisms for their formation, our current

knowledge of the downstream functional mechanisms by which

CNVs contribute to trait manifestations is limited. Functional

contributions of CNV to human biology have only been examined

in a few physiological systems including the neuropsychiatric/

behavioral fields [2,3].

About 400 million people worldwide are classified as obese [4]

and are likely to suffer from premature mortality and obesity-

associated morbidities, such as hyperglycemia, dyslipidemia,

hypertension and metabolic syndrome (MetS) [5]. The etiologies

for obesity include genetic contributions [4], but the identities of

the specific genetic factors remain largely unknown. Single

nucleotide polymorphisms (SNPs) identified through linkage and
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genome-wide association studies (GWAS) explain only 1–2% of

the variation in obesity phenotypes as measured by BMI [6,7,8].

Recent observations in humans indicate a tentative link between

CNV and weight regulation. Deletions at 16p11.2 were associated

with a highly penetrant form of obesity often found with

hyperphagia and intellectual disabilities, whereas the reciprocal

duplication conveys a 8.3 fold increased risk for being clinically

underweight [9,10]. These comprehensive studies on patients

added to the clinical observations of obesity associated with CNV

that have been noted for several chromosomal syndromes and

genomic disorders including Down [11] and Prader-Willi

syndromes [12]. However, there is no experimental data that

proves the causative role of the CNV in the abnormality in weight

regulation, nor is there any study on the biology underlying this

tentative link.

Potocki-Lupski syndrome (PTLS, MIM 610883) [13,14] is an

intellectual disability and multiple congenital anomalies (ID/

MCA) syndrome due to a heterozygous interstitial duplication

CNV in chromosome 17p11.2. Mildly lowered total cholesterol

and LDL were noted for some PTLS patients [13]. The reciprocal

deletion CNV of the same interval causes a distinct ID/MCA

disorder known as Smith-Magenis syndrome (SMS, MIM 182290)

[15,16,17]. Obesity and hypercholesterolemia are phenotypes of

SMS [16,18,19]. By chromosomal engineering, we previously

constructed mouse models of PTLS and SMS carrying the

duplication [Dp(11)17] or deletion [Df(11)17] of a 2 Mb chromo-

somal segment that includes the majority of the mouse region

syntenic to the PTLS/SMS common recurrent CNV interval

(Figure S1) [20]. Both Dp(11)17/+ and Df(11)17/+ mice partially

recapitulate the respective human phenotypes such as craniofacial

abnormalities [21,22], altered learning, memory and social

interaction [20,23,24,25], and display a transcriptome [25] that

is distinct from their wild type (WT) littermates.

In the context of exploring the biological link between CNV

and weight control, we now utilize these mouse models to

investigate the detailed metabolic consequences of the PTLS

duplication CNV and the reciprocal SMS deletion CNV. To

simplify data analyses, all experiments were performed with male

animals.

Results

Phenotypes reciprocal to metabolic syndrome in
Dp(11)17 animals

First, we found that, similar to previous observations on several

genetic backgrounds (C57BL/6J/129S5 and N7 or N12 congenic

C57BL/6J) [20,25,26], the Dp(11)17/+ mice on an isogenic

(N.17) C57BL/6J background also display significantly reduced

body weight compared to their WT littermates (Figure 1A, 1B). In

contrast, and again in accordance with earlier reports on different

backgrounds (C57BL/6J/129S5 and N7 or N12 congenic

C57BL/6J) [20,25], the Df(11)17/+ mice with the reciprocal

deletion CNV on a pure (N.10) 129S5 background are

significantly heavier than their WT littermates after 15 weeks of

age (Figure 1C, 1D). Thus, the reciprocal duplication and deletion

CNVs not only change body weight in opposing directions, but

also, strikingly, do so in a highly penetrant manner that is

independent of the genetic background. Highly penetrant weight

change phenotypes were recently also observed in humans for two

obesity-associated deletion CNVs on 16p11.2 and the reciprocal

duplication of one of them associated with leanness [9,10,27]. The

high penetrance differentiates CNV-associated obesity from SNP

associated obesity in which, except for some very rare mutations in

a few genes of the leptin/melanocortin pathway (LEP, MC4R,

etc.), almost all variants have low penetrance [28,29].

In addition to having reduced weight, adult Dp(11)17/+ mice

on an isogenic (N.17) C57BL/6J background are also leaner than

WT males, as measured via ECHO-MRI whole body scans (Echo

medical systems, Texas) and manual dissection. Dp(11)17/+ mice

have a significantly lower percentage of both whole body fat mass

and epididymal white adipose tissue (EWAT) (Figure 2A, 2B), as

well as a significantly higher percentage of lean mass (Figure 2A).

These findings are in accordance with our previous reports of

reduced abdominal fat in Dp(11)17/+ mice on different strain

backgrounds (N7 [26] and N12 C57BL/6J [25]), further

demonstrating the strain-independent manifestation of the meta-

bolic phenotypes caused by the duplication CNV. Moreover, adult

Dp(11)17/+ mice display significantly reduced fasting total serum

cholesterol (TC) and LDL levels (Figure 2C) as well as a

cardioprotective decrease of TC/HDL ratio (Figure 2C). Inter-

estingly, the change in TC and LDL resembles the clinical

observations in PTLS patients [13], despite the mechanistic

differences in lipid metabolism between human and mouse [30].

Consistent with their lower adiposity [31], the serum leptin

concentration is decreased in Dp(11)17/+ mice (Figure 2D).

