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ABSTRACT Antivirals targeting severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) could improve treatment of COVID-19. We evaluated the efficacy of
clinically relevant hepatitis C virus (HCV) NS3 protease inhibitors (PIs) against SARS-CoV-2
and their interactions with remdesivir, the only direct-acting antiviral approved for COVID-
19 treatment. HCV PIs showed differential potency in short-term treatment assays based
on the detection of SARS-CoV-2 spike protein in Vero E6 cells. Linear PIs boceprevir, telap-
revir, and narlaprevir had 50% effective concentrations (EC50) of ;40mM. Among the
macrocyclic PIs, simeprevir had the highest (EC50, 15mM) and glecaprevir the lowest (EC50,
.178mM) potency, with paritaprevir, grazoprevir, voxilaprevir, vaniprevir, danoprevir, and
deldeprevir in between. Acyclic PIs asunaprevir and faldaprevir had EC50s of 72 and
23mM, respectively. ACH-806, inhibiting the HCV NS4A protease cofactor, had an EC50 of
46mM. Similar and slightly increased PI potencies were found in human hepatoma
Huh7.5 cells and human lung carcinoma A549-hACE2 cells, respectively. Selectivity indexes
based on antiviral and cell viability assays were highest for linear PIs. In short-term treat-
ments, combination of macrocyclic but not linear PIs with remdesivir showed synergism
in Vero E6 and A549-hACE2 cells. Longer-term treatment of infected Vero E6 and A549-
hACE2 cells with 1-fold EC50 PI revealed minor differences in the barrier to SARS-CoV-2
escape. Viral suppression was achieved with 3- to 8-fold EC50 boceprevir or 1-fold EC50

simeprevir or grazoprevir, but not boceprevir, in combination with 0.4- to 0.8-fold EC50

remdesivir; these concentrations did not lead to viral suppression in single treatments.
This study could inform the development and application of protease inhibitors for opti-
mized antiviral treatments of COVID-19.

KEYWORDS coronavirus, antiviral, repurposing, combination treatment, synergy,
COVID-19

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a positive-sense
single-stranded RNA virus of the Coronaviridae family, which emerged in humans in

2019 most likely originating from a bat-borne virus (1–3). SARS-CoV-2 causes coronavi-
rus disease 2019 (COVID-19), a multisystemic disease with initial symptoms mostly
localizing to the respiratory tract. At the end of April 2021, the COVID-19 pandemic
had been responsible for .152 million infected, .3 million deaths, and an unknown
number of individuals suffering from long-term health effects (4–8).

Repurposing of drugs approved for other medical indications is promoted as a
time-saving approach to the identification of urgently needed treatments. At present,
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the only drug approved for treatment of COVID-19 that directly targets SARS-CoV-2
proteins is remdesivir, an inhibitor of the viral nonstructural protein (nsp) 12 polymer-
ase, originally being an investigational broad-spectrum antiviral previously evaluated
for treatment of chronic hepatitis C virus (HCV) infection and Ebola virus infection (9).

Another important target of antiviral drugs are viral proteases, which are essential
for the cleavage of viral polyproteins into functional proteins (10–13). The coronavirus
main protease (Mpro) or 3 chymotrypsin-like protease (3CLpro) is a cysteine protease cor-
responding to nsp5 and is highly conserved among coronaviruses. Mpro mediates 11
polyprotein cleavage events and is thus essential for viral replication (14–16). The sec-
ond coronavirus protease, the papain-like protease (PLpro), is also a cysteine protease
corresponding to the protease domain of nsp3 and is less conserved. PLpro mediates 3
cleavage events and has important roles for viral replication and regulation of host
innate immunity (17, 18). Therefore, both SARS-CoV-2 proteases are considered poten-
tial drug targets (19, 20).

Hepatitis C virus is a positive-sense single-stranded RNA virus of the Flaviviridae
family, which is classified into 8 major genotypes and various subtypes (21, 22). The
main HCV protease, nonstructural protein 3 (NS3), is a chymotrypsin-like serine prote-
ase (23–25). Together with its essential cofactor, NS4A, it mediates 4 cleavage events
of the polyprotein. Inhibitors of this protease are important components of recently
developed, highly efficient HCV treatment regimens based on the combination of anti-
virals directly targeting HCV proteins (26, 27).

Initially developed HCV protease inhibitors (PIs) have a linear structure and
include boceprevir and telaprevir, which were approved in 2011 in the United States
and the European Union, as well as narlaprevir, approved in 2016 in Russia, for treat-
ment of chronic HCV infection (see Fig. S1 and Table S1 in the supplemental mate-
rial). Subsequently, PIs with a macrocyclic structure, including simeprevir, paritapre-
vir, grazoprevir, glecaprevir, voxilaprevir, vaniprevir, danoprevir, and deldeprevir,
were developed. These macrocyclic PIs were approved between 2013 and 2019 in
the United States, European Union, or China, with the exception of vaniprevir, only
approved in Japan, and deldeprevir, which was never approved. Of the 2 acyclic PIs,
asunaprevir and faldaprevir, asunaprevir was approved in Japan, Canada, and China,
while faldaprevir was not approved. Several of the initially developed PIs were subse-
quently discontinued due to the development of more-efficient PIs with increased
activity against the different HCV genotypes (Table S1). At present, clinical use in the
United States, European Union, and China is focused on inhibitor combinations,
including grazoprevir, glecaprevir, or voxilaprevir. Additionally, in China, inhibitor
combinations, including paritaprevir, danoprevir, or asunaprevir are used in the
clinic.

While an inhibitor of HCV NS4A (ACH-806) was tested in clinical phase 1 trials, de-
velopment was halted due to reversible nephrotoxicity (28, 29).

In this study, we investigated in vitro efficacy of a panel of HCV PIs, including all
clinically approved compounds and selected compounds tested in clinical studies,
against SARS-CoV-2. These studies were carried out in African green monkey kidney
Vero E6 cells, and results were verified in human Huh7.5 hepatoma and A549 lung
carcinoma cells, the latter engineered to constitutively express the human SARS-
CoV-2 entry receptor angiotensin-converting enzyme 2 (hACE2). All culture systems
were previously demonstrated to be relevant for studies of antivirals targeting
SARS-CoV-2 (30–36). We further evaluated the efficacy of an HCV NS4A protease
cofactor inhibitor. In concentration-response antiviral assays, we determined the
50% effective concentrations (EC50s), 50% cytotoxic concentrations (CC50s), and se-
lectivity indexes (SIs). Moreover, we evaluated interactions with remdesivir for
selected linear and macrocyclic PI compounds. Finally, in longer-term assays, we
evaluated selected PIs singly or in combination with remdesivir for their barrier to
viral escape.
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RESULTS
Differential potency of clinically relevant HCV protease and cofactor inhibitors

against SARS-CoV-2 in vitro. To determine the potency of a panel of HCV PIs and an
HCV NS4A inhibitor against SARS-CoV-2, we developed a cell-based short-term antiviral
treatment assay in 96-well plates, adapting an assay previously developed to deter-
mine potency of HCV PIs against HCV (29, 37–43). In this assay, replicate SARS-CoV-2-
infected cultures were treated with different dilutions of inhibitors. Following incuba-
tion, cultures were subjected to immunostaining for SARS-CoV-2 spike protein and
automated counting of single spike protein-positive cells (31, 44). Multiplicity of infec-
tion (MOI) and incubation time were chosen to avoid virus-induced cytopathogenic
effects (CPEs) during the assay and to result in .1,000 single spike protein-positive
cells in nontreated control cultures, as determined in pilot CPE and immunostaining
assays (for details, see Materials and Methods). The potency of the inhibitors to reduce
the number of spike protein-expressing cells compared to that of the nontreated con-
trols was evaluated. Furthermore, cytotoxicity of inhibitors was determined by cell via-
bility assays; in these assays, cell viability of .90% was confirmed for inhibitor concen-
trations used in treatment assays.

First, concentration-response studies were carried out in Vero E6 cells. Tested inhibi-
tors were able to inhibit the virus with EC50 values in the micromolar range, with excep-
tion of glecaprevir, voxilaprevir, and deldeprevir, where EC50 values were not deter-
mined due to cytotoxicity of the drugs or antiviral activity of the diluent dimethyl
sulfoxide (DMSO) at high drug concentrations (Fig. 1 and Table 1; see also Fig. S2). The
linear PIs boceprevir, telaprevir, and narlaprevir showed comparable potencies, with
EC50 values of ;40mM. Among the macrocyclic PIs, simeprevir showed the highest po-
tency, with an EC50 of 15mM. Furthermore, paritaprevir had an EC50 of 22mM, while
grazoprevir and vaniprevir had EC50 values of 42 and 51mM, respectively. Finally, the
EC50 was 87mM for danoprevir. For the acyclic PIs, faldaprevir (EC50, 23mM) was more
potent than asunaprevir (EC50, 72mM).

