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ABSTRACT
Background  Immune effector cell-associated 
neurotoxicity syndrome (ICANS) is a clinical and 
neuropsychiatric syndrome that can occur days to weeks 
following administration chimeric antigen receptor (CAR) 
T-cell therapy. Manifestations of ICANS range from 
encephalopathy and aphasia to cerebral edema and 
death. Because the onset and time course of ICANS is 
currently unpredictable, prolonged hospitalization for close 
monitoring following CAR T-cell infusion is a frequent 
standard of care.
Methods  This study was conducted at Brigham and 
Women’s Hospital from April 2015 to February 2020. A 
cohort of 199 hospitalized patients treated with CAR T-cell 
therapy was used to develop a combined hidden Markov 
model and lasso-penalized logistic regression model to 
forecast the course of ICANS. Model development was 
done using leave-one-patient-out cross validation.
Results  Among the 199 patients included in the analysis 
133 were male (66.8%), and the mean (SD) age was 
59.5 (11.8) years. 97 patients (48.7%) developed ICANS, 
of which 59 (29.6%) experienced severe grades 3–4 
ICANS. Median time of ICANS onset was day 9. Selected 
clinical predictors included maximum daily temperature, 
C reactive protein, IL-6, and procalcitonin. The model 
correctly predicted which patients developed ICANS and 
severe ICANS, respectively, with area under the curve of 
96.7% and 93.2% when predicting 5 days ahead, and area 
under the curve of 93.2% and 80.6% when predicting 
the entire future risk trajectory looking forward from day 
5. Forecasting performance was also evaluated over 
time horizons ranging from 1 to 7 days, using metrics 
of forecast bias, mean absolute deviation, and weighted 
average percentage error.
Conclusion  The forecasting model accurately predicts 
risk of ICANS following CAR T-cell infusion and the time 
course ICANS follows once it has begun.Cite Now

INTRODUCTION
Chimeric antigen receptor (CAR) T-cell 
therapy (CAR T-cell) has transformed the 
treatment of hematological malignancies, 
with primary approvals of CD19-directed 
or BCMA-directed CAR T-cell therapy for 
relapsed/refractory large B-cell lymphoma, 

B cell acute lymphoblastic leukemia, follic-
ular lymphoma, mantle cell lymphoma, and 
multiple myeloma. However, CAR T-cell 
therapy carries risk for complications. These 
include cytokine release syndrome (CRS) and 
immune effector cell-associated neurotoxicity 
syndrome (ICANS), which remain significant 
causes of CAR T-cell related morbidity and 
mortality.1 Among trials of the five CD19-
targeted CAR T-cell products, 20%–70% 
of patients experienced grade 1 or higher 
ICANS which may present as encephalopathy, 
aphasia, focal weakness, numbness, apraxia, 
seizures, or in rare cases, cerebral edema, and 
death.2–9 Previous studies have shown that 
ICANS is only partially responsive to avail-
able treatments, and patients often require 
prolonged hospitalization and supportive 
care.10–13 Steroids remain the mainstay of 
treatment for ICANS, which may affect the 
efficacy of CAR T-cell cell therapy14 and carry 
their own profile of adverse effects.

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ A prior multivariable logistic regression model 
predicted the occurrence of immune effector cell-
associated neurotoxicity syndrome (ICANS) on days 
3–5 with lower accuracy than our model.

WHAT THIS STUDY ADDS
	⇒ Data from 199 patients receiving chimeric antigen 
receptor-T cell therapy were used to develop a fore-
casting model. The model provides well calibrated 
probabilities of ICANS onset and accurately predicts 
ICANS time course 1–7 days ahead.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ With further external validation, our forecasting 
model may be useful for triaging and resource al-
location and may allow many patients to be safely 
discharged from the hospital earlier that is currently 
possible.

http://bmjopen.bmj.com/
http://orcid.org/0000-0001-6842-0034
http://dx.doi.org/10.1136/jitc-2022-005459
http://dx.doi.org/10.1136/jitc-2022-005459
http://crossmark.crossref.org/dialog/?doi=10.1136/jitc-2022-005459&domain=pdf&date_stamp=2022-10-30
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Prediction of which patients will develop ICANS, 
when, and what course ICANS will follow, remains chal-
lenging. The incidence and onset timing of ICANS is 
variable among cell products and malignancies, although 
it usually occurs 3–10 days after cell infusion. Accurate 
prediction of which patients will develop ICANS and the 
onset time and subsequent time course have the potential 
to not only affect management with steroids, but also to 
reduce unnecessary medical expenses and service, since 
those who do not develop ICANS may be hospitalized 
for an unnecessarily long duration.9 Prior research has 
uncovered risk factors associated with ICANS, including 
pre-existing neurological and medical disease, high 
malignancy burden, elevated intensity of lymphodeple-
tion, high peak CAR T-cell expansion, and early and 
severe CRS.2 13 Several inflammatory biomarkers have 
been associated with increased occurrence and severity 
of ICANS, including C reactive protein (CRP), IL-6, and 
ferritin, but have limited specificity given their co-occur-
rence with CRS.2 9 11–13 15–18 Multivariable models have 
been developed to predict the risk of ICANS using both 
clinical factors and biomarkers,9 19 but do not attempt to 
predict onset timing or time course. In the present study, 
we addressed this gap by developing a statistical model to 
predict the risk and day of onset of ICANS, and to fore-
cast ICANS scores up to 7 days into the future.