Furthermore, the intraperitoneal glucose tolerance test (IP-

GTT) demonstrates an overall improved glucose clearance in

Dp(11)17/+ mice compared to WT littermates; the difference in

their serum glucose concentration becomes significant at 120 min-

utes (Figure 3A). The plasma insulin levels during the GTT were

significantly lower in the Dp(11)17/+ animals throughout the test,

suggesting that the improvement in glucose tolerance was not due

to increased insulin production by the pancreas, but likely the

result of improved insulin sensitivity (Figure 3B). Indeed, in the

insulin tolerance test (ITT), insulin injection lowered blood glucose

levels significantly faster in Dp(11)17/+ than in WT mice, further

corroborating their increased insulin sensitivity (Figure 3C and

3D). Intriguingly, the circulating concentration of adiponectin is

not changed in Dp(11)17/+ mice (Figure 2D), suggesting that

adiponectin-independent pathways are involved in the alteration

of their insulin sensitivity [32].

Author Summary

Genetic factors play a large role in obesity. However,
despite recent technical progress in the search for genetic
variants, the identities of causative and contributory
genetic factors remain largely unknown. Whereas nucleo-
tide sequence variation has been studied extensively with
respect to its potential contribution to obesity, copy
number variations (CNV), in which genes exist in abnormal
numbers of copies mostly due to duplication or deletion,
have only more recently been observed to be associated
with human obesity. In this report, we utilize chromosome
engineered mouse strains harboring a deletion or dupli-
cation CNV to address the potential functional impact of
CNVs on weight control and metabolism. We show that
the duplication CNV leads to lower body weight; it is also
metabolically advantageous and protects from diet-in-
duced obesity and metabolic syndrome (MetS). The
deletion CNV causes a ‘‘mirror’’ phenotype with increased
body weight and MetS–like phenotypes. Importantly,
these effects manifest regardless of the genetic back-
ground and do not appear to be attributable to any single
gene. These findings demonstrate experimentally that CNV
can be causative for weight and metabolic phenotypes
and highlight the potential relevance and importance of
CNV in the etiology of obesity/MetS and the protection
from these traits.

CNV and Metabolism in Human and Mouse
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The Dp(11)17 CNV results in higher intrinsic metabolic
activity

We found that the reduction in body weight of Dp(11)17/+ mice

is not simply due to an altered energy intake or increased activity

since they consume identical amounts of food after four weeks of

age (Figure 4A) and have similar activity levels to those of their

WT littermates (Figure 4B). Thus, intrinsic changes in energy

expenditure likely explain the observed phenotypes. Indeed, as

assayed by indirect calorimetry, Dp(11)17/+ mice demonstrate an

overall higher oxygen consumption (VO2) per lean mass and

higher respiratory exchange ratio (RER) than WT mice, indicating

higher energy expenditure than their WT littermates (Figure 4C–

4F). Western blotting suggested an elevated expression level of

protein uncoupled 1 (UCP1) in brown adipose tissue (BAT) of the

Dp(11)17/+ mice (Figure 4G, 4H), although there is considerable

variability in UCP1 expression among different samples. UCP1 is

a key component of thermogenesis in BAT [33], this difference

may partially explain the higher intrinsic energy expenditure of the

Dp(11)17/+ mice. Interestingly, Dp(11)17/+ mice also appear to

have a trend toward slightly higher body temperature

(34.5660.34uC) than WT littermates (33.960.90uC). We did not

observe differences in the expression levels of UCP2 and UCP3 in

BAT between Dp(11)17/+ and WT mice, nor did we observe

differences in other signature metabolism genes (Glut4, AP2 in

BAT, and Lpk, Fas, Acc1, Srebp1c, Tnxip in the liver) (Figure S4A,

S4B).

Thus, while on a regular chow diet, Dp(11)17/+ mice are leaner

than their WT littermates, and they have lower serum TC/LDL

levels and reduced leptin concentration. Dp(11)17/+ mice also

appear to be more insulin sensitive and have higher energy

expenditure but display no difference in activity level in

comparison to WT mice. These traits are reciprocal or antithetical

to those of metabolic syndrome and most appear to manifest

independent of the genetic background of the mouse strain.

Importantly, except for the parameters related to energy

metabolism, a comprehensive serum analysis did not observe

any difference in other serum chemistry parameters between

Dp(11)17/+ and WT animals (Table S1). Also, under daily

evaluation by veterinarian staff in our mouse facility, no overt

illness was observed in Dp(11)17/+ mice. Combined with the fact

that Dp(11)17/+ animals also have identical activity level and food

intake to WT mice, the metabolic traits we observed in Dp(11)17/

+ mice are unlikely due to any illness related to the duplication

CNV, but rather a direct effect from the CNV.

The Dp(11)17 CNV protects against diet-induced obesity
(DIO)

Next, we investigated potential influences of the Dp(11)17 CNV

on the genetic susceptibility to diet induced obesity (DIO). First,

we placed Dp(11)17/+ and WT mice on a HF (60% calories from

fat) diet for three weeks (19 to 22) after 19 weeks of a normal diet.

After these three weeks, the WT mice had dramatically increased

Figure 1. Dp(11)17/+ mice have reduced and Df(11)17/+ mice have increased body weight. (A) A Dp(11)17/+ male (23 weeks old) and its WT
littermate are shown, both on isogenic C57BL/6Tyrc-Brd background. Dp(11)17/+ mice appear gray because of a coat color marker in the construct used
to chromosome engineer this strain [20]. (B) Growth curve of Dp(11)17/+ (red) and WT littermates (gray) reveal decreased weights for the duplication
CNV mutants throughout their life span (*p,0.001 for by ANOVA with repeated measures). (C) A Df(11)17/+ male (32 weeks old) and its WT littermate
on pure 129S5 background (D) Growth curve of Df(11)17/+ (green) and WT littermates (gray) reveal increased weights for the deletion CNV mutants
(*p,0.05 by ANOVA). (B, D): n = 10–25 mice for each data point, results are expressed as mean 6 s.e.m.
doi:10.1371/journal.pgen.1002713.g001