To validate the immunostaining-based treatment assay, concentration-response
assays quantifying CPE were carried out in Vero E6 cells for selected PIs. In this assay,
replicate SARS-CoV-2-infected cultures were treated with different dilutions of inhibi-
tors. MOI and incubation time were chosen to induce relatively strong virus-induced
CPEs in nontreated control cultures upon termination of the assay (30% to 50% cell via-
bility). In treated cultures, the potency of the inhibitors to inhibit virus-induced CPE
compared to that in the nontreated control cultures was evaluated. In these assays,
the tested PIs, boceprevir, simeprevir, grazoprevir, glecaprevir, and voxilaprevir,
showed similar potency and EC50 values as in the immunostaining-based assays (see
Fig. S3).

To confirm the potency of PIs in human cells, selected PIs were studied in human
Huh7.5 hepatoma cells. In these assays, the tested PIs, boceprevir, simeprevir, and gra-
zoprevir, had similar concentration-response curves and EC50 values as in Vero E6 cells
(Fig. 2, Table 1).

Finally, we confirmed differential potency of selected PIs in human A549 lung carci-
noma cells transduced to express the SARS-CoV-2 entry receptor hACE2. In these
A549-hACE2 cells, inhibitors showed slightly increased potency. Thus, boceprevir, sime-
previr, and grazoprevir showed an ;2-fold decreased EC50 compared to the EC50 in
Vero E6 cells. In line with this observation and in contrast to that in Vero E6 cells, the
EC50 value for voxilaprevir was determined in A549-hACE2 cells (10mM). Similarly to
Vero E6 cells, no EC50 was determined for glecaprevir in A549-hACE2 cells due to antivi-
ral activity of DMSO at high inhibitor concentrations (Fig. 3).

All inhibitors were diluted in DMSO. At the DMSO dilutions used for generation of
specific data, no antiviral effect was observed in Vero E6, Huh7.5, or A549-hACE2 cells
(Fig. 1 to 3 and Fig. S2).

Cell viability assays were carried out for all studied drugs to determine their level of
in vitro cytotoxicity and CC50 values. In these assays, drug concentrations were used at
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FIG 1 Potency of a panel of HCV PIs and an HCV NS4A inhibitor against SARS-CoV-2 in Vero E6 cells. Vero E6
cells were seeded in 96-well plates and, the following day, infected with SARS-CoV-2 at an MOI of 0.002 followed
by treatment with specified concentrations of the PIs boceprevir, telaprevir, narlaprevir, simeprevir, paritaprevir,
grazoprevir, glecaprevir, voxilaprevir, vaniprevir, danoprevir, deldeprevir, asunaprevir, and faldaprevir as well as
HCV NS4A inhibitor ACH-806, as described in Materials and Methods. After 46 to 50 h of incubation, SARS-CoV-2-
infected cells were visualized by immunostaining for the SARS-CoV-2 spike protein and quantified by automated
counting, as described in Materials and Methods. Data points (red dots) are means of counts from 7 replicate
cultures 6 standard errors of the means (SEMs) and represent percent residual infectivity, determined as percent
SARS-CoV-2-positive cells relative to means of counts from 14 replicate infected nontreated control cultures.
Sigmoidal concentration-response curves (red lines) were fitted and EC50 values were determined, as described in
Materials and Methods. Cell viability data were obtained in replicate assays with noninfected cells using a
colorimetric assay, as described in Materials and Methods. Data points (blue triangles) are means from 3 replicate
cultures 6 SEMs and represent percent cell viability relative to mean absorbance from 12 replicate nontreated
control cultures. Sigmoidal concentration-response curves were fitted and CC50 values were determined as shown

(Continued on next page)
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which no DMSO-induced cytotoxicity was observed (Fig. 1 to 3 and Fig. S2). In Vero E6
cells, the linear PIs showed the lowest cytotoxicity, with all CC50 values .200mM
(.1,214, .432, and 269mM for boceprevir, telaprevir, and narlaprevir, respectively)
(Fig. 1, Table 1, and Fig. S4). Among the macrocyclic inhibitors, grazoprevir, glecaprevir,
and danoprevir showed the lowest cytotoxicity, with CC50s .200mM. Paritaprevir and
vaniprevir showed intermediate cytotoxicity, with CC50s between 100 and 200mM,
while simeprevir, voxilaprevir, and deldeprevir showed the highest cytotoxicity, with
CC50s between 50 and 100mM. Cell viability assays carried out in Huh7.5 and in A549-
hACE2 cells for selected PIs showed similar results (Fig. 2 and 3, Table 1, and Fig. S5
and S6).

Based on these assays, in Vero E6 cells, the linear inhibitors had the highest selectiv-
ity indexes (SI = CC50/EC50), with SIs of .28 for boceprevir, .11 for telaprevir, and 7.3
for narlaprevir (Table 1). Of the macrocyclic inhibitors, paritaprevir and grazoprevir had
the highest SIs (5.6 and 5.7, respectively), while simeprevir and vaniprevir had slightly

TABLE 1 Potency of a panel of HCV PIs and an HCV NS4A inhibitor against SARS-CoV-2
in vitro

Inhibitor EC50 (mM)a CC50 (mM)b SIc

Vero E6 cells
Boceprevir 44 .1,214 .28
Telaprevir 40 .432 .11
Narlaprevir 37 269 7.3
Simeprevir 15 59 3.9
Paritaprevir 22 123 5.6
Grazoprevir 42 239 5.7
Glecaprevir .178 .268 ND
Voxilaprevir .27 72 ,2.7
Vaniprevir 51 171 3.4
Danoprevir 87 .243 .2.8
Deldeprevir .20 56 ,2.8
Asunaprevir 72 263 3.7
Faldaprevir 23 146 6.3
ACH-806 46 .429 .9.3

Huh7.5 cells
Boceprevir 42 701 17
Simeprevir 14 33 2.4
Grazoprevir 20 133 6.7

A549-hACE2 cells
Boceprevir 20 .1,213 .61
Simeprevir 9 56 6.2
Grazoprevir 26 125 4.8
Glecaprevir .94 .268 ND
Voxilaprevir 10 81 8.1

aEC50, 50% effective concentration, determined in antiviral treatment assays as described in Materials and
Methods. For voxilaprevir and deldeprevir in Vero E6 cells,.50% residual infectivity was observed at the
highest noncytotoxic concentrations; for glecaprevir in both Vero E6 cells and A549-hACE2 cells, the highest
applied concentration was limited due to antiviral effects of the diluent DMSO; thus, for these PIs, no precise
EC50 was determined. EC50 values are also included in Fig. 1 to 3.

bCC50, 50% cytotoxic concentration, determined in cell viability assays as described in Materials and Methods. For
boceprevir, telaprevir, glecaprevir, danoprevir, and ACH-806 in Vero E6 cells and for boceprevir and glecaprevir
in A549-hACE2 cells,.50% cell viability was observed at the highest concentrations tested; thus, no precise
CC50 was determined. Tested concentrations were those at which DMSO was not expected to reduce cell
viability to,90% (see Fig. S2 in the supplemental material).

cSI, selectivity index, determined as CC50/EC50 based on results from antiviral treatment assays and cell viability
assays. ND, not determined.

FIG 1 Legend (Continued)
in Fig. S4 in the supplemental material. The red dotted lines represent the drug concentrations at which DMSO
is expected to induce antiviral effects with reduction of residual infectivity to ,70%, according to Fig. S2. The
blue dotted lines represent the drug concentrations at which DMSO is expected to induce cytotoxicity with
reduction of cell viability to ,90%, according to Fig. S2.
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lower SIs of 3.9 and 3.4, respectively. For glecaprevir, voxilaprevir, danoprevir, and del-
deprevir, SIs could not be determined. For the acyclic inhibitors, SI values were 6.3 for
faldaprevir and 3.7 for asunaprevir. Finally, SI values calculated based on assays in
Huh7.5 and in A549-hACE2 cells were comparable to those based on assays in Vero E6
cells (Table 1).

For the HCV NS4A inhibitor ACH-806, in Vero E6 cells, the EC50 was 46mM, CC50 was
.429mM, and SI was .9.3 (Fig. 1, Table 1, and Fig. S4).

