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Early human placental development begins with blastocyst implantation, then the
trophoblast differentiates and originates the cells required for a proper fetal nutrition and
placental implantation. Among them, extravillous trophoblast corresponds to a non-
proliferating trophoblast highly invasive that allows the vascular remodeling which is
essential for appropriate placental perfusion and to maintain the adequate fetal growth.
This process involves different placental cell types as well as molecules that allow cell
growth, cellular adhesion, tissular remodeling, and immune tolerance. Remarkably, some
of the cellular processes required for proper placentation are common between placental
and cancer cells to finally support tumor growth. Indeed, as in placentation trophoblasts
invade and migrate, cancer cells invade and migrate to promote tumor metastasis.
However, while these processes respond to a controlled program in trophoblasts, in
cancer cells this regulation is lost. Interestingly, it has been shown that autophagy, a
process responsible for the degradation of damaged proteins and organelles to maintain
cellular homeostasis, is required for invasion of trophoblast cells and for vascular
remodeling during placentation. In cancer cells, autophagy has a dual role, as it has
been shown both as tumor promoter and inhibitor, depending on the stage and tumor
considered. In this review, we summarized the similarities and differences between
trophoblast cell invasion and cancer cell metastasis specifically evaluating the role of
autophagy in both processes.

Keywords: autophagy, placentation, trophoblast and cancer cells, cellular proliferation, migration and invasion,
vasculogenic capacity, vascular remodeling, immune evasion
INTRODUCTION

The placentation is a complex process that involves different stages, which quickly and efficiently
leads to the development of the placenta, a temporary organ. The placenta is developed through
regulated and dynamic cellular processes that include embryo pre-implantation and implantation,
decidua formation, trophoblast proliferation, trophoblast differentiation into the invasive
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phenotype, and vascular remodeling (1). Interestingly, during
placentation, the ability of trophoblast cells to proliferate, invade,
and evade the immune system, resemble those induced by cancer
cells during tumor growth (2). Indeed, the processes of
proliferation, migration, and invasion in cancer cells and
trophoblast derived cells share different molecules such as
growth factors, cell adhesion molecules, surface receptors,
matrix-digesting enzymes, and enzymes inhibitors, proto-
oncogenes, hormones, and peptides, among others (3). These
molecules regulate different processes that are highly controlled
in trophoblasts, with trophoblast-derived cells following an
organized pattern without metastasizing to new tissues, while
the same pathways are dysregulated in cancer, driving
metastasis (4).

In addition to sharing proliferative and invasive features,
trophoblasts and cancer cells, actively modulate the host
immune response to develop and sustain nutrient supply (5).
Interestingly, it has been described that activation of autophagy
occurs in both processes, regulating placental and cancer
development (6, 7). However, how autophagy modulation
affects trophoblast function is not entirely known (8).
Consistently, the role of autophagy in cancer development is
still a matter of study due to its dual role in tumor onset and
progression (9, 10). Indeed, the role of autophagy in tumor
development is controversial and dependent on tumor stage and
type. It has been suggested that autophagy could promote
aggressive characteristics of cancer cells, such as increased
cellular invasion (11, 12), but also be a barrier to cancer
proliferation (13–15). Additionally, autophagy also provides
the microenvironment for placentation and cancer growth.
This review will summarize the parallels between trophoblast-
derived cells in placentation and cancer cells in tumor growth
and metastasis with a final focus on the role of autophagy in
both processes.
DEVELOPMENT OF THE HUMAN
PLACENTA

The placenta is a temporary organ that maintains and protects
the fetus during pregnancy controlling the maternal-fetal
exchange of nutrients, gases, and metabolic waste. Human
pregnancy begins with the physiological preparation
of the endometrium modulated by hormones such as
progesterone and estrogen, which regulate growth factors,
cytokines, and adhesion molecules that allow the blastocyst’s
implantation (16).

The placenta develops from the trophectoderm (TE), the
outer layer of the blastocyst from which derives the
undifferentiated cytotrophoblast (CTB). The CTB originates
two main villus structures: the floating villus, where CTBs fuse
to form the multinuclear syncyiotrophoblast (STB) and the
anchoring villus (17–20) (Figure 1). The STB acts as an
exchange barrier with the maternal blood to assure nutrients as
well as waste and gases exchange with the fetal blood (21). The
Frontiers in Oncology | www.frontiersin.org 2
floating villus cells proliferate to form primary villi, which show
further branching, forming the intervillous space. The branching
to secondary and tertiary villi, allows the expansion of the STB
surface area, which favors an efficient nutrient exchange with the
fetal blood (19).