METHODS
Study setting, participants, and clinical data
We conducted a retrospective observational cohort 
study of patients undergoing CD-19 or BCMA targeted 
CAR T-cell therapy from April 2015 to February 2020 at 
Brigham and Women’s Hospital (Boston, Massachusetts, 
USA). We used two existing cohorts, the first a group of 
patients at high risk for ICANS (patients who had under-
gone EEG monitoring from 2016 to 2020 because of 
concern for ICANS following CAR T-cell infusion), and 
the second a control group of patients who received CAR 
T-cell therapy at BWH from 2015 to 2019 that did not 
develop ICANS.

For all patients who developed ICANS during hospital-
ization, the ICANS grade was determined for each day 
of hospitalization through chart review by two indepen-
dent graders. Each grader used oncology, neurology, 
and nursing notes to determine the Immune Effector 
Cell-Associated Encephalopathy score (0–10), which was 
combined with scores in four other neurological domains 
to determine the final ICANS grade (0–4, with 4 most 
severe) in accordance with American Society for Trans-
plantation and Cellular Therapy (ASTCT) consensus 
grading.20 All patients had ICANS=0 at the time of 
hospital discharge, and we assumed ICANS remained 
absent after discharge. Demographic information, onco-
logical diagnosis, vital signs (max temperature per day) 
and laboratory values, where available (CRP, ferritin, 
white blood cell (WBC), IL-6, procalcitonin), were 
collected via review of the electronic medical record. CRS 

incidence, day of onset, and peak grade were identified 
via chart review and by calculating CRS grade based on 
its constituent factors pulled from the electronic medical 
record (presence and degree of hypotension, tempera-
ture >38°C, need for supplementary oxygen and/or posi-
tive pressure ventilation) according to ASTCT consensus 
grading guidelines.20

Forecasting model development
Leave-one-patient-out cross validation
We developed a Hidden Markov model (HMM) to fore-
cast ICANS scores (figure 1). An HMM is a probabilistic 
model that has an internal state that cannot be observed 
directly, but is instead inferred through some proba-
bilistic function of the observed data. To avoid overly 
optimistic (biased) estimates of model performance, we 
used a leave-one-patient-out cross validation approach for 
model training and evaluation. During model training, 
each of the 199 patients was ‘held out’, and an HMM 
was developed only using data from the remaining 198 
patients. HMM training included estimating state tran-
sition and conditional observation probability matrices. 
During testing, the HMM model was tested on the 
held-out patient, and performance statistics were calcu-
lated by comparing the forecast results with the observed 
ICANS time course for that patient.

HMM structure and parameter estimation
To construct our HMM model we first defined four 
hidden substates ‍s1, s2, . . . , sN‍ based on observable outputs 
(ICANS scores), as follows:

	► ‍s1 = 1:‍ pre-ICANS (ICANS=0).
	► ‍s2 = 2:‍ rising phase: ICANS>0 has begun and tends to 

rise until reaching a peak.
	► ‍s3 = 3:‍falling phase: ICANS>0, but after the peak 

value.
	► ‍s4 = 4:‍ post-ICANS (ICANS=0 following the falling 

phase).
In terms of these substates and the most recent available 

ICANS observation, we defined the hidden state of the 
patient at time ‍t‍ as ‍Zt =

(
St, yt−1

)
‍, where ‍t = 1, 2, . . . , T ‍ and 

‍yt ‍ stands for the ICANS score at time t. ‍Zt ‍ can take M=20 
different values (figure 1B), ‍z1, z2, . . . , zM ‍, and we denote 
the probability of transition from state ‍zm ‍ to state ‍zn‍ as 

‍amn ≜ Pr
[
Zt = zn|Zt−1 = zm

]
, m, n = 1, 2, . . . , M ‍. Observa-

tions (ICANS scores) and hidden states are related through 
the conditional probability ‍bkm ≜ Pr

[
yt = k|Zt = zm

]
,‍ where 

‍k = 1, 2, 3, 4, 5‍ are the five levels of ICANS scores.
With these definitions, the state transition matrix A 

and conditional observation probability matrix B dimen-
sions are 20 × 20 and 20 × 5, respectively. Values of these 
matrices were estimated nonparametrically from the 
training data,21 22 with the exception of the transition 
marking the initial onset of ICANS, which corresponds 
to the transition from ‍Zt−1 = 1‍ to ‍Zt = 6‍ (see figure 1B). 
This transition was modeled parametrically, as described 
in the next section.
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Modeling ICANS onset
Prior studies suggest that the probability of developing 
ICANS, the time course, and severity of ICANS depend 
on baseline characteristics like age and clinical data 
like laboratory values or vital signs. Therefore, in devel-
oping the HMM model we modeled the initial transition 
from ICANS=0 to ICANS>0 (‍Zt−1 = 1‍→ ‍Zt = 6‍) as a func-
tion of time using a pooled Logistic Regression (PLR) 
approach. Ten predictors (input features) were included 
in the model: functions of time since CAR T-cell infu-
sion including ‍t‍, ‍t2‍, and ‍g

(
t
)
‍, age, maximum daily body 

temperature, daily serum CRP, ferritin, IL-6, procalci-
tonin, and WBC. These clinical and laboratory features 
have been previously shown to consistently correlate with 
risk of neurotoxicity,9 10 12 13 and are routinely measured 

in most patients who receive CAR T-cell treatment. We 
defined the PLR model to have the following form:

	﻿‍
Pr[Zt = 6|Zt−1 = 1] = 1

1+exp[−
(

w0+w1x(1)
t +...+w10x(10)

t

)
]

= 1
1+exp[−wTXt]‍� (1)

	﻿‍

10∑
i=0

|Wi| ≤ λ,λ > 0
‍�

where ﻿‍ λ‍ is a non-negative tuning parameter that 
controls the sparsity of the model (ie, the number of coef-
ficients with a value of zero) and is selected by 10-fold 
internal cross validation. In this equation, ‍wT ‍ is the trans-
posed vector of model coefficients, ‍w0‍ is a constant, and 

‍x
(
i
)

t i = 1, . . . , 10‍ are the predictor variables described 

above. ‍x
(
1
)

t ‍ is a function of time that models the average 
profile of ICANS across the population. To model this 

Figure 1  Hidden Markov Model diagram: (A) One example of observed ICANS score along with four hidden substates (B) 
The hidden state sequence Zt contains 20 distinct values (C) Markov process and observation, (A) shows the state transition 
probability 20×20 matrix, and (B) shows observation probability 20×5 matrix. ICANS, immune effector cell-associated 
neurotoxicity syndrome.
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function, we first calculated the empirical probability of 
ICANS onset vs time in the training data (‍P

train
t ‍) and then 

fit a function ‍g
(
t
)
‍ to it:

	﻿‍ x
(
1
)

t ≜ g
(
t
)

= 1
(1+exp(−f(t)))‍

 
�

(2.a)

	﻿‍ f
(
t
)

= a + bPtrain
t + c1

(
t − tb

)
+ c2

(
t − tb

)2
‍ � (2.b)

where ‍
{

a, b, c1, c2
}
‍ are free parameters and ‍tb = 9‍ is 

the median time of ICANS onset in our cohort. The 
free parameters were estimated using the Levenberg-
Marquardt algorithm.23 According to the function ‍g

(
t
)
‍, 

figure 2A, the risk of ICANS tends to increase over the 
time interval ‍t ∈

[
0, 9

]
‍ then decreases to zero at ‍t = 20‍.

HMM FORECASTING
To forecast ICANS scores, we compute ‍Pr

[
Zt|y1: t

]
‍ by 

applying Bayes rule sequentially using the HMM forward 
algorithm.21 24 The forward algorithm consists of two alter-
nating steps: one-step ahead prediction and updating. 
The one-step ahead prediction density is:

	﻿‍

Pr
[
Zt = zm|y1: t−1

]
=
∑M

n=1 Pr
[
Zt = zm|Zt−1 = zn

]

Pr
[
Zt−1 = zn|y1: t−1

]
‍�

(3)

Then, in the update step we update the density based 
on data observed at time ‍t‍:

	﻿‍ αt
(
zm
)
≜ Pr

[
Zt = zm|y1: t

]
= Pr

[
Zt = zm|yt, y1 : t−1

]
‍�

	﻿‍
1
Nt

Pr
[
Zt = zm|y1: t−1

]
Pr

[
yt|Zt = zm, y1: t−1

]
‍�

	﻿‍
1
Nt

Pr
[
Zt = zm|y1: t−1

]
Pr

[
yt ∨ Zt = zm

]
,‍ � (4)

where in the last line we have used the fact that ‍yt‍ is 
independent of ‍y1: t−1‍ given ‍Zt‍, and the normalization 
constant ‍Nt‍, is given by:

	﻿‍

Nt ≜ Pr
[
yt|y1 : t−1

]
=
∑M

m=1 Pr
[
Zt = zm|y1: t−1

]

Pr
[
yt|Zt = zm

]
‍�

(5)

Using equations (3) and (4), we can write one complete 
iteration of the predict-update cycle as:

	﻿‍

αt
(
zm
)
∝ Pr

[
yt|Zt = zm

]
∑M

n=1 Pr
[
Zt = zm|Zt−1 = zn

]
αt−1

(
zn
)
‍�

(6)

To predict future states given past observations, we 
next compute ‍Pr

[
Zt+h|y1: t

]
‍, where ‍h > 0‍ is the predic-

tion horizon. We perform this calculation by applying the 
transition matrix to the current distribution over hidden 
states ‍Pr

[
Zt|y1: t

]
‍ as follows:

	﻿‍

Pr
[
Zt+h|y1 : t

]
=
∑

Zt+h−1

∑
Zt+h−2

. . .
∑

Zt
Pr

[
Zt+h|Zt+h−1

]

Pr
[
Zt+h−1|Zt+h−2

]
. . . Pr

[
Zt+1|Zt

]
Pr

[
Zt|y1 : t

]
‍�

(7)

Finally, we use the quantity‍Pr
[
Zt+h|y1: t

]
‍ to make predic-

tions about future ICANS scores using:

	﻿‍

Pr
[
yt+h|y1 : t

]
=
∑

Zt+h
Pr

[
yt+h|Zt+h

]

Pr
[
Zt+h|y1: t

]
‍�

(8)

Evaluation forecast accuracy
To evaluate the quality of forecasts, we split ICANS scores 
of all patients into training and testing sets, using all but 
one patient’s data for model training. We then run the 
forward algorithm (equations (3–8)) on data from the 
one patient left out to forecast ICANS scores ﻿‍h‍ days ahead, 
where ﻿‍h‍ is the forecast horizon. We considered values of ﻿‍h‍ 
ranging from 1 to 7.