CNV and Metabolism in Human and Mouse
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body weight compared to control WT mice of the same age that

have been kept on a regular chow (RC) diet. The Dp(11)17/+
mice, however, did not display significant weight gain compared to

other Dp(11)17/+ animals on RC (Figure 5A). More specifically,

the weight gain in WT mice is predominantly due to an increase in

the amount of fat mass that is only observed in WT and not

Dp(11)17/+ mice (Figure 5A). Indeed, while BAT and liver remain

of similar sizes (relative to body weight) between the two genotypes

after HF diet, the WAT tissues (from four body locations:

epididymal, mesenteric, retroperitoneal and inguinal WAT) are

much smaller in Dp(11)17/+ than WT mice (Figure 5B, 5C),

accompanied by smaller-sized adipocytes (Figure 5D). Further-

more, for WT mice, HF diet resulted in a marked decrease in

glucose clearance during GTT but no change in blood insulin

level; whereas the glucose clearance in Dp(11)17/+ mice is much

less affected by the HF diet (Figure 6A, 6B). This difference in the

extent of HF diet mediated insulin resistance between WT and

Dp(11)17/+ mice was further confirmed in ITT experiments,

which demonstrate even more significant differences between the

two genotypes after HF diet (Figure 6C, 6D).

Next, to explore the long-term impact of the Dp(11)17 CNV in

DIO, we examined Dp(11)17/+ males along with their WT

littermates on a 42% fat HF diet starting from week 3 for 20

weeks. While the high-fat diet causes massive weight gain in WT

mice and literally ‘‘supersizes’’ these animals, it produces only a

minimal increase in body weight in the Dp(11)17/+ mice,

confirming the salient resistance of the Dp(11)17/+ genotype to

diet-induced weight gain (Figure 6E). In aggregate, these findings

demonstrate the salubrious effect of this duplication CNV in that it

provides protection against diet-induced obesity and insulin

resistance.

Rai1 gain alone is insufficient to account for CNV–
associated metabolic derangements

We next examined whether the metabolic traits conveyed by the

duplication CNV are due to the copy number gain of a single

gene. The typical CNV interval of PTLS/SMS encompasses over

40 human genes; one of them, retinoic acid induced 1 (RAI1), is

considered the ‘‘predominant’’ causative gene in the deletion CNV

interval mediating the majority of SMS clinical findings through

haploinsufficiency [15,16,17]. Also, for PTLS, RAI1 is a major

dosage sensitive gene contributing to the phenotype, as suggested

by duplication mapping in humans [34] and the rescue of selected

phenotypes after normalizing the gene dosage of Rai1 to n = 2 in

Dp(11)17/Rai12 animals [26]. To examine the contribution of the

RAI1/Rai1 gene to the metabolic phenotypes of PTLS, we

compared the metabolic profile of TgRai1 animals [35] that

overexpress Rai1 but do not have copy number change of most of

the surrounding genomic regions to that of Dp(11)17/+ mice.

Although the regulation of Rai1 expression in TgRai1 mice is

mechanistically different from that in Dp(11)17/+ mice, in which

Rai1 is localized in a large genomic segment that has a well-defined

duplication of the genome, expression studies demonstrated that

the Rai1 ‘‘steady state’’ expression level is similar in TgRai1 [35]

and Dp(11)17/+ mice [25] (1.5 fold that of WT). Interestingly,

TgRai1 animals display an initial growth retardation; however,

they eventually normalize their body weight by 20 weeks of age

[35]. This is distinct from the Dp(11)17/+ mice, whose difference

in body weight when compared to their WT littermates remains

and even exacerbates as they age (Figure 1). Further, TgRai1

animals do not demonstrate the dramatically altered body

composition and serum chemistry displayed by Dp(11)17/+ mice

Figure 2. Dp(11)17/+ mice (red) are also leaner and have reduced serum TC, LDL, TC/HDL ratio, and leptin. (A) Less relative total fat mass
(*p = 0.000088) and more relative lean mass (*p = 0.00012) was identified in Dp(11)17/+ mice with ECHO-MRI system. (B) Dp(11)17/+ animals also
possess smaller epididymal white adipose tissue pad (EWAT) (*p = 0.0020). Fasting serum profile revealed (C) reduced TC (*p = 0.021), LDL (*p = 0.01),
TC/HDL ratio (*p = 0.0007) and (D) reduced leptin (*p = 0.021) in Dp(11)17/+ mice. All comparisons were made with two-tailed t-test; results are
expressed as mean 6 s.e.m. from measurements of (A) 6 Dp(11)17/+ and 10 WT at 21–22 wks (B) 6 Dp(11)17/+, 7 WT at 41 wks (C) 5 Dp(11)17/+ and 6
WT at 20–22 wks (D) 6 Dp(11)17/+ and 4 WT of 20–21 wks.
doi:10.1371/journal.pgen.1002713.g002

CNV and Metabolism in Human and Mouse
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(Figure S2A, S2B). Finally, again in striking contrast to the

remarkably improved insulin sensitivity and glucose clearance of

Dp(11)17/+ mice, TgRai1 animals demonstrate no significant

differences in their blood glucose or plasma insulin during GTT

when compared with WTs (Figure S2C, S2D). We conclude that

the dosage or steady state expression level of RAI1/Rai1 is unlikely

the sole or major contributor to the obesity opposing and

protective metabolic phenotypes observed in the PTLS mice.

The Df(11)17 deletion CNV conveys metabolic syndrome
like phenotypes in both mouse and human

After studying the Dp(11)17/+ mice, we sought to characterize

the metabolic profile of the Df(11)17/+ deletion mice on a fully

congenic (N.10) 129S5 background. In mirror image contrast to

the observations in Dp(11)17/+ mice, Df(11)17/+ mice have not

only increased body weight, but also significantly increased

percentage of body fat and decreased percentage of lean mass

(Figure 7A). These findings are again in accordance with our

previous reports of increased size of abdominal fat pad in

Df(11)17/+ mice on mixed [20] and congenic (N.12) C57BL/

6J [25] strain backgrounds. Intriguingly, Df(11)17/+ mice also

have reduced TC, similar to Dp(11)17/+ mice (Figure 7B).