As mentioned, the second villus structure derived from
the CTB is the anchoring villus, whose main function is to
mediate the placental attachment to the endometrium in the
uterine wall, to sustain fetal growth (17–20) (Figure 1). In the
distal tip of the anchoring villus it is possible to find a group of
proliferating cells known as cell column trophoblast
(CCT). From these cells emerge the placental giant trophoblast
(PGT) that mediates the early histotrophic nutrition of
the embryo and of extravillous trophoblast cells (EVT). EVTs
are a group of non-proliferating trophoblast cells characterized
by a highly invasive phenotype. They invade the maternal
decidua and the first third of the myometrium, playing a
crucial role in the histotrophic nutrition of the fetus,
immunomodulation and remodeling of the uterine spiral
arteries (Figure 1) (19).

These activities are mediated by specialized subgroups of
EVTs, characterized by specific markers: the endovascular EVT
(evEVT) and the interstitial EVT (iEVT) (Table 1). The evEVTs
migrate through the lumen of the spiral arteries forming a
trophoblast plug reducing the maternal blood flow towards the
intervillous space during the early stages of placenta
development, permitting histiotrophic nutrition (46).
Additionally, evEVT maintain the oxygen concentration low,
which is required for placental development and successful
trophoblast differentiation and may also promote favorable
trophoblast migration and endothelial cell replacement, both
required for vascular remodeling. Finally, at the end of first
trimester the trophoblast plug formed by evEVT is disintegrated
(47, 48).

The main function of iEVT is to participate to the immune
tolerance and placental invasion of maternal tissues. iEVTs
express Human Leukocyte antigen-G (HLA-G), a nonclassical
major histocompatibility complex (MHC) (Table 1), which is
essential to modulate the immune tolerance at the maternal-fetal
interface by regulating the interaction and communication with
the Uterine Natural Killers (uNK) (49).

iEVTs invade trough the interstitium of the decidua and
myometrium towards the maternal spiral arteries (46). Once
there, the iEVT acquires an endothelial-like phenotype under
conditions of low oxygen concentration (approximately 8%
oxygen) replacing the maternal endothelial cells of the uterine
spiral arteries. It is important to highlight that many studies refer
to this low oxygen concentration as an “hypoxic” environment.
However, the reduced oxygen level corresponds to the
physiological level required for placenta development, which is
maintained until the end of the first trimester (below 20 mmHg).
Thus, as this occurs in normal placental development, we will
refer to this low oxygen condition as normoxic and not hypoxia
(50–52).

The process of invasion by EVTs allows the replacement of
the endothelial layer of the maternal spiral arteries, which is
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essential for an appropriate placental perfusion that maintains an
adequate fetal growth. This complex process not only involves
different placental cell types, but also a wide range of molecules
related to cell growth (i.e., hormones and growth factors),
cellular adhesion (i.e., Integrins, Cadherins), tissular
remodeling (i.e., Metalloproteases) and proteins related to
immune tolerance (Table 1) (19, 53). In addition to the
classical markers, other molecules including structural and
adhesion related proteins, proteins associated to invasion,
immunity, embryonic stem cell-associated transcription
regulators and oncogenes have been recently described as
markers of CTB, STB, iEVT or eEVT (54–58).

CTB and CCT but not EVT cells show proliferative activity
and generate cells that stop the proliferation and start to
differentiate (20). The process of proliferation and
differentiation of CTB into migratory, invasive EVT and
endothelial-like trophoblast shows similarities with the process
of tumor formation and metastasis of cancer cells. The main
similarities are: (i) tissue invasion, (ii) immune system
modulation and (iii) vascularization. Despite this, a crucial
Frontiers in Oncology | www.frontiersin.org
 3
difference between trophoblast derived and cancer cells is that
while in trophoblast cells these processes are regulated, this
regulation is lost in cancer cells (4).

The physiological process of placentation responds to a
controlled program that results in changes in gene expression
and cell cycle. As such, when placentation is not kept under
control, malformation of the placenta, pregnancy pathologies
and abortions can occur (17, 20, 59). Different abnormal
placentation processes have been described, which are
characterized by abnormal trophoblast invasion such as
abnormally invasive placentas. Abnormal placentation
processes are: (i) placenta accreta (abnormal adherence with
direct contact to myometrium), (ii) placenta increta (placental
villi penetrate into the myometrium) and (iii) percreta (placental
villi penetrate trough myometrium to uterine serosa and into the
surrounding structures such as the bladder). It has been
suggested that trophoblast cells of this abnormally invasive
placentas lose their physiological regulation, leading to
increased proliferative activity during the invasion, behaving
like cancer cells (60, 61).
FIGURE 1 | The maternal fetal interface and trophoblast cells subtypes. The figure shows the placental cell types required for the early first trimester human
placentation as well as the route to migrate and invade the decidua and myometrium. The different trophoblast subtypes are villous cytotrophoblast (CTB),
synctiotrophoblast (STB), cell column trophoblast (CCT), extravillous trophoblast (EVT), endovascular EVT (evEVT), interstitial EVT (iEVT), placental giant trophoblast
(PGT). The complete description of the process is in the section “Development of the Human Placenta” of the review.
April 2021 | Volume 11 | Article 637594
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SIMILARITIES AND DIFFERENCES
BETWEEN CANCER CELLS AND
TROPHOBLAST DERIVED CELLS