Figure 2  (A) Function of time used in PLR as a time dependent predictor variable, (B) Feature selection using PLR: the 
estimated coefficients for clinical predictors with the 95% CIs. CRP, C reactive protein; PLR, pooled logistic regression; WBC, 
white blood cell.
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We quantified the quality of forecasts using the following 
standard metrics25: forecast bias, mean average deviation 
(MAD), and weighted average percentage error (WAPE):

	﻿‍ Bias ≜

T∑
t=1

(yt−ŷt)

T ‍�
(9.a)

	﻿‍ MAD ≜

T∑
t=1

(yt−ŷt)

T ‍�
(9.b)

	﻿‍

WAPE ≜

T∑
t=1

(yt−ŷt)

T∑
t=1

1|yt |

‍

 

�

(9.c)

In equation (9.a), forecast bias is the difference between 
forecast (‍yt‍) and observed ICANS scores. If the forecast 
overestimates, the forecast bias is positive; for underes-
timates the forecast bias is negative. MAD measures the 
magnitude, on average, of forecasting errors. WAPE, also 
referred to as the MAD/mean ratio, weights the error by 
the total true ICANS scores. Similar to MAD, a good fore-
casting method has smaller WAPE.25

Evaluation of binary predictions of ICANS/severe ICANS
In addition to the probabilistic performance metrics 
described above, we also evaluated the performance of the 
model to make binary predictions about which patients 
will develop ICANS/severe ICANS. We did this in two ways.

(1) Predicting from day 5: Given data gathered on 
the first 5 days following CAR T-cell treatment, calcu-
late ‍ft = Pr

(
yt > 0|y1: 5

)
‍, for ‍t = 6, 7, . . . , 28‍. We make a 

single binary prediction ‍y‍ for each patient by comparing 
the forecasts ‍ft‍ for these 23 days with a threshold ﻿‍θ‍, and 
predicting ICANS will occur (‍y‍ =1) if ‍ft > θ‍ for any of 
those days, and otherwise predicting that ICANS will not 
occur (‍y=0‍. We predict severe ICANS in a similar way but 
using ‍ft = Pr

(
yt > 2|y1: 5

)
‍.

2) Predicting 5 days ahead: Beginning on day 0, calculate 
the probability that ICANS >0 in 5 days, and continue this 
on days t=1, 2, …, 23. That is, calculate ‍ft = Pr

(
yt+5 > 0|y1: t

)

‍, which produces 19 probabilities (for days 5, 6, …, 23) for 
each patient. We make a single binary prediction ‍y‍ for each 
patient by comparing the forecasts ‍ft‍ for these 19 days with 
a threshold ﻿‍θ‍, and predicting ICANS will occur (‍y‍ =1) if 
‍ft > θ‍ on any of those days, and otherwise predicting that 
ICANS will not occur (‍y=0‍. We predicted severe ICANS in 
a similar way but using ‍ft = Pr

(
yt+5 > 2|y1: t

)
‍.

For both methods (1) and (2), for predicting neurotox-
icity (ICANS>0) or severe neurotoxicity (ICANS>2), each 
choice of the threshold value ﻿‍θ‍ results in a binary predic-
tion for each patient, which allows us to calculate an 
overall sensitivity and false positive rate for the algorithm. 
We generate receiver operator characteristic (ROC) 
curves by varying the threshold value and observing how 
the sensitivity and false positives rates vary.

RESULTS
Our cohort included 199 patients who underwent CAR 
T-cell therapy. Among these, 97 (48.7%) developed 

ICANS. The median (IQR) day of ICANS onset was 9 
(1, 20). The duration of neurotoxicity ranged from 2 
to 65 days (mean (SD), 6.6 (10.9) days). Online supple-
mental table S1 summarizes the patient characteristics 
and online supplemental file 1 shows the time courses of 
ICANS scores for all patients.

Forecasting onset probability
We first investigated the model’s ability to predict ICANS 
onset. Factors identified as conferring increased baseline 
risk were older age, higher body temperature, higher 
serum level of CRP, IL-6, and procalcitonin. These features 
were retained in the lasso-penalized logistic regression 
model. Figure 2B shows the model coefficients along with 
the 95% confidence intervals corresponding to the seven 
clinical baseline predictors that were included in the PLR 
model. As shown in figure 2B, the coefficients of ferritin 
and WBC are close to zero (‍0.1‍), and therefore, they are 
not strong predictors in our cohort. In figure 3, we show 
four examples of individual patients who underwent 
CAR T-cell infusion, including the observed ICANS score 
(orange) and the predicted probability of ICANS onset 
(blue) for each day of hospitalization. For two patients 
who developed ICANS (figure  3A,C), the ICANS onset 
probability initially increased for 9 and 7 days after cell 
infusion and then decreased. In contrast, for patients that 
did not develop ICANS (figure 3B,D), the probability of 
ICANS onset remained low (less than 0.2) throughout 
the window in which ICANS typically first develops.