HCV PIs showed differential interactions with remdesivir in short-term treatment
assays. To study interactions between selected PIs and remdesivir, 96-well-based
short-term immunostaining-based drug interaction assays were carried out. SARS-CoV-
2-infected Vero E6 or A549-hACE2 cell cultures were treated with selected PIs singly,
with remdesivir singly, or with a combination of PIs and remdesivir. Inhibitor dilution
series were chosen based on determined EC50 values (Table 1; Fig. S7). Inhibitors were
only used at concentrations where no cytotoxicity or antiviral effects of DMSO were
observed (see Fig. S2, S8, and S9). For each inhibitor pair to be evaluated, 7 to 10

FIG 2 Potency of selected HCV PIs against SARS-CoV-2 was confirmed in Huh7.5 cells. Huh7.5 cells
were seeded in 96-well plates and, the following day, infected with SARS-CoV-2 at an MOI of 0.02
followed by treatment with specified concentrations of the PIs boceprevir, simeprevir, and
grazoprevir, as described in Materials and Methods. After 70 to 74 h of incubation, SARS-CoV-2-
infected cells were visualized by immunostaining for the SARS-CoV-2 spike protein and quantified by
automated counting, as described in Materials and Methods. Data points (red dots) are means from 7
replicates 6 SEMs and represent percent residual infectivity, determined as percent SARS-CoV-2-
positive cells relative to means of counts from 14 replicate infected nontreated control cultures.
Sigmoidal concentration-response curves (red lines) were fitted and EC50 values were determined, as
described in Materials and Methods. Cell viability data were obtained in replicate assays with
noninfected cells using a colorimetric assay as described in Materials and Methods. Data points (blue
triangles) are means from 3 replicate cultures 6 SEMs and represent percent cell viability relative to
mean absorbance from 12 nontreated controls. Sigmoidal concentration-response curves were fitted
and CC50 values were determined, as shown in Fig. S5. The blue dotted line represents the drug
concentrations at which DMSO is expected to induce cytotoxicity with reduction of cell viability to
,90%, according to Fig. S2; DMSO did not induce antiviral effects in the tested concentration ranges
(Fig. S2).
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treatment conditions were chosen. Each treatment condition was defined by a given
concentration of PI applied singly, a given concentration of remdesivir applied singly,
and a combination of these same concentrations of a PI and remdesivir (see Table S2).

For each treatment condition, the residual infectivity of the culture receiving combi-
nation treatment was compared to the residual infectivity of the cultures receiving the

FIG 3 Potency of selected HCV PIs against SARS-CoV-2 was confirmed in A549-hACE2 cells. A549-
hACE2 cells were seeded in 96-well plates and, the following day, infected with SARS-CoV-2 at an
MOI of 0.003 followed by treatment with specified concentrations of the PIs boceprevir, simeprevir,
grazoprevir, glecaprevir, and voxilaprevir, as described in Materials and Methods. After 46 to 50 h of
incubation, SARS-CoV-2-infected cells were visualized by immunostaining for the SARS-CoV-2 spike
protein and quantified by automated counting, as described in Materials and Methods. Data points
(red dots) are means from 7 replicates 6 SEMs and represent percent residual infectivity, determined
as percent SARS-CoV-2-positive cells relative to means of counts from 14 replicate infected
nontreated control cultures. Sigmoidal concentration-response curves (red lines) were fitted and EC50

values were determined, as described in Materials and Methods. Cell viability data were obtained in
replicate assays with noninfected cells using a colorimetric assay as described in Materials and
Methods. Data points (blue triangles) are means from 3 replicate cultures 6 SEMs and represent
percent cell viability relative to mean absorbance from 12 nontreated controls. Sigmoidal
concentration-response curves were fitted and CC50 values were determined, as shown in Fig. S6. The
red dotted lines represent the drug concentrations at which DMSO is expected to induce antiviral
effects with reduction of residual infectivity to ,70%, according to Fig. S2. The blue dotted lines
represent the drug concentrations at which DMSO is expected to induce cytotoxicity with reduction
of cell viability to ,90%, according to Fig. S2.
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corresponding single treatments. A graphical representation of the data is shown in
Fig. 4. All treatment conditions are detailed and the corresponding residual infectivity
values are shown in Table S2.

For the linear inhibitors boceprevir and narlaprevir, under almost all treatment con-
ditions, the effect of the combination did not exceed the effect of the most efficient
single inhibitor, remdesivir (Fig. 4). For example, under treatment condition 3, 17.4mM
boceprevir resulted in 79% residual infectivity and 1.7mM remdesivir resulted in 47%
residual infectivity. Combination treatment with 17.4mM boceprevir and 1.7mM
remdesivir resulted in 74% residual infectivity. Thus, treatment with remdesivir alone
proved equally or more efficient than a combination of a linear PI with remdesivir.

In contrast, for the macrocyclic inhibitors simeprevir, paritaprevir, and grazoprevir,
under various treatment conditions, the effect of the combination exceeded the effect of
both single inhibitors (Fig. 4). For example, under treatment condition 3, 11.1mM simeprevir
resulted in 100% residual infectivity and 0.6mM remdesivir resulted in 83% residual infectiv-
ity. However, combination treatment with 11.1mM simeprevir and 0.6mM remdesivir
resulted in 1% residual infectivity. Thus, treatment with the combination showed an added
effect compared to that with the corresponding single drug treatments.

We confirmed the above-described differential interactions of linear versus macro-
cyclic PIs with remdesivir in human A549-hACE2 cells by carrying out similar assays
with the selected PIs boceprevir, simeprevir, and grazoprevir (Fig. 5 and Table S2).

To further define the nature of the interactions between the tested PIs and remdesivir,
the above-described data sets were analyzed using the method of Chou and Talalay using
CompuSyn software (45, 46). This analysis revealed primarily antagonistic interactions
between remdesivir and the linear PIs boceprevir and narlaprevir. In contrast, primarily
synergistic interactions were observed between remdesivir and the macrocyclic PIs pari-
taprevir and grazoprevir (see supplemental text, Fig. S10 and S11, and Table S3 and S4).

CompuSyn software provided a suboptimal fit for the simeprevir plus remdesivir
data sets, most probably due to the steep slope of the simeprevir concentration-
response curve. Therefore, an alternative software, SynergyFinder 2.0, was applied to
analyze alternative data sets generated as required for this analysis and as described in
the supplemental text. This analysis showed overall synergistic interactions between
simeprevir and remdesivir in Vero E6 and A549-hACE2 cells (supplemental text and Fig.
S12 and S13).

HCV PIs showed small differences in the barrier to escape of SARS-CoV-2. To
investigate their barriers to escape, all PIs for which an EC50 was determined were used
for longer-term treatment of SARS-CoV-2-infected Vero E6 cells in culture flasks at the
highest possible equipotent concentration (1-fold EC50) according to predicted cyto-
toxicity (Fig. 1, Table 1, and Fig. S4). In the nontreated control cultures, the infection
spread to 50% of culture cells on day 1 and to 90% of culture cells on day 3 postinfec-
tion, as estimated by immunostaining for the SARS-CoV-2 spike protein (Fig. 6).
Following day 3, typically massive virus-induced cell death was observed in these con-
trol cultures. For all PI-treated cultures (Fig. 6), initial viral suppression was observed
with 10% to 30% of infected culture cells on day 1 postinfection and treatment initia-
tion. On day 3, only cultures treated with narlaprevir, grazoprevir, vaniprevir, asunapre-
vir, and faldaprevir showed viral suppression, with infections of 10% to 50% of culture
cells, while in cultures treated with boceprevir, telaprevir, simeprevir, paritaprevir, and
danoprevir, 90% of culture cells were infected. On day 5, virus spread to 90% of culture
cells in grazoprevir-treated cultures, while cultures treated with vaniprevir and asunap-
revir were closed due to massive cell death, assumed to be due to PI-induced cytotox-
icity, possibly enhanced by SARS-CoV-2 infection. On day 7, in narlaprevir- and faldap-
revir-treated cultures, 60% of culture cells were infected; these cultures were closed on
day 9 due to massive cell death.

Viral spread kinetics monitored by immunostaining were confirmed by the determination
of SARS-CoV-2 RNA titers in cell culture supernatants using a reverse transcription-quantitative
PCR (RT-qPCR) assay (Fig. 6). In the nontreated control culture, the number of SARS-CoV-2
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genome copies increased by 4 orders of magnitude from 5.5 � 106/ml on day 1 to 9.7 �
1010/ml on day 3 postinfection. Compared to these values, all treatments resulted in a small
decrease in genome copies on days 1 and 3; however, none of the treatments was able to
prevent viral spread as monitored by determination of viral RNA titers.