However, in contrast to the reduction of the atherogenic LDL in

the case of Dp(11)17/+ animals, the reduced TC of Df(11)17/+
mice is the result of a reduced HDL, a cardioprotective species of

plasma lipoprotein (Figure 7B). The TC/HDL ratio appears

higher in Df(11)17/+ mice although the difference is not

significant (Figure 7B). During the GTT, Df(11)17/+ mice display

an impaired glucose tolerance phenotype (Figure 7C) accompa-

nied by significantly higher plasma insulin levels during the test as

compared with WT mice (Figure 7D), suggesting that Df(11)17/+
mice indeed have increased insulin resistance. This interpretation

is bolstered by a blunted blood glucose decrement in response to

insulin injection during an insulin tolerance test (ITT) in Df(11)17/

+ mice as compared to WT mice (Figure 7E and 7F). The

increased insulin resistance and impaired glucose tolerance in

Df(11)17/+ mice, along with the increased body weight, relative

adiposity and reduced HDL further document that, metabolically,

Df(11)17/+ mice display endophenotypes that resemble a bona fide

metabolic syndrome. We did not find significant differences in the

level of UCP1 protein between Df(11)17/+ and WT mice (Figure

S4C, S4D).

From studies of human patients, a meta-analysis of 105 cases

[16] including both children and adults concluded that 33.3% of

the SMS patients are overweight (BMI.24). In a study of 49 SMS

children (0.6 to 17.6 years), Smith et al. [19] observed that SMS

boys had a significantly higher BMI than the published age-

matched standards. To systematically address the potential obesity

directly caused by the SMS deletion CNV in the context of the

population norm, we compared 179 height and 216 weight

measurements from 76 subjects with SMS aged between newborn

and 46 years (Figure S3) to the population mean of the same age/

gender from the center for disease control and prevention (http://

www.cdc.gov/growthcharts/). We found that both male and

Figure 3. Dp(11)17/+ mice (red) display improved insulin sensitivity compared to WT mice (gray). During IP-GTT (6 hr fasting, 1.5 mg
glucose/g body weight), Dp(11)17/+ mice demonstrate (A) lower blood glucose (*p = 0.006 for 120 minutes post injection; # p = 0.052 for the area
under curve (AUC)) and (B) lower blood insulin level (*p = 0.0037, 0.0026, 0.0051, 0.0031 and 0.0015 for the time points 0, 15, 30, 60 and 120 minutes;
*p = 0.002 for AUC). During IP-ITT (4–6 hrs fasting, 1 mU insulin/g body weight), Dp(11)17/+ mice also demonstrate lower blood glucose
concentration, shown as both actual concentration (C) (*p = 0.011, 0.004 and 0.037 for 0, 15 and 30 mins post insulin injection) and percentage of the
initial glucose concentration (D) (*p = 0.038 for 15 mins post insulin injection). All comparisons were made with two-tailed t-test; results are expressed
as mean 6 s.e.m. from measurements of (A, B) n = 5 Dp(11)17/+ and 6 WT at 30 wks (C, D) 4 Dp(11)17/+ and 4 WT mice at 20–22 wks. All AUCs are
computed until 120 minutes, for the entire length of the time curves.
doi:10.1371/journal.pgen.1002713.g003

CNV and Metabolism in Human and Mouse
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female SMS individuals of all age categories in this cohort are

shorter than the general population (Figure S3A, S3D, S3G). Male

SMS subjects do not have significant weight abnormalities (Figure

S3B, S3H). Females below 11 years have weights below the

population mean, whereas those older than 12 years appear

heavier than the population mean, although the difference is not

significant (Figure S3E, S3H). Most importantly, male SMS

subjects older than 2 years and female subjects older than 20 years

have significantly higher BMI values than the general population

(Figure S3C, S3F, S3I). These observations are consistent with the

interpretation that the SMS deletion CNV indeed causes a higher

BMI in humans and thus conveys an increased risk for obesity.

Smith et al [19] also found that the mean fasting TC of SMS

patients in their cohort was significantly higher than published

pediatric age-matched norms. The aggregate of weight gain and

elevated TC in human SMS patients together with the weight gain

and insulin resistance in the Df(11)17/+ mice is consistent with

MetS-like traits as part of the SMS endophenotypes.

Figure 4. Dp(11)17/+ mice (red) have similar food intake and activity levels, but higher energy expenditure than WT mice (gray),
which may be partially accounted for by the difference in expression levels of UCP1 in the BAT tissue. (A) Dp(11)17/+ mice have similar
amount daily food intake to WT mice after 4 wks of age, although they consume less food at 3 wks (*p = 0.001) and 4 wks (*p = 0.048). (B) VersaMax
system (Accuscan Inc., Ohio) using the beam block technique implemented in home cages revealed no difference in horizontal activity level between
Dp(11)17/+ and WT animals. (C, D) Oxygen consumption measured using the CLAMS system (Columbus Ins., Ohio) for over three days documented
higher energy expenditure of Dp(11)17/+ mice in the light phases alone (*p = 0.0095) and during the entire day (*p = 0.044). (E, F) Respiratory
exchange ratio (RER) measured using the CLAMS system for over three days again confirmed higher metabolic activity of Dp(11)17/+ mice
(*p = 0.00151). (G) Western blot for UCP1 expression in BAT tissue of three Dp(11)17/+ and three WT mice with antibody AB3036 (Millipore). The same
blot was normalized to actin blotting using MAB1501 (Millipore). (H) Normalized intensity of UCP1 signals in Dp(11)17/+ vs. WT mice (17.13610.21 vs.
4.7462.05, p = 0.35). The measurements are from (A) 5–13 Dp(11)17/+ and 5–11 WT at different time points (B) to (F) 12 Dp(11)17/+ and 7–10 WT at
25–32 wks (G) 3 Dp(11)17/+ and 3 WT at 30 wks.
doi:10.1371/journal.pgen.1002713.g004