Forecasting days with ICANS and severe ICANS
We next explored the model’s ability to predict which 
days a patient would have any neurotoxicity (ICANS>0), 
or severe ICANS (ICANS>2) for predicting from day 5. 
Probabilities of each of these events as a function of time 
are shown in online supplemental figure S1. In online 
supplemental figure S2A, the first 53 patients have low 
probability of developing ICANS and online supple-
mental figure S2B shows the probability of developing 
severe ICANS. The model correctly predicts (mean abso-
lute error of zero) the day of onset in 70.5% (n=134) and 
62.2% (n=109) of cases respectively for ICANS and severe 
ICANS. In 9.6% and 5.7% the error is 1 day; the error is >1 
day in 19.8% and 32% of cases respectively for ICANS and 
severe ICANS (online supplemental file 1). As expected, 
the predicting of severe ICANS is more challenging and 
has more error.

In addition, the ROC curves of the binary predictions 
of ICANS/severe ICANS are displayed in online supple-
mental figure S2E,F. The model correctly predicts which 
patients develop ICANS/severe ICANS with an area 
under the curve (AUC) of 96.7% and 93.2% using 5 days 
ahead prediction and with an AUC of 93.2% and 80.6% 
using predicting from day 5. Online supplemental file 1 
also shows the model behavior when forecasting future 
probability after ‍t = 1, 3, 5, 7‍ days of observations of devel-
oping ICANS ‍(Pr

[
yt+h > 0|X1 : t, y1: t

]
)‍ or severe ICANS 

‍(Pr
[
yt+h > 2|X1 : t, y1: t

]
)‍.

https://dx.doi.org/10.1136/jitc-2022-005459
https://dx.doi.org/10.1136/jitc-2022-005459
https://dx.doi.org/10.1136/jitc-2022-005459
https://dx.doi.org/10.1136/jitc-2022-005459
https://dx.doi.org/10.1136/jitc-2022-005459
https://dx.doi.org/10.1136/jitc-2022-005459
https://dx.doi.org/10.1136/jitc-2022-005459
https://dx.doi.org/10.1136/jitc-2022-005459
https://dx.doi.org/10.1136/jitc-2022-005459
https://dx.doi.org/10.1136/jitc-2022-005459
https://dx.doi.org/10.1136/jitc-2022-005459
https://dx.doi.org/10.1136/jitc-2022-005459
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Figure 4  Two examples of 1–7 days ahead forecasting: (A) the patient who developed ICANS (B) the patient who did not 
develop ICANS. ICANS, immune effector cell-associated neurotoxicity syndrome.

Figure 3  ICANS onset probability during days for four patients. The orange line shows the observed ICANS score, and the 
blue line shows the estimated ICANS onset probability. (A) ICANS onset probability for one patient who developed neurotoxicity, 
(B) ICANS onset probability for one patient who did not develop neurotoxicity after cell infusion, (C) ICANS onset probability for 
one patient who developed neurotoxicity, (D) ICANS onset probability for one patient who did not develop neurotoxicity after 
cell infusion. ICANS, immune effector cell-associated neurotoxicity syndrome.
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Forecasting ICANS scores one to seven days ahead
We next evaluated the model’s ability to forecast ICANS 
scores between 1 and 7 days ahead. Results for two 
patients—one who developed ICANS, and another 
who did not—are illustrated in figure  4. As expected, 
predicted probabilities deviate more from the observed 
ICANS course as the forecasting horizon is extended, 
particularly beyond 3 days. We also note that, as we ask 
the model to forecast further into the future, there is 
corresponding shift in the forecasted onset time of risk 
for neurotoxicity. This is expected behavior. In figure 4A, 
the shift is predominantly due the onset of ICANS on day 
8. When forecasting 1 day ahead, this change on day 8 is 
reflected in the day 9 forecast: the model predicts contin-
uation of risk. In 7 days ahead forecasts, this same day 8 
onset cannot be reflected until day 15. In figure 4B, when 
predicting 1 day ahead, we also observe an increased risk 
that peaks on day 10, due to the population average risk 
trajectory, but also modulated by the evolving laboratory 
values and vital signs. This peak also shifts to approxi-
mately day 16 when we increase the forecasting horizon 
by 7 days, because this is when this external information 
first enters the forecasting lookback window.

Forecasting performance results are shown in figure 5. 
MAD and WAPE, respectively, ranged from 0.38 (0.16) to 
0.66 (0.25) and from 0.28 (0.07) to 0.46 (0.10) for 1 to 
7 day(s) ahead forecasting. All metrics showed reduced 
performance when forecasting 4 or more days ahead.

To further explore how the model behaves, we calcu-
lated forecasted ICANS trajectories after varying numbers 
(1, 3, 5, 7) of days of observations following CAR T-cell 
infusion. Results are shown in online supplemental 
figure S4 for the patient in figure 4. As expected, when 

the observation period does not include any days with 
ICANS>0, then the probability of later developing ICANS 
is predicted to be relatively small for all future dates 
(online supplemental figure S4A-C). However, when the 
observation period includes nonzero ICANS observations 
(online supplemental file 1), the model forecasts a future 
trajectory lasting ~3 weeks with elevated risk of continuing 
to experience ICANS.

DISCUSSION
In this work, we developed statistical models to forecast 
ICANS scores, in order to predict not only day of onset 
and course of ICANS, but also which patients will develop 
ICANS and severe ICANS. Early and accurate detection of 
ICANS is of great clinical interest, because not all patients 
develop ICANS, but those who do require prolonged 
hospitalization and supportive care.9 As a result, statis-
tical models such as these could aid clinical diagnosis and 
decision making.