FIG 4 Analysis of interactions of selected HCV PIs with remdesivir in Vero E6 cells. Vero E6 cells
seeded in 96-well plates were infected the following day with SARS-CoV-2 at an MOI of 0.002
followed by treatment with serial dilutions of the linear PI boceprevir (BOC) or narlaprevir (NAR), the
macrocyclic PI simeprevir (SIM), paritaprevir (PAR), or grazoprevir (GRA), polymerase inhibitor
remdesivir (REM), or a combination of these PIs and remdesivir, as described in Materials and
Methods. After 46 to 50 h of incubation, SARS-CoV-2-infected cells were visualized by immunostaining
for the SARS-CoV-2 spike protein and quantified by automated counting, as described in Materials
and Methods. For each inhibitor pair to be evaluated, 7 to 10 treatment conditions were used
(indicated on x axes). Each treatment condition was defined by a given concentration of PI applied
singly, a given concentration of remdesivir applied singly, and a combination of these same
concentrations of PIs and remdesivir, as specified in Table S2, resulting in 3 data points per treatment
condition. Data points are means from 6 or 7 replicates 6 SEMs and represent percent residual
infectivity, determined as percent SARS-CoV-2-positive cells relative to means of counts from infected
nontreated control cultures. Sigmoidal concentration-response curves were fitted as described in
Materials and Methods. The tested inhibitor concentrations did not impact cell viability (Fig. S8).
DMSO did not induce antiviral effects in the tested concentration ranges (Fig. S2).
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To confirm the PI barrier to escape in human cells, similar longer-term treatments
were carried out in A549-hACE2 cells. Compared to the nontreated culture with SARS-
CoV-2 RNA titers of 3.4 � 1010 and 2.5 � 1010 genome copies/ml on days 3 and 5,
respectively, treatment with 1-fold EC50 of boceprevir, simeprevir, and grazoprevir had
no to little effect on viral spread as monitored by determination of viral RNA titers (Fig.
7, left). While A549-hACE2 cultures were also followed by immunostaining, in contrast
to that for Vero E6 cells, percent infection was difficult to estimate following day 1
postinfection, when a higher percentage of culture cells had become infected.

In conclusion, 1-fold EC50 of the tested PIs did not suppress SARS-CoV-2 in vitro.
Boceprevir had the potential to completely suppress viral infection in vitro. As

suboptimal viral suppression was observed under treatment with 1-fold EC50, we chose
the PI with the highest SI to enable longer-term treatment at higher-fold EC50 concen-
trations. Vero E6 cells infected with SARS-CoV-2 were treated with 1-, 1.5-, 2-, 2.5, 3-,
and 5-fold EC50 of boceprevir (Fig. 8). Treatment with 1- and 1.5-fold EC50 boceprevir
only had a minor impact on viral spread on day 1 postinfection and treatment initia-
tion, while 90% of culture cells became infected on day 3, as observed for nontreated
control cells. Also, in cultures treated with 2- and 2.5-fold EC50, 90% of culture cells
became infected on day 5. In contrast, treatment with 3- and 5-fold EC50 resulted in
sustained viral suppression with no evidence of infected cells in the culture treated
with 3-fold EC50 from day 3 and in the culture treated with 5-fold EC50 from day 1 dur-
ing follow-up periods of 9 and 17 days, respectively. In addition, from cultures treated

FIG 5 Analysis of interactions of selected HCV PIs with remdesivir in A549-hACE2 cells. A549-hACE2
cells seeded in 96-well plates were infected the following day with SARS-CoV-2 at an MOI of 0.003
followed by treatment with serial dilutions of the linear PI boceprevir (BOC), the macrocyclic PI
simeprevir (SIM) or grazoprevir (GRA), polymerase inhibitor remdesivir (REM), or a combination of
these PIs and remdesivir, as described in Materials and Methods. After 46 to 50 h of incubation, SARS-
CoV-2-infected cells were visualized by immunostaining for the SARS-CoV-2 spike protein and
quantified by automated counting, as described in Materials and Methods. For each inhibitor pair to
be evaluated, 8 to 10 treatment conditions were used (indicated on x axes). Each treatment condition
was defined by a given concentration of PI applied singly, a given concentration of remdesivir
applied singly, and a combination of these same concentrations of PIs and remdesivir, as specified in
Table S2, resulting in 3 data points per treatment condition. Data points are means from 7 replicates 6
SEMs and represent percent residual infectivity, determined as percent SARS-CoV-2-positive cells
relative to means of counts from infected nontreated control cultures. Sigmoidal concentration-
response curves were fitted as described in Materials and Methods. DMSO was kept constant in all
cultures. The tested inhibitor concentrations did not impair cell viability (Fig. S8). DMSO did not induce
antiviral effects in the tested concentration ranges (Fig. S2).
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FIG 6 Comparison of barriers to escape for HCV PIs at equipotent concentrations in Vero E6 cells. Vero E6 cells seeded the previous day in
T25 flasks were infected with SARS-CoV-2 at an MOI of 0.00002 followed by treatment with 1-fold EC50 of boceprevir, telaprevir, narlaprevir,
simeprevir, paritaprevir, grazoprevir, vaniprevir, danoprevir, asunaprevir, and faldaprevir, which were administered immediately after infection
and subsequently at the indicated time points postinfection when cells were split, as described in Materials and Methods. (Left) Percentages
of SARS-CoV-2-infected cells on the specified days postinfection were determined by anti-spike protein immunostaining of replicate cultures
derived following cell splitting and treatment. (Middle) SARS-CoV-2 RNA titers determined in cell culture supernatants as genome copies per
milliliter on the specified days postinfection were determined by RT-qPCR assays. The black line indicates the lower limit of quantification
(LLOQ). In the left and middle panels, to facilitate comparisons, bars are color coded according to the day postinfection, and blue and red

(Continued on next page)
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with 3- and 5-fold EC50 on day 5 and day 3, respectively, replicate cultures receiving no
treatment going forward were derived, which did not show any infected cells during a
follow-up period of 10 days, suggesting that the infection was cured under these
treatments.

Viral spread kinetics monitored by immunostainings were confirmed by the determination
of SARS-CoV-2 RNA titers in cell culture supernatants (Fig. 8). In cultures treated with 1- to 2.5-
fold EC50 boceprevir, viral RNA titers increased during the experiment; however, compared to

FIG 6 Legend (Continued)
dotted lines were inserted to highlight day 1 and 3 values of the nontreated culture, respectively. (Right) Replicate cultures were derived
following cell splitting and treatment, immunostained for the SARS-CoV-2 spike protein (green) and counterstained with Hoechst dye (blue),
and images were acquired, as described in Materials and Methods. Cultures summarized in this figure are derived from different experimental
setups, each including an infected nontreated control culture, which showed viral spread comparable to that in the depicted representative
culture. *, culture was terminated, or infection data not recorded, due to virus-induced cell death; **, culture was terminated due to drug-
induced cytotoxicity, possibly enhanced by viral infection.

FIG 7 Comparison of barriers to escape for HCV PIs in A549-hACE2 cells. A549-hACE2 cells seeded the previous day in T25 flasks were infected with SARS-
CoV-2 at an MOI of 0.0005, followed by treatment with indicated concentrations of specified inhibitors administered immediately after infection and
subsequently at the listed time points when cells were split, as described in Materials and Methods. BOC, boceprevir; SIM, simeprevir; GRA, grazoprevir;
REM, remdesivir. Upon splitting of cells, cell culture supernatant was harvested and subjected to RT-qPCR for determination of SARS-CoV-2 RNA titers
determined as genome copies per milliliter. The black lines indicate the LLOQs. To facilitate comparisons, bars are color coded according to the day
postinfection, and blue and red dotted lines were inserted to highlight day 1 and 3 values of the nontreated culture, respectively. Cultures summarized in
this figure are derived from different experimental setups, each including an infected nontreated control culture, which showed viral spread comparable to
that in the depicted representative culture. (Left) Treatment with 1-fold EC50 boceprevir, simeprevir, or grazoprevir. (Middle) Treatment with 1-, 2-, 3-, 4-, 5-,
and 8-fold EC50 boceprevir. *, culture was terminated due to virus- or drug-induced cytotoxicity; #, culture was maintained for a total of 13 days without
indication of infection (RNA titers were around the LLOQ and no observation of single SARS-CoV-2 spike protein-positive cells). (Right) Treatment with 0.8-
fold EC50 remdesivir, 1-fold EC50 boceprevir, 1-fold EC50 simeprevir, or 1-fold EC50 grazoprevir singly or with a combination of remdesivir with either of the PIs.
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the nontreated control culture, this increase was decelerated in a concentration-dependent
manner, and overall peak titers were lower. In contrast, in cultures treated with 3- and 5-fold
EC50 boceprevir, viral RNA titers decreased to values around the lower limit of quantification
(LLOQ) during the experiment (Fig. 8). In follow-up derived replicate cultures receiving no
treatment, viral RNA titers were around the LLOQ.