CNV and Metabolism in Human and Mouse
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Rai1 haploinsufficiency partially contributes to the
Df(11)17-mediated phenotype

To explore the contribution of RAI1 copy number loss to the

metabolic phenotypes of SMS, we also studied Rai1+/2 mice

[36,37] on the same 129S5 (N.10) strain background as the

Df(11)17/+ mice. Similar to what we observed for Df(11)17/+
mice, and in accordance with a previous study [18] conducted on

a different genetic background, Rai1+/2 males have both

significantly increased body weight in adulthood (Figure 8A) and

elevated overall proportion of body fat (Figure 8B). Also similar to

the Df(11)17/+ mice, Rai1+/2 animals display an unchanged TC/

HDL ratio, although they have both elevated TC and HDL levels,

opposite to the reduced TC and HDL levels in Df(11)17/+ mice

(Figure 8C). Elevated cholesterol was also observed in Rai1+/2

mice on C57BL/6J background in Burns et al [18], although the

difference was not statistically significant, which may reflect the

mixing of male and female mice and a potential dilution of the

difference in male animals. Similarly, Burns et al also noted the

increased proportion of body fat in both males and females,

although the difference in their assay is only significant for the

females. The differences in our findings for the male mice may

result from different experimental approaches; ECHO-MRI is less

subject to variations introduced by the individual experimentalist

and potentially more objectively detects subtle differences in body

composition. In addition, the impairment of Rai1+/2 in glucose

clearance becomes significant at later time points during the GTT

assay (Figure 8D); these animals also show higher plasma insulin at

fasting and during the GTT (Figure 8E), although there is no

significant difference in blood glucose during ITT (Figure 8F and

8G).

Overall, Rai1 +/2 mice are similar to Df(11)17/+ mice in their

increased body weight and total body fat percentage as well as

hyperinsulinemia, impaired GTT and an unchanged TC/HDL

ratio. Intriguingly, Edelman et al [16] observed a higher

percentage of obesity in SMS patients with RAI1 point mutations

(66.7%) than those with 17p11.2 deletions (12.9%). Although the

number of SMS patients due to RAI1 point mutation in that report

is small (n = 9), these data nevertheless support a significant role for

RAI1 copy number loss in the overall metabolic phenotype of

SMS, and also suggest possible contributions from other genes/

genetic elements in the SMS deletion interval or the deletion per se

[25].

Discussion

In summary (Figure 9), our detailed analyses of mouse models

and human patients demonstrate that the duplication CNV of

PTLS conveys highly penetrant metabolic consequences that are

antithetical to or ‘‘mirror’’ [9] those observed in MetS. At the

same time, it confers protection against the development of diet

induced obesity and insulin resistance. These phenotypes are not

manifest in the transgenic TgRai1 mice with a similarly increased

level of Rai1 expression but without the duplication CNV. In

contrast, the reciprocal deletion CNV causes phenotypes that are

opposite to those observed with the duplication CNV and that

resemble a bona fide metabolic syndrome (summarized in

Figure 9).

Figure 5. Dp(11)17/+ mice (red) display resistance to diet-induced obesity compared to WT littermates (gray) after a high-fat diet
(HF) feeding from 19 to 22 weeks. (A) Only WT, but not Dp(11)17/+ mice have significant (*p = 0.00028) weight gain after three weeks of HF (19–
22 wks) that is mainly due to fat mass increase (*p = 0.00030). (B) Body weight percentage of epididymal (EWAT), mesenteric (MWAT), retroperitoneal
(RWAT) and inguinal (IWAT) white adipose tissues are all higher in WT mice post HF than Dp(11)17/+ mice (*p = 0.000033 for EWAT, p = 0.00021 for
MWAT, p = 0.000033 for RWAT, p = 0.000048 for IWAT). Liver and brown adipose tissues (BAT) remain similar. (C) Dissected EWAT, MWAT and liver are
compared between WT and Dp(11)17/+ mice post HF diet. EWAT and MWAT, but not the liver, are much smaller in Dp(11)17/+ mice. (D) Histology of
the EWAT adipocytes from Dp(11)17/+ and WT mice, demonstrating smaller adipocytes in Dp(11)17/+ mice after HF feeding. The measurements are
from (A): 11 Dp(11)17/+ and 12 WT at 22 wks post HF feeding compared to 6 Dp(11)17/+ and 10 WT on RC at 21–22 wks (B) 8 Dp(11)17/+ and 9 WT
post HF feeding. Dp/WT mice after HF diet: red/gray bars with dotted pattern; Dp/WT mice with RC: red/gray bars without pattern.
doi:10.1371/journal.pgen.1002713.g005
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The reciprocal/mirror phenotypes caused by the reciprocal

CNV of Dp(11)17 and Df(11)17 is interesting. Reciprocal

phenotypes associated with opposing gene/genome dosage alter-

ations (i.e. copy number loss versus copy number gain) have been

described for the complex neuropsychiatric traits of schizophrenia

and autism, as well as microcephaly and macrocephaly, associated

with, respectively, duplication/deletion CNV at 16p11.2

[38,39,40] and deletion/duplication of 1q21.1 [41,42,43,44].

Indeed, another pair of weight regulation associated duplica-

tion/deletion CNVs at 16p11.2 was also related to reciprocal

changes in BMI and manifest leanness/obesity [9,10,27]. These

reciprocal traits with opposing dosage alterations are consistent

with the model of diametrically opposing phenotypes for genomic

sister disorders postulated by Crespi et al [40,45,46].

Importantly, neither the duplication nor the deletion CNV

associated phenotypes we describe herein in both human patients

and mouse models can be attributed solely to the RAI1/Rai1 gene,

although RAI1/Rai1 dosage loss does appear to partially contrib-

ute to the deletion phenotypes.