We demonstrate high accuracy when predicting the day 
of onset of ICANS, which is an important clinical time 
point for management decisions such as steroid adminis-
tration.12 The examples shown of patients who developed 
and did not develop ICANS demonstrates the ability of 
the model to modulate the predicted onset probability 
using clinical and laboratory covariates from individuals 
with different baseline levels of risk.

Knowledge of which patients will develop any degree 
of ICANS and severe ICANS also has significant clinical 
implications, particularly affecting length of stay and level 
of inpatient care (floor vs Intensive Care Unit (ICU)12). 
Through the HMM+PLR method, we improve upon prior 

Figure 5  Three different metrics to assess the forecasting ICANS score using HMM+PLR method. HMM, Hidden Markov 
Model; ICANS, immune effector cell-associated neurotoxicity syndrome; MAD, mean average deviation; PLR, pooled logistic 
regression; WAPE, weighted average percentage error.

https://dx.doi.org/10.1136/jitc-2022-005459
https://dx.doi.org/10.1136/jitc-2022-005459
https://dx.doi.org/10.1136/jitc-2022-005459
https://dx.doi.org/10.1136/jitc-2022-005459
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studies predicting which patients develop ICANS of any 
grade or severe ICANS based on data in the first few 
days following CAR T-cell infusion. We correctly predict 
which patients developed ICANS and severe ICANS from 
day 5 with area under receiver operator characteristic 
curve 96.7% and 93.2% respectively. By comparison, a 
prior multivariable logistic regression model correctly 
predicted the occurrence of any ICANS from day 5 with 
an AUC of 74% and accuracy of 77%9. Another logistic 
regression model incorporating the modified endothelial 
activation and stress index score (m-EASIX) had an AUC 
of 73% in predicting severe ICANS during hospitalization 
based on data from day 3 following CAR T-cell infusion26.

Our HMM+PLR model is the first to demonstrate fore-
casting of daily ICANS grades. The model shows excellent 
performance when predicting 1–3 days ahead, as reflected 
by MAD and WAPE metrics from 0.38 (0.16) to 0.5 (0.18) 
and 0.28 (0.07) to 0.38 (0.08). Performance decreases for 
predictions from day 4 to day 7, with greater divergence 
from observed values, as expected when forecasting over 
longer time periods. Nonetheless, the window of 1–3 days 
is still clinically meaningful to aid decision making, and 
the forecasting errors even beyond day 3 are relatively 
small and within clinically useful limits. According to the 
bias metric, the model tends to underestimate ICANS risk 
slightly, which may have arisen because the majority of 
patients do not typically develop ICANS.

The features in the model of onset probability were 
informed by prior studies showing associations between 
ICANS and clinical values, but our lasso regularization 
approach highlights the importance of a subset of these 
features in predicting ICANS occurrence. As in a prior 
study by Rubin et al involving many of the same patients 
included in our cohort, older age, fever, and serum CRP 
were notable predictors of ICANS. However, in contrast, 
our model also retained serum IL-6 and procalcitonin, an 
inflammatory cytokine and an acute phase reactant. Other 
predictors in Rubin et al, such as histological subtype, 
ferritin, minimum WBC, CRS severity, CRS onset day, and 
number of doses of tocilizumab, were not retained in our 
model, which could reflect missing values or indicate less 
importance of these features. Regardless, fewer features 
could ease implementation of the model, with both IL-6 
and procalcitonin often standard more recently among 
tertiary care centers caring for these patients.

Our study has several limitations. First, ICANS grades 
were determined via chart review, and thus may contain 
noise. Second, our dataset has a lot of missing data, 
especially for procalcitonin and IL-6. We might achieve 
the higher forecasting accuracy with less missing data. 
Second, our dataset includes patients from 2015 to 2020, 
a time period in which management of these patients 
has evolved, reflecting greater understanding and famil-
iarity with CAR T-cell therapy. Newer treatments that may 
have greater efficacy in treating ICANS, such as anak-
inra, are also under clinical trial. Second, the model does 
not directly account for treatments or clinical develop-
ments that may influence the time course of ICANS (eg, 

development of cerebral edema or status epilepticus; or 
use of anesthetic drugs). Accounting for these aspects 
of ICANS might further improve model forecasts but 
would require fitting a more complex model and would 
thus require a larger dataset. The model also arises from 
patients at a single center, so may lack generalizability to 
other institutions. There also are differences in the rates 
of ICANS with different CAR T-cell products and malig-
nancy diagnoses, which our model does not account for 
due to limitations in sample size. A larger dataset could 
allow for sub-analyses within malignancy subtypes and 
CAR T-cell products. In addition, our cohort included 
patients receiving two different CAR T-cell therapies, 
CD19 and BCMA, which may have somewhat different 
ICANS time courses. In future studies with sufficiently 
large cohorts taking each therapy, forecasting might be 
further improved by developing separate models for each 
therapy and by accounting for the effects on the course of 
ICANS of these additional events and interventions.

Future studies could improve performance through 
additional risk indicators that capture the dynamic 
nature of ICANS, such as EEG. Patients who develop 
ICANS exhibit marked EEG changes, such as increased 
delta and theta activity, generalized periodic discharge, 
and seizures, and accounting for these changes and their 
time course might further enhance forecasting. Whether 
there are EEG changes that precede ICANS or features of 
the EEG that might indicate increased risk for ICANS, is 
unknown, and warrants investigation.