To further confirm elimination of SARS-CoV-2 from cultures treated with 3- and 5-
fold EC50 boceprevir, we carried out a 96-well based infectivity assay monitoring pres-
ence of infectious virus in all cell culture supernatants from the derived replicate cul-
tures by inoculation of Vero E6 cell indicator cultures. Derived replicate cultures were
chosen for this analysis, as they were not treated with antivirals, which might inhibit

FIG 8 Boceprevir was capable of completely suppressing SARS-CoV-2 in Vero E6 cells. Vero E6 cells seeded the previous day in T25 flasks were infected
with SARS-CoV-2 at an MOI of 0.00002 followed by treatment with 1-, 1.5-, 2-, 2.5-, 3-, and 5-fold EC50 boceprevir, which was administered immediately
after infection and subsequently at the indicated time points when cells were split, as described in Materials and Methods. (Left) Percentages of SARS-CoV-
2-infected cells on the specified days postinfection were determined by anti-spike protein immunostaining of replicate cultures derived following cell
splitting and treatment. (Middle) SARS-CoV-2 RNA titers determined in cell culture supernatants as genome copies per milliliter on the specified days
postinfection were determined by RT-qPCR assays. The black line indicates the LLOQ. In the left and middle panels, to facilitate comparisons, bars are color
coded according to the day postinfection, and blue and red dotted lines were inserted to highlight day 1 and 3 values of the nontreated culture,
respectively. (Right) Replicate cultures were derived following cell splitting and treatment, immunostained for the SARS-CoV-2 spike protein (green) and
counterstained with Hoechst dye (blue), and images were acquired, as described in Materials and Methods. Cultures summarized in this figure are derived
from different experimental setups, each including an infected nontreated control culture, which showed viral spread comparable to that in the depicted
representative culture. *, culture was terminated, or infection data not recorded, due to virus-induced cell death; #, culture was maintained for a total of
17 days without indication of infection (no observation of single SARS-CoV-2 spike protein-positive cells and RNA titers were around the LLOQ).
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FIG 9 At equipotent concentrations, simeprevir and grazoprevir but not boceprevir synergized with remdesivir to completely suppress viral infection in
Vero E6 cells. Vero E6 cells seeded the previous day in T25 flasks were infected with SARS-CoV-2 at an MOI of 0.00002 followed by treatment with 0.4-fold
EC50 remdesivir (REM), 1-fold EC50 boceprevir (BOC), 1-fold EC50 simeprevir (SIM), or 1-fold EC50 grazoprevir (GRA) singly or with a combination of remdesivir
with either of the PIs, which were administered immediately after infection and subsequently at the indicated time points when cells were split, as

(Continued on next page)
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infection of indicator cultures. Using this assay, we did not find evidence of any SARS-
CoV-2-infected cells in the indicator cultures.

To investigate the potential of boceprevir to suppress SARS-CoV-2 infection in
human cells, SARS-CoV-2-infected A549-hACE2 cells were treated with 1-, 2-, 3-, 5-, and
8-fold EC50 boceprevir (Fig. 7, middle). Virus RNA titrations revealed that 1- to 5-fold
EC50 boceprevir only had a minor impact on viral spread, while 8-fold EC50 boceprevir
resulted in viral suppression, with viral titers decreasing to values around the LLOQ
during an observation period of 13 days. In addition, from the culture treated with 8-
fold EC50 on day 7, a replicate culture receiving no treatment was derived, from which
viral RNA titers were around the LLOQ during a period of 7 days.

Thus, 3- to 8-fold EC50 boceprevir was able to suppress SARS-CoV-2 in vitro.
Simeprevir or grazoprevir in combination with remdesivir completely suppressed

viral infection in vitro. To further study and confirm the interactions of PIs with remde-
sivir, three PIs with apparent differential interactions with remdesivir were selected for
longer-term treatment of SARS-CoV-2-infected cells. Vero E6 cells infected with SARS-
CoV-2 were treated with the PIs boceprevir, simeprevir, or grazoprevir singly, remdesi-
vir singly, or either PI in combination with remdesivir, using 1-fold EC50 PI and 0.4-fold
EC50 remdesivir. Inhibitor concentrations were selected to confer suboptimal effects in
single treatments in order to rule out viral suppression in these treatments. Equipotent
concentrations of PIs were used based on data shown in Fig. 1 and 6 and Table 1. For
remdesivir, potency was evaluated based on concentration-response curves obtained
from data shown in Fig. 4 and Fig. S7 and, in addition, based on pilot longer-term treat-
ment assays. Treatment with remdesivir, boceprevir, simeprevir, or grazoprevir singly,
as well as treatment with boceprevir plus remdesivir, had no or only a minor impact on
viral spread on day 1 postinfection and treatment initiation, while 70% to 90% of cul-
ture cells became infected on day 3, as observed for nontreated control cells (Fig. 9). In
contrast, in cultures treated with simeprevir plus remdesivir or grazoprevir plus remde-
sivir, complete and sustained viral suppression was achieved with no evidence of infec-
tion from day 1 during a follow-up period of 15 days. In addition, to confirm complete
viral suppression, from these cultures, replicate cultures receiving no treatment were
derived on day 5. Replicate cultures derived from cultures treated with simeprevir plus
remdesivir and with grazoprevir plus remdesivir did not show any infected cells during
a follow-up period of 19 and 14 days, respectively.

Determination of SARS-CoV-2 RNA titers in cell culture supernatants confirmed viral
spread kinetics monitored by immunostainings (Fig. 9). Treatment with single inhibi-
tors and boceprevir plus remdesivir had no or a minor impact on RNA titers compared
to that in the nontreated control culture (Fig. 9). However, under treatment with sime-
previr plus remdesivir or with grazoprevir plus remdesivir, RNA titers decreased to val-
ues around the LLOQ during the experiment. In derived replicate cultures receiving no
treatment, viral RNA titers were around the LLOQ.

Elimination of SARS-CoV-2 from cultures treated with simeprevir plus remdesivir
was confirmed by an infectivity assay monitoring the presence of infectious virus in all
cell culture supernatants from the derived replicate cultures not receiving treatment.

To verify interactions of boceprevir, simeprevir, or grazoprevir with remdesivir in
human cells, SARS-CoV-2-infected A549-hACE2 cells were treated with 1-fold EC50

boceprevir, simeprevir, or grazoprevir singly, 0.8-fold remdesivir singly, or either PI in

FIG 9 Legend (Continued)
described in Materials and Methods. (Left) Percentages of SARS-CoV-2-infected cells on the specified days postinfection were determined by anti-spike
protein immunostaining of replicate cultures derived following cell splitting and treatment. (Middle) SARS-CoV-2 RNA titers determined in cell culture
supernatants as genome copies per milliliter on the specified days postinfection were determined by RT-qPCR assays. The black lines indicate the LLOQs. In
the left and middle panels, to facilitate comparisons, bars are color coded according to the day postinfection, and blue and red dotted lines were inserted
to highlight day 1 and 3 values of the nontreated culture, respectively. (Right) Replicate cultures were derived following cell splitting and treatment,
immunostained for the SARS-CoV-2 spike protein (green) and counterstained with Hoechst dye (blue), and images were acquired, as described in Materials
and Methods. Cultures summarized in this figure are derived from two different experimental setups (REM/BOC/SIM and REM/GRA experiments), each
including the respective depicted nontreated control culture. *, culture was terminated, or infection data not recorded, due to virus-induced cell death;
#, culture was maintained for a total of 15 days without indication of infection (no observation of single SARS-CoV-2 spike protein-positive cells and RNA
titers were around the LLOQ).
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combination with remdesivir (Fig. 7, right). Virus RNA titrations revealed that treatment
with single inhibitors or boceprevir plus remdesivir only had a minor impact on viral
spread, while treatment with simeprevir plus remdesivir or grazoprevir plus remdesivir
resulted in viral suppression with viral RNA titers around the LLOQ.

Thus, combination of simeprevir or grazoprevir with remdesivir was able to sup-
press SARS-CoV-2 in vitro.

DISCUSSION

In the present study, we provided a head-to-head comparison of the efficacy of a
panel of clinically relevant HCV PIs, including all PIs approved for the treatment of
chronic hepatitis C, against SARS-CoV-2 in cell-based assays. In short-term antiviral
assays, PIs showed differential potencies, with EC50 values between 15mM (simeprevir)
and.178mM (glecaprevir) in Vero E6 cells and 9mM (simeprevir) and.94mM (glecap-
revir) in A549-hACE2 cells. Detailed short-term synergy studies in both cell types using
a PI subpanel revealed PI structure-dependent interactions with remdesivir, with linear
inhibitors showing mostly antagonism and macrocyclic inhibitors showing mostly syn-
ergism. In longer-term Vero E6 and A549-hACE2 cell culture assays, at relatively low
equipotent concentrations, PIs showed small differences regarding the barrier to viral
escape. For boceprevir, a relatively high SI facilitated treatment with higher concentra-
tions, revealing its potential to completely suppress viral infection. Furthermore, com-
bination of simeprevir or grazoprevir with remdesivir suppressed viral infection at rela-
tively low inhibitor concentrations, shown to be subtherapeutic in single treatments.

Even though cell lines do not entirely recapitulate in vivo conditions, they provide
robust models for preclinical antiviral activity studies. Our findings are strengthened by
the fact that similar results were obtained in three different cell lines, including two
human cell lines, of which one was derived from human lung. Future studies to evalu-
ate the efficacy of HCV PIs on SARS-CoV-2 in primary cells, organoids, animals, or
humans would be of interest.