Besides Rai1, another gene Srebf1 (coding for sterol regulatory

element binding protein 1, Srebp1), that maps directly adjacent to

RAI1/Rai1 in both human/mouse genome and functions as a key

regulator in the biosynthesis of fatty acid and cholesterol, is the

only gene in the SMS/PTLS interval known to be involved in

energy metabolism. Overexpression of the active N-terminal

portion of Srebp1 protein does not change the plasma lipid profile

[47] and results in mild insulin resistance [48]. Both phenotypes

are distinctly different from the metabolism phenotype we

observed in Dp(11)17/+ mice, rendering the copy number gain

of Srebf1 unlikely the reason for the Dp(11)17/+ metabolic

phenotypes. Heterozygous Srebf1 knockout mice Srebf1+/2 were

described as ‘‘phenotypically normal’’ [49]. Srebf12/2 animals are

Figure 6. WT mice (gray) display a greater increase in insulin resistance than Dp(11)17/+ mice (red) after HF diet from 19 to 22 weeks
as well as an increased weight gain after a long-term HF diet. (A) During IP-GTT, WT mice display more dramatically decreased glucose
clearance rate (*p = 0.00011) after HF diet than Dp(11)17/+ mice (*p = 0.03). (B) The insulin level of both genotypes are not impacted by HF diet. (C, D)
During IP-ITT, Dp(11)17/+ mice after HF diet demonstrate lower blood glucose concentration than WT mice, shown as both actual concentration in (C)
(*p = 0.002, 0.007, 0.003 and 0.002) and percentage of the initial glucose concentration in (D) (*p = 0.00015, 0.00063, 0.0026, 0.041); whereas the
differences are only partially significant under RC as shown in Figure 3 (C, D). (E) Body weight of both genotypes after HF diet from 10 to 30 weeks.
*: comparison for each genotype between HF and RC; $: comparison between the genotypes under the same diet condition. After HF feeding, both
genotypes gain weight (WT: *p,0.001; Dp(11)17/+: *p = 0.048). Dp(11)17/+ mice are still lighter than WT littermates after HF ($p,0.0005), similar to
those fed with RC ($p,0.001). The curves for normal diet (data points without triangles) are the same as shown in Figure 1B. All comparisons were
made with ANOVA with repeated measures (A, B, E) or two-tailed t-test (C, D); results are expressed as mean 6 s.e.m. and obtained from
measurements of n = 5 Dp(11)17/+ and 7 WT after HF diet. Dp/WT mice after HF diet: red/gray solid line with triangle markers; Dp/WT mice with RC:
red/gray dashed line without marker.
doi:10.1371/journal.pgen.1002713.g006
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50–85% embryonic lethal, but the surviving mice display

unchanged body weight and slightly reduced total cholesterol

and triglycerides in plasma [49]. The copy number loss of Srebf1 in

Df(11)17/+ mice is thus also unlikely a major contributor to the

observed metabolic phenotypes.

Recently, a microRNA miR33b was found to be embedded in

an intron of human SREBF1 [50,51]. Together with its paralogue

miR33a (embedded in the paralogue of SREBF1, SREBF2),

miR33b targets the adenosine triphosphate-binding cassette

transporter (ABCA1), decreases plasma HDL and boosts intracel-

lular cholesterol levels in cooperation with SREBP proteins

[50,51,52]. However, mouse Srebf1 does not contain mir33b

[50,51]; it is thus not a candidate accounting for the metabolic

phenotype observed in Dp(11)17/+ and Df(11)17/+ mice. The

potential role of miR33b in human PTLS/SMS metabolic

manifestation will have to be studied with different models, such

as those that introduce a human miR33b into the mouse genome.

Our current knowledge thus does not support a ‘‘single gene’’

contribution of the dosage change of Rai1, Srebf1 or any other

known genetic element to the metabolic phenotypes of SMS/

PTLS. However, it is distinctly possible that the copy number

change of RAI1 and SREBF1 in cis, with one of them exerting an

epistatic effect on the other or functioning as a modifier, is

required for manifestation of the complete metabolic phenotype of

PTLS/SMS. Further, the potential ‘‘cis’’ effect could also possibly

involve other genetic elements in addition to RAI1 and SREBF1.

These metabolic manifestations would then belong to the category

of ‘‘contiguous gene syndromes’’ [53] or genomic disorders [54,55]

that require multiple genes/genetic/genomic factors to work in

concert, a concept referred to as cis-genetics and in contrast to the

trans interactions of alleles at one locus formalized by Mendelism

[56]. Similar mechanisms have been proposed for the craniofacial

phenotypes of the SMS/Df(11)17/+ mice, wherein the phenotypic

penetrance is clearly modified by other genetic elements in the

Figure 7. Df(11)17/+ mice (green) are obese, have reduced TC, HDL, and display reduced insulin sensitivity in comparison to WT
mice (gray). (A) ECHO-MRI identified elevated fat mass (*p = 0.0041) and reduced lean mass (*p = 0.0034) in Df(11)17/+ animals. (B) Df(11)17/+
animals have lower serum TC (*p = 0.033) and lower HDL (*p = 0.039), but no significantly change in TC/HDL ratio. IP-GTT documented (C) similar
blood glucose levels but (D) significantly higher insulin levels (*p = 0.015, 0.028, 0.012 and 0.013 at 0, 30, 60, 120 mins post injection and *p = 0.011 for
AUC) in Df(11)17/+ animals. During IP-ITT, Df(11)17/+ mice retain higher blood glucose concentration, shown as both (E) actual concentration
(*p = 0.026 and 0.008 for 60 and 120 mins post insulin injection and *p = 0.018 for AUC) and (F) percentage of the initial glucose concentration
(*p = 0.01 for both 60 and 120 min after injection and *p = 0.0086 for AUC). All comparisons were made with two-tailed t-test; results are expressed as
mean 6 s.e.m. from measurements of (A) 5 Df(11)17/+ and 7 WT mice at 32–36 wks (B) 6 Df(11)17/+ and 6 WT mice at 34–37 wks (C, D) 5 Df(11)17/+
and 5 WT mice at 37–41 wks (E, F) 5 Df(11)17/+ and 6 WT mice at 33–37 wks. All AUCs are computed until 120 minutes, for the entire length of the
time curves.
doi:10.1371/journal.pgen.1002713.g007
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deletion interval although the copy loss of Rai1 appears to be

responsible for most of the traits [21,22].