CONCLUSIONS
The developed forecasting model in this study in addi-
tion to forecast the ICANS scores up to 7 days into the 
future, predicted which patients are likely to experience 
ICANS/severe ICANS and the time course ICANS/severe 
ICANS is likely to follow once it has begun. With further 
external validation, this model may be useful for triaging 
and resource allocation and may allow a large proportion 
of patients to be safely discharged from the hospital early.

Contributors  CAE, YA, MBW designed the study. CAE, SAQ, PM, MSF, HHD and DBR 
collected data. CAJ provided patient and data resources. YA, CAE, MBW analyzed 
data, interpreted data, did the literature search, wrote the manuscript and created 
the figures. All authors reviewed and revised the manuscript.

Funding  MBW received funding from the Glenn Foundation for Medical Research 
and American Federation for Aging Research (Breakthroughs in Gerontology Grant); 
American Academy of Sleep Medicine (AASM Foundation Strategic Research 
Award); NIH (R01NS102190, R01NS102574, R01NS107291, RF1AG064312, 
R01AG062989); and NSF (award SCH-2014431).

Competing interests  MBW and SSC are co-founders of Beacon Biosignals, which 
played no role in this work. DBR served on the scientific advisory board for Celgene/
Bristol Meyers Squib. JD received research support from Novartis, consulting fees 
from Amgen, Blue Earth Diagnostics, and Syndax and royalties from contributing to 
UpToDate. CAJ received consulting fees from Kite/Gilead, Novartis, BMS/Celgene, 
Bluebird Bio, Epizyme, Instill-Bio, Lonza, Ipsen, Abintus-Bio, Daiichi-Sankyo and 
research funding from Kite/Gilead and Pfizer. Other authors report no disclosures 
relevant to the manuscript.

Patient consent for publication  Consent obtained directly from patient(s).

Ethics approval  This study involves human participants and was approved by 
The study was conducted under a protocol approved by the Mass General Brigham 



9Amidi Y, et al. J Immunother Cancer 2022;10:e005459. doi:10.1136/jitc-2022-005459

Open access

(MGB) Institutional Review Board using a waiver of written informed consent with 
the IRB protocol number 2013P001024. Participants gave informed consent to 
participate in the study before taking part.

Provenance and peer review  Not commissioned; externally peer reviewed.

Data availability statement  Data are available in a public, open access repository.

Supplemental material  This content has been supplied by the author(s). It has 
not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been 
peer-reviewed. Any opinions or recommendations discussed are solely those 
of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and 
responsibility arising from any reliance placed on the content. Where the content 
includes any translated material, BMJ does not warrant the accuracy and reliability 
of the translations (including but not limited to local regulations, clinical guidelines, 
terminology, drug names and drug dosages), and is not responsible for any error 
and/or omissions arising from translation and adaptation or otherwise.

Open access  This is an open access article distributed in accordance with the 
Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which 
permits others to distribute, remix, adapt, build upon this work non-commercially, 
and license their derivative works on different terms, provided the original work is 
properly cited, appropriate credit is given, any changes made indicated, and the use 
is non-commercial. See http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iD
Yalda Amidi http://orcid.org/0000-0001-6842-0034

REFERENCES
	 1	 Holtzman NG, Xie H, Bentzen S, et al. Immune effector cell-

associated neurotoxicity syndrome after chimeric antigen receptor 
T-cell therapy for lymphoma: predictive biomarkers and clinical 
outcomes. Neuro Oncol 2021;23:112–21.

	 2	 Gust J, Hay KA, Hanafi L-A, et al. Endothelial activation and blood-
brain barrier disruption in neurotoxicity after adoptive immunotherapy 
with CD19 CAR-T cells. Cancer Discov 2017;7:1404–19.

	 3	 Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene ciloleucel 
CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med 
2017;377:2531–44.

	 4	 Wang ML, Munoz J, Goy A, et al. KTE-X19, an anti-CD19 chimeric 
antigen receptor (CAR) T cell therapy, in patients (Pts) with relapsed/
refractory (R/R) mantle cell lymphoma (MCL): results of the phase 2 
ZUMA-2 study. Blood 2019;134:754.

	 5	 Munshi NC, Anderson LD, Shah N, et al. Idecabtagene vicleucel 
in relapsed and refractory multiple myeloma. N Engl J Med 
2021;384:705–16.

	 6	 Abramson JS, Palomba ML, Gordon LI, et al. Lisocabtagene 
maraleucel for patients with relapsed or refractory large B-cell 
lymphomas (TRANSCEND NHL 001): a multicentre seamless design 
study. Lancet 2020;396): :839–52.

	 7	 Schuster SJ, Bishop MR, Tam CS, et al. Tisagenlecleucel in adult 
relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med 
2019;380): :45–56.

	 8	 Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in 
children and young adults with B-cell lymphoblastic leukemia. N Engl 
J Med 2018;378:439–48.

	 9	 Rubin DB, Al Jarrah A, Li K, et al. Clinical predictors of neurotoxicity 
after chimeric antigen receptor T-cell therapy. JAMA Neurol 
2020;77:1536–42.

	10	 Karschnia P, Jordan JT, Forst DA, et al. Clinical presentation, 
management, and biomarkers of neurotoxicity after adoptive 
immunotherapy with CAR T cells. Blood 2019;133:2212–21.