The sequence homology between different SARS-CoV-2 isolates is high. In compari-
son to the Wuhan reference isolate (GenBank accession number NC_045512), the iso-
late used in this study harbored six consensus amino acid changes (T85I in nsp2, P323L
in nsp12, E309K and D614G in S, Q57H in ORF3a, and R209I in N); however, there were
no changes in Mpro or PLpro, the proposed main targets of the studied HCV PI (31).

EC50s against SARS-CoV-2 were in the micromolar range, with the lowest EC50s (9
and 15mM for simeprevir in A549-hACE2 and Vero E6 cells, respectively) approaching
the EC50 of remdesivir (0.1 and 2.5mM in A549-hACE2 and Vero E6 cells, respectively);
EC50s of remdesivir were in line with previously reported results (30–32, 35, 36).
However, EC50s of PIs against SARS-CoV-2 were higher than the EC50s against HCV.
Initially developed HCV PIs such as boceprevir and simeprevir were roughly 10- to
1,000-fold less potent, while optimized HCV PIs such as grazoprevir, glecaprevir, and
voxilaprevir were roughly 1,000- to 100,000-fold less potent against SARS-CoV-2 than
against different HCV isolates (29, 38–43, 47–49). This suggested that optimization of
inhibition of the HCV protease counteracted broader activity against proteases of other
RNA viruses, such as SARS-CoV-2.

Boceprevir showed the highest SIs (.61 and .28 in A549-hACE2 and Vero E6 cells,
respectively), while simeprevir showed the lowest SIs (6.2 and 3.9 in A549-hACE2 and
Vero E6 cells, respectively). Of note, some clinically relevant drugs such as digoxin have
low therapeutic breadth, with SIs as low as 2 (50), and HCV PIs have been proven safe
in clinical practice. To estimate the clinical potential of inhibitors, comparisons of their
EC50 with clinically achievable plasma and tissue concentrations are more relevant
than comparison with in vitro CC50 values. For most HCV PIs, peak plasma concentra-
tions (Cmax) were significantly lower than the determined EC50 values (see Table S5 in
the supplemental material). The most favorable Cmax/EC50 ratio was found for simepre-
vir (Cmax/EC50 of ;1), followed by faldaprevir (Cmax/EC50 of ;0.2) as well as boceprevir,
telaprevir, and vaniprevir (Cmax/EC50 of ;0.1) based on the EC50s obtained in Vero E6
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cells. Furthermore, plasma concentrations of free and biologically active compounds
are expected to be lower than reported Cmax values due to the high plasma protein
binding of HCV PIs. Regarding tissue concentrations, for HCV PIs, mostly liver concen-
trations were reported and were 20- to 280-fold higher than plasma concentrations
(43, 51–53). In rats, following a single oral administration of simeprevir, concentrations
in the intestine, which is permissive to SARS-CoV-2 infection (54), were up to 128-fold
higher than in the plasma, while concentrations in other tissues were roughly equal to
plasma concentrations (55). Therefore, it would be relevant to determine HCV PI lung
concentrations in humans following multiple doses in steady state (56). For remdesivir
showing high in vitro efficacy, clinical efficacy might in part be limited by poor distribu-
tion to the lungs (31, 32, 56). Poor lung distribution following systemic application of
inhibitors might be overcome by improved formulations allowing topic application,
such as inhalable formulations.

Inhibitor efficacy can be improved by combination treatments with synergistic and
thus drug-saving effects as reported here for the combination of remdesivir with the
macrocyclic PIs simeprevir, paritaprevir, or grazoprevir in Vero E6 cells and with sime-
previr or grazoprevir in A549-hACE2 cells. Synergism was recently suggested for the
combination of remdesivir with simeprevir (35, 36) or grazoprevir (36) in short-term
assays in Vero E6 cells (35, 36) and human embryonic kidney (HEK293T) cells (36). Our
extensive results in Vero E6 and A549-hACE2 cells using short-term drug interaction
assays demonstrated that the mode of interaction between PI and remdesivir
depended on the PI structure. Thus, combination of remdesivir with the linear PIs
boceprevir and narlaprevir showed mostly antagonism, while combination with macro-
cyclic PIs showed mostly synergism. In contrast to the previous studies (35, 36), we
confirmed these PI structure-dependent interactions with remdesivir in longer-term
treatment assays in Vero E6 and A549-hACE2 cells, where the combination of remdesi-
vir with simeprevir or grazoprevir, but not with boceprevir, resulted in added efficacy.
This structure dependence might be explained by differences in viral targets. While the
investigated HCV PIs were suggested to target Mpro (30, 33–36, 57–77), simeprevir was
suggested to also target the SARS-CoV-2 polymerase (35), and simeprevir, grazoprevir,
and paritaprevir were suggested to also target PLpro (36, 62). It should be noted that
additional alternative viral targets, including nsp13 (helicase), nsp14 (exonuclease and
methyltransferase), nsp15 (endoribonuclease), nsp16 (29-O-ribose methyltransferase),
as well as structural proteins N (capsid) and spike, were suggested for paritaprevir, gra-
zoprevir, and simeprevir by modeling studies (62, 74, 78–82). Future detailed molecular
studies are required to fully define the viral targets of different HCV PIs.

HCV PIs were designed and optimized to bind the HCV NS3 protease. In modeling
studies, structural similarity between the HCV NS3 protease and SARS-CoV-2 Mpro,
including their active sites, was reported (36, 57, 68, 77), despite a lack of overall
sequence conservation. While both viral proteases are chymotrypsin-like proteases, the
HCV NS3 protease has a larger and more shallow binding groove (34). The HCV NS3
protease and PLpro do not show structural similarity (36).

While carrying out and revising this study, several research articles addressing a
potential effect of HCV PIs on SARS-CoV-2 were published. Using in silico modeling
approaches, more than 20 studies predicted binding of different linear and macrocyclic
HCV PIs to SARS-CoV-2 Mpro (34, 36, 57–77). Fewer studies predicted binding of macro-
cyclic HCV PIs to PLpro (36, 62). Furthermore, crystal structures of boceprevir, narlapre-
vir, and telaprevir bound to Mpro were solved (34, 77, 83–85). In addition, reports were
published on inhibition of Mpro by linear and macrocyclic HCV PIs (33–36, 83, 84) and
of PLpro by macrocyclic and acyclic HCV PIs (36).

Recently, five groups demonstrated the efficacy of different HCV PIs in Vero E6 cells
(30, 33–36). Most EC50s reported in these studies were in the same range as those
reported here; the slightly higher EC50 values observed in our study are most likely
caused by differences in experimental assay conditions. EC50s in human lung cells were
only reported for simeprevir (EC50, 1mM) (35) and voxilaprevir (.10mM), also using the
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A549-hACE2 cell line (30). The similar PI EC50 values in monkey Vero E6 cells, human
Huh7.5 cells, and human A549-hACE2 cells reported in our study validate Vero E6 cells
for the study of HCV PI efficacy against SARS-CoV-2. Furthermore, the short-term treat-
ment assay based on the quantification of SARS-CoV-2 spike protein-expressing cells
was validated here by an assay measuring virus-induced CPE.

Finally, we report antiviral activity of the HCV NS4A inhibitor ACH-806. Future stud-
ies are required to define the SARS-CoV-2 target of this compound and to investigate
its potential to inform design of SARS-CoV-2 inhibitors.

In conclusion, we here provide a head-to-head comparison of the efficacy of a panel
of clinically relevant HCV PIs against SARS-CoV-2, including detailed studies of interac-
tion with remdesivir using different cell lines. Of the currently, clinically widely used
HCV PIs, grazoprevir and voxilaprevir showed activity against SARS-CoV-2 in lung cells.
For clinical use of HCV PIs with higher potency and higher plasma concentrations, such
as simeprevir, production would need to be reinitiated, as was the case for remdesivir.
While HCV PIs showed relatively low Cmax/EC50 ratios assuming systemic administration,
it remains possible that active concentrations will be attainable in relevant tissues.
Furthermore, treatment efficacy might be increased by topical administration of
improved formulations and by combination with remdesivir. As this study demon-
strated structure-dependent differential interaction of HCV PIs with remdesivir, novel
PIs should be tested for interaction with remdesivir if combination treatment is consid-
ered. While clinical studies would be needed to investigate if HCV PIs studied here
could have direct clinical relevance, this study identifies compounds that could assist
the development of further optimized PI molecules for future COVID-19 treatment
regimes.