Further, a number of other mechanisms, including gene

interruption and gene fusion due to CNV breakpoints, position

effect, the unmasking of a recessive allele by a deletion, as well as

potential effects of transvection can contribute to the functional

consequence of a CNV [57]. None of them can be displayed by

single nucleotide variations (SNV). Recently, it has been demon-

strated experimentally that a genomic structural change per se, as in a

large CNV, can cause altered expression and functional perturbation

of other loci/genes localized to the same chromosome, but outside of

the CNV [25]. All these mechanisms can potentially contribute to

the salient effect of the Dp(11)17 CNV on weight regulation and

energy metabolism that does not appear to be attributed to the

dosage change of any single gene or genetic element(s).

Overall, we show that a duplication CNV can result in a lean

body phenotype, metabolic phenotypes in mirror image contrast

to those observed in metabolic syndrome, and protect from diet

induced obesity. Moreover, we demonstrate that these phenotypes

are fully penetrant, independent of genetic background and

resistant to environmental influences. Furthermore, we provide

evidence that the CNV effects are due to more than dosage

alteration of a single gene, a finding that highlights distinct

functional significance of CNV as compared to SNVs. These

findings confirm that CNVs can be causative for weight regulation

and energy metabolism phenotypes and suggest that CNVs could

play a major role in the common complex diseases of human

obesity.

Materials and Methods

Animals
All animal studies were approved by Baylor College of Medicine

IRB and carried out in accordance with Baylor IACUC. Mice

Figure 8. Rai1+/2 mice (blue) are obese, have increased TC, HDL, and display reduced insulin sensitivity compared to WT mice
(gray). (A) The growth curve of Rai1+/2 and WT littermates reveals increased body weights of Rai1+/2 mice (*p = 0.028 by ANOVA with repeated
measures). (B) Rai1+/2 mice have increased body fat mass (*p = 0.014) and reduced lean mass (*p = 0.015). (C) Rai1+/2 mice demonstrate higher TC
(*p = 0.036) and HDL (*p = 0.048), but unchanged TC/HDL ratio. In GTT experiments, Rai1+/2 mice have (D) higher blood glucose at 60 mins
(*p = 0.042) and 120 mins (*p = 0.030 after glucose injection, and *p = 0.038 for total AUC) and (E) higher insulin levels throughout (*p = 0.0056,
0.0069, 0.029, 0.008 at 0, 15, 30 and 120 mins and #p = 0.058 at 60 mins after injection. For AUC, *p = 0.021). (F, G) IP-ITT resulted in similar glucose
level change between Rai1+/2 and WT mice, as shown by both actual concentration (F) and percentage of the initial glucose concentration (G). All
comparisons were made with two-tailed t-test except (A) that used ANOVA; results are expressed as mean 6 s.e.m. from measurements of (A) 10–25
Df(11)17/+ and 10–25 WT mice (B, C) 6 Rai1+/2 and 8 WT at 30–31 wks (D, E) 5 Rai1+/2 and 5 WT mice at 41–43 wks (F, G) n = 7 Rai1+/2 and 6 WT mice
at 33–36 wks. All AUCs are computed until 120 minutes, for the entire length of the time curves.
doi:10.1371/journal.pgen.1002713.g008
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were housed 2–5 per cage in a 12-hour light/12-hour dark cycle

with access to food and water ad libitum.

Body composition and Serum analyses
Body composition was analyzed with the ECHO-MRI system

(Echo medical systems, Texas). Mouse serum was prepared from

blood obtained through cardiac puncture and analyzed with the

COBAS Integra 400 plus analyzer (Roche). Plasma leptin, FFA,

adiponectin and glycerol levels were measured by using a Mouse

Leptin ELISA Kit (Millipore), NEFA C Test Kit (Wako), Mouse

Adiponectin ELISA Kit (Millipore) and Serum/plasma Glycerol

detection kit (Sigma), respectively.

Histology
Epididymal (EWAT), mesenteric (MWAT), retroperitoneal

(RWAT) and inguinal (IWAT) white adipose tissues, as well as brown

adipose tissues (BAT) and liver were dissected from mice deeply

anesthetized with Isoflorane (Butler). Tissues were weighed and fixed

in 4% neutral buffered formaldehyde (Fisher). Paraffin-embedded

sections were stained with hematoxylin and eosin. Photomicrographs

were captured by optic microscopy (Zeiss Axiostar Plus).

Activity and metabolic rate measurements
The locomotion activity assay was performed in home cages by

using the VersaMax Animal Activity Monitoring System (AccuS-

can Instruments). Mice were acclimated in the monitoring

environments for at least 24 hours before the experiment.

Energy expenditure was measured using the CLAMS System

(Columbus Instruments). Animals were allowed to acclimatize in

the chambers for 72 hours, and measurements were taken

subsequently for 72 hr during the light cycle and dark cycle while

mice were freely allowed to access food and water. Oxygen

consumption was normalized to lean tissue mass.

Glucose Tolerance Test (GTT) and Insulin Tolerance Test
(ITT)

For intraperitoneal GTT, 1.5 g of glucose/kg of body weight

was injected after a 6-h fasting period. For ITT, an intraperitoneal

injection of regular insulin (Humulin R; 1 unit/kg of body weight)

was administered after a 4–6 h fasting. Blood glucose levels were

measured using a glucometer (Life Scan).