	11	 Neelapu SS, Tummala S, Kebriaei P, et al. Chimeric antigen receptor 
T-cell therapy — assessment and management of toxicities. Nat Rev 
Clin Oncol 2018;15:47–62.

	12	 Rubin DB, Danish HH, Ali AB, et al. Neurological toxicities 
associated with chimeric antigen receptor T-cell therapy. Brain 
2019;142:1334–48.

	13	 Santomasso BD, Park JH, Salloum D, et al. Clinical and biological 
correlates of neurotoxicity associated with CAR T-cell therapy in 
patients with B-cell acute lymphoblastic leukemia. Cancer Discov 
2018;8:958–71.

	14	 Davila ML, Riviere I, Wang X, et al. Efficacy and toxicity management 
of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. 
Sci Transl Med 2014;6:224ra25.

	15	 Gardner RA, Finney O, Annesley C, et al. Intent-to-treat leukemia 
remission by CD19 CAR T cells of defined formulation and dose in 
children and young adults. Blood 2017;129:3322–31.

	16	 Turtle CJ, Hanafi L-A, Berger C, et al. Immunotherapy of non-
Hodgkin's lymphoma with a defined ratio of CD8+ and CD4+ CD19-
specific chimeric antigen receptor-modified T cells. Sci Transl Med 
2016;8:355ra116.

	17	 Gofshteyn JS, Shaw PA, Teachey DT, et al. Neurotoxicity after 
CTL019 in a pediatric and young adult cohort. Ann Neurol 
2018;84:537–46.

	18	 Lee DW, Gardner R, Porter DL, et al. Current concepts in the 
diagnosis and management of cytokine release syndrome. Blood 
2014;124:188–95.

	19	 Greenbaum U, Strati P, Saliba RM, et al. CRP and ferritin in addition 
to the EASIX score predict CAR-T-related toxicity. Blood Adv 
2021;5:2799–806.

	20	 Lee DW, Santomasso BD, Locke FL, et al. ASTCT consensus 
grading for cytokine release syndrome and neurologic toxicity 
associated with immune effector cells. Biol Blood Marrow Transplant 
2019;25:625–38.

	21	 Murphy KP. Machine learning: a probabilistic perspective. MIT press, 
2012.

	22	 Yousefi Aet al. Real-time point process filter for multidimensional 
decoding problems using mixture models. bioRxiv 2018;505289.

	23	 Moré JJ. The Levenberg-Marquardt algorithm: implementation and 
theory, in numerical analysis. Springer, 1978: 105–16.

	24	 Rezaei MRet al. A comparison study of point-process filter and deep 
learning performance in estimating rat position using an ensemble of 
place cells. in 2018 40th Annual International Conference of the IEEE 
Engineering in Medicine and Biology Society (EMBC) 2018. IEEE.

	25	 Klimberg RKet al. Forecasting performance measures–what are 
their practical meaning?, in advances in business and management 
forecasting. Emerald Group Publishing Limited, 2010.

	26	 Pennisi M, Sanchez-Escamilla M, Flynn JR, et al. Modified EASIX 
predicts severe cytokine release syndrome and neurotoxicity after 
chimeric antigen receptor T cells. Blood Adv 2021;5:3397–406.

http://creativecommons.org/licenses/by-nc/4.0/
http://orcid.org/0000-0001-6842-0034
http://dx.doi.org/10.1093/neuonc/noaa183
http://dx.doi.org/10.1158/2159-8290.CD-17-0698
http://dx.doi.org/10.1056/NEJMoa1707447
http://dx.doi.org/10.1182/blood-2019-126064
http://dx.doi.org/10.1056/NEJMoa2024850
http://dx.doi.org/10.1016/S0140-6736(20)31366-0
http://dx.doi.org/10.1056/NEJMoa1804980
http://dx.doi.org/10.1056/NEJMoa1709866
http://dx.doi.org/10.1056/NEJMoa1709866
http://dx.doi.org/10.1001/jamaneurol.2020.2703
http://dx.doi.org/10.1182/blood-2018-12-893396
http://dx.doi.org/10.1038/nrclinonc.2017.148
http://dx.doi.org/10.1038/nrclinonc.2017.148
http://dx.doi.org/10.1093/brain/awz053
http://dx.doi.org/10.1158/2159-8290.CD-17-1319
http://dx.doi.org/10.1126/scitranslmed.3008226
http://dx.doi.org/10.1182/blood-2017-02-769208
http://dx.doi.org/10.1126/scitranslmed.aaf8621
http://dx.doi.org/10.1002/ana.25315
http://dx.doi.org/10.1182/blood-2014-05-552729
http://dx.doi.org/10.1182/bloodadvances.2021004575
http://dx.doi.org/10.1016/j.bbmt.2018.12.758
http://dx.doi.org/10.1182/bloodadvances.2020003885

	Forecasting immune effector cell-­associated neurotoxicity syndrome after chimeric antigen receptor t-­cell therapy
	Abstract
	Introduction﻿﻿
	Methods
	Study setting, participants, and clinical data
	Forecasting model development
	Leave-one-patient-out cross validation

	HMM structure and parameter estimation
	Modeling ICANS onset

	HMM forecasting
	Evaluation forecast accuracy
	Evaluation of binary predictions of ICANS/severe ICANS

	Results
	Forecasting onset probability
	Forecasting days with ICANS and severe ICANS
	Forecasting ICANS scores one to seven days ahead

	Discussion
	Conclusions
	References