MATERIALS ANDMETHODS
Cell cultivation. All cells were maintained at 37°C and 5% CO2. African green monkey kidney Vero

E6 cells (gift from J. Dubuisson) and human Huh7.5 hepatoma cells (86) were maintained in Dulbecco’s
modified Eagle medium (Invitrogen, Paisley, UK) supplemented with 10% heat-inactivated fetal bovine
serum (FBS) (Sigma, St. Louis, MO, USA), 100 U/ml penicillin, and 100 mg/ml streptomycin (Gibco/
Invitrogen Corp., Carlsbad, CA, USA). A549-hACE2 cells (InvivoGen, Toulouse, France) were maintained in
Dulbecco’s modified Eagle medium nutrient mixture F-12 (Gibco, Paisley, UK) supplemented with 10%
heat-inactivated FBS, 100 U/ml penicillin, 100 mg/ml streptomycin, and 0.5mg/ml puromycin (InvivoGen).
Cells were split every 2 to 3days with trypsin (Sigma) to maintain a subconfluent monolayer.

Virus isolate. The corona virus isolate SARS-CoV-2/human/Denmark/DK-AHH1/2020 was derived
from a swab sample from a Danish patient that was passaged in Vero E6 cells. For the experiments pre-
sented here, we used a sequence-confirmed 2nd viral passage stock with an infectivity titer of 5.5 log10

50% tissue culture infective dose (TCID50)/ml (31).
Inhibitors. All inhibitors were purchased from Acme Bioscience (Palo Alto, CA, USA) and dissolved in

DMSO (Sigma, St. Louis, MO, USA).
Short-term concentration-response antiviral treatment assays for evaluation of inhibitor

potency. Ninety-six-well-based short-term antiviral treatment assays in Vero E6 cells, Huh7.5 cells, and
A549-hACE2 cells were developed based on assays previously established for the determination of the
potency of HCV PIs against HCV (29, 37–43). Vero E6 and A549-hACE2 cells were seeded at 10,000 cells
per well, and Huh7.5 cells were seeded at 9,000 cells per well in 96-well flat-bottom plates (Thermo
Fisher Scientific, Roskilde, Denmark). The following day, for Vero E6 cells, medium was changed to 50 ml
fresh medium and cells were inoculated with SARS-CoV-2/human/Denmark/DK-AHH1/2020 at an MOI of
0.002 by adding 50 ml virus stock diluted in medium to each well. Huh7.5 cells were inoculated at an
MOI of 0.02, and A549-hACE2 cells were inoculated at an MOI of 0.003 (based on the infectivity titer
determined in Vero E6 cells) by exchanging the medium with 50 ml virus stock diluted in medium.
Following a 1-h incubation at 37°C and 5% CO2, infected cells were treated with a dilution series of
inhibitors by adding 50 ml medium with inhibitor, resulting in the specified concentrations.
Alternatively, cells were treated with a dilution series of DMSO alone serving as a control for the antiviral
activity of DMSO. All concentrations of inhibitor were tested in 7 replicates; 14 infected and nontreated
and 12 noninfected and nontreated replicates were included in each assay. For A549-hACE2 cells, the
concentration of DMSO was kept constant in all cultures. Cells were subjected to immunostaining for
the SARS-CoV-2 spike protein and evaluated as described below after incubation for 46 to 50 h for Vero
E6 and A549-hACE2 cells or for 70 to 74 h for Huh7.5 cells.

Additionally, 96-well based concentration-response CPE assays were carried out in Vero E6 cells.
Vero E6 cells were seeded at 10,000 cells per well in 96-well flat-bottom plates (Thermo Fisher Scientific).
The following day, cells were inoculated with SARS-CoV-2/human/Denmark/DK-AHH1/2020 at an MOI of
0.01 by exchanging the medium with 50 ml virus stock diluted in medium. After a 1-h incubation,
infected cells were treated with a dilution series of inhibitor by adding 50 ml medium with inhibitor,

Gammeltoft et al. Antimicrobial Agents and Chemotherapy

September 2021 Volume 65 Issue 9 e02680-20 aac.asm.org 18

https://aac.asm.org


resulting in the specified concentrations. All concentrations of inhibitor were tested in 4 replicates; 8
infected and nontreated and 16 noninfected and nontreated replicates were included in each assay. The
concentration of DMSO was kept constant in all cultures. After 70 to 74 h of incubation at 37°C and 5%
CO2, CPE was evaluated using viral ToxGlo assay (Promega, Madison, WI, USA) according to the manufac-
turer’s guidelines. Relative light units (RLU) from infected and treated wells were related to the mean
RLU from the 16 noninfected control wells. Data points are given as means from 4 replicates with stand-
ard errors of the means (SEMs). Sigmoidal concentration-response curves were fitted and EC50 values
were calculated using GraphPad Prism 8.0.0 applying the formula Y = Bottom1 ((Top 2 Bottom)/
(11 10(Log10EC50-X)*HillSlope)).

Immunostaining and evaluation of 96-well plates. Cells were fixed and virus was inactivated by
submersion into methanol (J.T.Baker, Gliwice, Poland) for 20 min at room temperature. For immunostain-
ing for the SARS-CoV-2 spike protein, plates were washed 2 times with phosphate buffered saline (PBS;
Sigma, Gillingham, UK) containing 0.1% Tween 20 (Sigma, St Louis, MO) (PBS-Tween). Then, endogenous
peroxidase activity was blocked by adding H2O2 and incubating for 10 min followed by 2 more washes
with PBS-Tween and blocking with PBS containing 1% bovine serum albumin (Roche, Mannheim,
Germany) and 0.2% skim milk (Easis, Aarhus, Denmark) (PBSK) for 30 min. Next, plates were emptied and
incubated with primary antibody, SARS-CoV-2 spike chimeric monoclonal antibody (number [no.] 40150-
D004; Sino Biological, Beijing, China), diluted 1:5,000 in PBSK for 2 h at room temperature. Then, plates
were washed 2 times with PBS-Tween and incubated for 1 h at room temperature with secondary anti-
body, F(ab9)2-goat anti-human IgG-Fc cross-adsorbed secondary antibody conjugated with horseradish
peroxidase (HRP) (no. A24476; Invitrogen, Carlsbad, CA, USA) or goat F(ab9)2 anti-human IgG-Fc (HRP),
preadsorbed (no. 98595; Abcam, Cambridge, UK), diluted 1:2,000 in PBSK. Finally, plates were washed 2
times with PBS-Tween, and SARS-CoV-2 spike protein-positive cells were stained using diaminobenzi-
dine (DAB) substrate BrightDAB kit (no. BS04-110; Immunologic, Duiven, Netherlands) according to the
manufacturer’s guidelines. Plates were evaluated by automated counting of single SARS-CoV-2 spike
protein-positive cells using an ImmunoSpot series 5 UV analyzer (CTL Europe GmbH, Bonn, Germany)
(87). The mean of counts from noninfected and nontreated wells, which was usually ,50, was sub-
tracted from counts of infected wells. Counts from infected and treated wells were related to the
mean count of the 14-replicate infected nontreated wells to calculate percent residual infectivity;
mean counts of infected nontreated wells were 3,000 to 4,000 for Vero E6 cells, 1,000 to 2,000 for
Huh7.5 cells, and 2,000 to 3,000 for A549-hACE2 cells. Data points are given as means from 7 repli-
cates with SEMs. Sigmoidal concentration-response curves were fitted and EC50 values calculated as
described previously using GraphPad Prism 8.0.0 with a bottom constraint of 0 applying the formula
Y = Top/(11 10[Log10 EC50 2 X] � Hill slope) (43, 88). Representative images from concentration-response
antiviral treatment assays are shown by Zhou et al. (44).

Short-term concentration-response antiviral treatment assays for analysis of interactions of PIs
and remdesivir in Vero E6 and A549-hACE2 cells. Interactions of selected PIs in combination with
remdesivir for inhibition of SARS-CoV-2 were investigated based on protocols previously established for
HCV (38). The experimental design was similar to that of the concentration-response antiviral treatment
assays described above. In brief, Vero E6 cells or A549-hACE2 cells were seeded at 10,000 cells per well
in 96-well flat-bottom plates, medium was changed to 50 ml fresh medium, and cells were inoculated
with SARS-CoV-2/human/Denmark/DK-AHH1/2020 at an MOI of 0.002 (Vero E6 cells) or an MOI of 0.003
(A549-hACE2 cells) by adding 50 ml virus stock diluted in medium to each well. Following a 1-h incuba-
tion at 37°C and 5% CO2, infected cells were treated with a dilution series of inhibitors by adding 50 ml
medium with inhibitor resulting in the specified concentrations. Regarding inhibitor treatment, dilution
series of selected PIs singly, remdesivir singly or a combination of PIs and remdesivir were used that
were based on EC50 values against SARS-CoV-2. Thus, for inhibitors and combinations of inhibitors, 1.15-
to 2-fold dilution series with at least 7 different dilutions were applied spanning the respective EC50 val-
ues, aiming at achieving residual infectivity between 0% and 100%. For combination treatments, the
same PI and remdesivir concentrations as used in single treatments were applied with a fixed ratio,
except for the simeprevir plus remdesivir data set, where a nonconstant ratio was used. All treatment
conditions were tested in 6 or 7 replicates, including 21 to 70 infected and nontreated replicates per
experiment (with at least 7 replicates per experimental plate) and 12 noninfected and nontreated repli-
cates per experimental plate. In experiments with A549-hACE2 cells, the concentration of DMSO was
kept constant in all cultures. After 46 to 50 h of incubation, infected cells were visualized by immuno-
staining for the SARS-CoV-2 spike protein, and plates were evaluated by automated counting of single
SARS-CoV-2 spike protein-positive cells, as described above.