Protein extraction, immunoblotting, and quantitative RT–
PCR

Tissues were lysed in RIPA buffer with Complete Protease

Inhibitor Cocktail (Roche). Protein concentration was determined

with BCA protein assay kit (Pierce); each sample was separated by

SDS-PAGE and electro-transferred to nitrocellulose membrane

for immunoblot analyses. Western blots for UCP1 protein were

performed with antibody AB3036 (Millipore), after which the

same blot was normalized to actin using MAB1501 (Millipore).

The ImmunoCruz Western Blotting Luminol reagent (SantaCruz)

was used as the substrate.

RNA was isolated with Trizol (Invitrogen), cDNA synthesized

with SuperScript III System (Invitrogen), and RT-PCR was

performed on the Strategene MX3000 real time detection system

using iQ SYBR Green PCR reagent kit (Biorad).

Statistical methods
Results are expressed as mean 6 s.e.m. Comparisons between

two groups were made using either two-tailed Student’s t-test

(EXCEL) or ANOVA repeated measures (SPSS), as appropriate.

Figure 9. Experimental findings for specific genetic/genomic variations in this report. Genomotypes are shown similar to [57]. The
segments flanked by brackets that encompass the Rai1 gene represent the CNV region, duplicated in Dp(11)17/+ or deleted in Df(11)17/+. *: TgRai1
strain has the insertion of Rai1 outside of chromosome 11; it gives similar Rai1 expression levels to those of the Dp(11)17/+ strain although the copy
number has been determined as four [35]. Underlined results are from published reports.
doi:10.1371/journal.pgen.1002713.g009
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AUC analysis was performed using SigmaBlot. P,0.05 was

considered to be statistically significant.

Supporting Information

Figure S1 Mouse models of SMS and PTLS. The region on

mouse chromosome 11 syntenic to the human the SMS/PTLS

region on human chromosome 17 (synteny is indicated by gray

shaded regions). Key genes that demarcate the SMS/PTLS region

are shown. The thick black horizontal line above denotes the

region of the SMS/PTLS common deletion/duplication. Shown

below is the region deleted/duplicated in Df(11)17/Dp(11)17 mice

(bold horizontal bar with vertical bars on the end); asterisk

* represents the knock-out mouse model of Rai1.

(PDF)

Figure S2 TgRai1 mice (pink) have similar body composition (A),

similar serum leptin level (B), and display similar glucose and

insulin levels during IP-GTT (C, D) compared to WT mice (gray).

All comparisons were made with two-tailed t-test; results are

expressed as mean 6 s.e.m. from measurements of (A) 9 TgRai1

and 8 WT at 32–35 wks, via dissection of intra-abdominal fat pads

(gonadal, retroperitoneal and mesenteric) and subcutaneous fat

pads (dorsal, inguinal and groin) as a measure of total fat [18]. (B)

11 TgRai1 and 10 WT at 10–20 wks by leptin ELISA assay at the

University of Cincinnati Mouse Metabolic Phenotyping Core per

standard protocols and (C, D) 6 TgRai1 and 4 WT animals at 30–

32 wks.

(PDF)

Figure S3 Z-scores for height_for_age (A, D, G), weight_for_age

(B, E, H) and BMI_for_age (C, F, I) of SMS subjects are plotted as

two way scatter plots (A to F) for male (black) (A, B, C) and female

(gray) (D, E, F) separately and summarized as mean 6 s.e.m. (G to

I) with both genders. Subjects are grouped into group 1: 0–23

months; group 2: 2–5 years; group 3: 6–11 years; group 4: 12–19

years; group 5: $20years; asterisk (*): significant differences with

comparison to the population normative values as calculated with

2-tailed one-sample t-test. All age groups from both genders differ

from population norm in their height: for males, p,0.001 (group

1, 2), p = 0.002, 0.059 (#) and 0.006 for group 3 to 5; for females,

p = 0.034 and 0.019 for group 1 and 5, p,0.001 for group 2 to 4.

The weight of female group 1–3 differs from population norm:

p,0.001 for group 1 and 2; p = 0.004 for group 3. Significantly

higher BMI was found for male age group 2 to 4 (p = 0.04, 0.022,

0.007, 0.001) and female group 4 (p = 0.002).

(PDF)

Figure S4 Comparative expression analyses of (A, B) some

signature metabolic genes in Dp(11)17/+ mice (red) and (C, D)

UCP1 in Df(11)17/+ mice (green). (A, B) Relative mRNA

abundance for a group of signature genes for energy metabolism:

(A) AP2, Ucp1, Ucp2, Ucp3 and Glut4 (B) Lpk, Fas, Acc1, Srebp1c,

Tnxip was determined in BAT (A) and liver (B) of Dp(11)17/+ and

WT mice. None of the genes displayed significant expression

difference between two genotypes: (A) Ap2 (p = 0.79), Ucp1

(p = 0.27), Ucp2 (p = 0.12), Ucp3 (p = 0.08) Glut4 (p = 0.83). (B)

Lpk (p = 0.65), Fas (p = 0.15), Acc1 (p = 0.94), Srebp1c (p = 0.75),

Tnxip (p = 0.62). (C) Western blot for UCP1 expression in BAT

tissue of four Df(11)17/+ and four WT mice with antibody

AB3036 (Millipore) and normalized to actin blotting using

MAB1501 (Millipore). (D) Normalized intensity of UCP1 signals

in Df(11)17/+ vs. WT mice (1.77660.154 vs. 1.18660.059,

p = 0.154). The measurements are from (A, B) 3 Dp(11)17/+ and 3

WT at 30 wks. (C, D) 4 Df(11)17/+ and 4 WT at 30 wks.

(PDF)

Table S1 Serum chemistry comparison of Dp(11)17/+ and WT

mice. Results are expressed as mean 6 s.e.m. and are calculated

from the measurements of 5 Dp(11)17/+ and 6 WT males at 21–

22 wks. For clarity, the measurements, but not the p-values are

shown in bold.

(PDF)
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