Concentration-response cell viability assays. To evaluate cytotoxic effects of the inhibitors and
DMSO, cell viability was monitored using the CellTiter 96 Aqueous one solution cell proliferation assay
(Promega, Madison, WI, USA). Vero E6, Huh7.5, and A549-hACE2 cells were seeded in 96-well flat-bottom
plates at 10,000, 9,000, and 10,000 cells per well, respectively, and the following day were treated with
dilution series of inhibitors or combinations of inhibitors by adding 100 ml of medium containing inhibi-
tors at the specified concentrations or DMSO alone at the specified dilutions. After 46 to 50 h for Vero E6
and A549-hACE2 cells and after 70 to 74 h for Vero E6 and Huh7.5 cells, cell viability was evaluated
according to the manufacturer’s guidelines. Vero E6 cells were tested with different incubation times to
control for assays with 48 versus 72 h of incubation. In brief, 20 ml CellTiter 96 aqueous one solution rea-
gent was added to each well, and plates were then incubated for 1 to 3 h at 37°C and 5% CO2. After incu-
bation, for each well, absorbance at 492 nm was recorded by use of a FLUOstar OPTIMA 96-well plate
reader (BMG, LABTECH, Offenburg, Germany). Each inhibitor concentration was tested in 2 to 4 replicate
wells, and each experimental plate included 12 replicate nontreated control wells. Absorbance values from
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treated wells were related to the mean absorbance of the nontreated wells to estimate percent cell viability.
Data points are given as means from 2 to 4 replicates with SEMs. Sigmoidal concentration-response curves
were fitted and 50% cytotoxic concentration (CC50) values were calculated using GraphPad Prism 8.0.0, with
a bottom constraint of 0 applying the formula Y = Top/(11 10[Log10 EC50 2 X] � Hill slope).

Viral cytopathogenic effect assay for determination of MOI for short-term treatment assays. To
select a suitable MOI for short-term treatment assays not resulting in virus-induced CPE (immunostain-
ing-based assay) or relatively strong CPE (CPE-based assay) during the assays, viral CPE assays were car-
ried out. Cells were plated on 96-well flat-bottom plates as described for short-term treatment assays.
The following day, cells were infected at different MOIs with SARS-CoV-2/human/Denmark/DK-AHH1/
2020, using 100 ml per well with 4 replicates per MOI. Following the incubation times used in the short-
term treatment assays, CPE was evaluated using the viral ToxGlo assay (Promega) according to the man-
ufacturer’s guidelines. Relative light units (RLU) from infected cultures were related to the mean RLU
from noninfected control cultures to detect CPE.

Longer-term antiviral treatment assays in SARS-CoV-2-infected Vero E6 and A549-hACE2 cells.
Cells were seeded at 106 cells per flask in T25 flasks (Nunc) and, the following day, infected at an MOI of
0.00002 (Vero E6 cells) or an MOI of 0.0005 (A549-hACE2 cells) with SARS-CoV-2/human/Denmark/DK-
AHH1/2020. Cells were treated with specified-fold EC50s of inhibitors on the day of infection by adding
inhibitors together with the virus and again on day 1 postinfection. The cells were split and treated every
2days with the specified concentrations of inhibitors, and the percentage of infected culture cells was
evaluated by immunostaining for the SARS-CoV-2 spike protein and immunofluorescence imaging, as
described below. In experiments with A549-hACE2 cells, the concentration of DMSO was kept constant in
all cultures. Upon cell splitting, culture supernatants were harvested and stored at280°C. Selected culture
supernatants were used to determine viral RNA titers by RT-qPCR and to evaluate the presence of infec-
tious virus by using an infectivity assay. For each experiment, a nontreated infected culture was included
serving as a positive control for infection. Cultures were closed when massive cell death occurred, induced
by viral infection and/or inhibitor treatment. Cell death was monitored with a light microscope.

Immunostaining and immunofluorescence imaging for evaluation of longer-term Vero E6 and
A549-hACE2 cell cultures. In longer-term SARS-CoV-2-infected and PI-treated cultures, following cell
splitting and treatment, replicate cell cultures were seeded in 8-well chamber slides (Thermo Fisher
Scientific, Rochester, NY, USA). The next day, cells were fixed, and virus was inactivated by submersion
into methanol for 20 min. Chamber slides were washed twice with PBS-Tween and then incubated with
primary antibody, SARS-CoV-2 spike chimeric monoclonal antibody (no. 40150-D004; Sino Biological,
Beijing, China), diluted 1:1,000 in PBSK for 2 h at room temperature. Following 2 washes with PBS-
Tween, chamber slides were incubated with secondary antibody, Alexa-Fluor 488 goat anti-human IgG
(H1L) (no. A-11013; Invitrogen, Paisley, UK), diluted 1:500 and Hoechst 33342 (Invitrogen) diluted
1:1,000 in PBS-Tween for 20 min at room temperature. The percentage of SARS-CoV-2 spike protein-pos-
itive cells was evaluated by fluorescence microscopy (Axio Vert.A1; Zeiss, Jena, Germany), assigning the
following designations: 0% infected cells (no cells infected), single infected cells, and 10% to 90%
infected cells (in steps of 10%). The images were acquired with ZEN 3.0 software.

RT-qPCR assay for determination of SARS-CoV-2 RNA titers for evaluation of longer-term Vero
E6 and A549-hACE2 cell cultures. For longer-term cultures, upon cell splitting and treatment, superna-
tant was harvested and stored at 280°C. Supernatant was mixed 1:3 with TRIzol LS (Life Technologies),
and RNA was extracted with chloroform (Sigma) using 5PRIME phase gel lock heavy tubes (Quantabio).
RNA was purified using an RNA clean and concentrator-5 kit (ZYMO Research) according to the manufac-
turer’s guidelines, and RNA was eluted in nuclease-free water (Ambion). qPCRs were carried out using
the TaqMan fast virus 1-step master mix (Thermo Fischer) with previously described primers and probes
(89): E_Sarbeco F (59-ACAGGTACGTTAATAGTTAATAGCGT-39), E_Sarbeco_R (59-ATATTGCAGCAGTACGCA
CACA-39), and E_Sarbeco_P (6-carboxyfluorescein [FAM]-59-ACACTAGCCATCCTTACTGCGCTTCG-39-black
hole quencher 1 [BHQ1]). Primers were used at 400 nM and probe was used at 200 nM together with 2.5
ml purified RNA. Cycling conditions were as follows: for reverse transcription, 10 min at 55°C, followed
by 3 min at 95°C and 45 cycles of 95°C for 15 s and 58°C for 30 s using the LightCycler 96 System
(Roche). For every assay, a negative control and RNA standards ranging from 10 to 105 RNA copies per
ml (Twist Bioscience) were included. RNA titers (genome copies/milliliter) were calculated by interpola-
tion of cycle threshold values of the standard curve generated using the standard panel and the
LightCycler software. The LLOQ of the assay was calculated as mean of RNA titers in supernatants
derived from noninfected control cultures plus 3 standard deviations.

Infectivity assay for evaluation of presence of infectious virus in supernatants from longer-
term Vero E6 cell cultures. Vero E6 indicator cell cultures were seeded at 10,000 cells per well in 96-
well flat-bottom plates. The following day, the medium was exchanged with 100 ml of cell culture super-
natants diluted 1:5 in cell culture medium. Culture supernatants were harvested every 2 to 3 days from
replicate cultures not receiving treatment derived from longer-term Vero E6 cell cultures. Longer-term
Vero E6 cell cultures treated with 3- or 5-fold EC50 boceprevir (Fig. 8) or 1-fold EC50 simeprevir in combi-
nation with 0.4-fold EC50 remdesivir (Fig. 9) were investigated. For each supernatant, 4 replicate indicator
cultures were inoculated. Twelve cultures inoculated with SARS-CoV-2/human/Denmark/DK-AHH1/2020
at an MOI of 0.01 served as a positive control for infection, and 12 noninfected cultures served as nega-
tive controls. After 46 to 50 h of incubation at 37°C and 5% CO2, cells were subjected to immunostaining
for the SARS-CoV-2 spike protein, and the number of single infected cells was evaluated by automated
counting as described above.
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