Cellular Proliferation, Migration,
and Invasion
Both cancer cells and trophoblast derived cells express different
molecules such as growth factors, proto-oncogenes, enzymes, cell
surface receptors, enzyme receptors, hormones and peptides,
whose activation mediates their high proliferative, migratory and
invasive capacity. During placentation, growth factors such as
Epidermal Growth Factor (EGF), Hepatocyte Growth Factor
(HGF), Vascular Endothelial Growth Factor (VEGF), Placental
Growth Factor (PLGF), Insulin-like Growth Factor (IGF),
Transforming Growth Factor (TGF) and their corresponding
receptors are among the main factors that regulate CTB
proliferation, acting in a paracrine and autocrine manner
(62). These growth factors bind to Tyrosine Kinase Receptors
to activate the Mitogen-activated Protein/extracellular
Frontiers in Oncology | www.frontiersin.org 4
Signal-regulated kinase/Extracellular Signal-Regulated
Kinase (MEK/ERK) prol i ferat ion pathway and the
Phosphatidylinositol 3-kinase/Protein Kinase B (PI3K/Akt)
anti-apoptosis pathway (3). Moreover, proto-oncogenes play
an essential role in the etiology of cancer inducing its growth.
As cancer cells, trophoblast derived cells express several proto-
oncogenes; for example, CTB and STB exclusively express proto-
oncogenes that encode Growth Factor Receptor c-erbB1 (Human
Epidermal Growth Factor Receptor 1 (HER1), Epidermal
Growth Factor Receptor 1 (ERBB1 or EGF-receptor)) (63).
Also, trophoblast cells such as CTB, STB, and EVT encode for
a Receptor Tyrosine Kinase (RTK), namely c-erbB2 (HER2/neu,
ERBB2), c-fms (CSF1R), c-met (MET) and c-kit (KIT) (64–67),
as well as for transcription factors that have been implicated in
trophoblast invasion such as c-fos (FOS) and c-jun (JUN), in
addition to c-myc (MYC) and c-ets1 (ETS) (68–71).
Additionally, in iEVT, c-sis (SIS, Platelet-derived Growth
Factor Beta (PDGFB)) is expressed, which encodes for one of
the two chains (the B-chains) constituting Platelet-derived
TABLE 1 | Classical markers of trophoblast-derived cells in the human placenta and its expression in vasculogenic mimicry on human cancer.

Type of marker Marker CTB STB CCT evEVT iEVT Reference Expression in vasculogenic mimicry on human cancer Reference

Epithelial marker CK7 + + + NA + (22) –

Mesenchymal
marker

Vimentin – – – NA – (23) Hepatocellular, Colorectal, Ovarian, pancreatic, Large lung cancer, Non-
small cell lung cancer, renal cell carcinoma

(24–26)

Integrins
a1 b1 – – – + + (27) –

a5 b1 – NA – NA + (27) Glioblastoma, melanoma (26, 28,
29)

a6 b4 + – + NA – (27) –

av b5 + – + – – (30) –

av b3 – – – + + (30) Breast cancer, prostate, colon, melanoma (31)
Cell adhesion
molecules

VE-
Cadherin

– – – + + (32) Melanoma, hepatocellular, Non-small cell lung cancer, colorectal,
prostate, large-cell lung cancer, gastric

(26, 33),

E-
cadherin

+ + + – – (32) Ovarian, colorectal, pancreatic, large-cell lung cancer, hepatocellular,
Non-small cell lung cancer, melanoma

(26, 34),

PECAM + + + + – (32) Melanoma (31)
NCAM – – – + – (32, 35), –

Metalloproteases
MMP-2 NA NA + NA + (36) Melanoma, ovarian cancer (34, 37),
MMP-9 NA NA + NA + (36) Ovarian cancer, Hepatocellular (26, 34),
MMP-14
(MT1-
MMP)

+ + + – + (38–40) Melanoma (37)

Hormones
hCG a + + +/- +/- +/- (41) –

hCG b +/- + – – – (41) –

hPL – + + + NA (27) –

Growth factors
TGF b + + + NA – (42) Hepatocellular (26)
VEGF NA + NA NA + (43) Ovarian cancer (34)
sFLT-1 NA + NA NA + (43) –

Endoglin – + + NA – (44) –

Immune factors
HLA-G – – – NA + (23, 45), –
April 2021 | Volume 11 | Art
Classical markers of trophoblast-derived cells in the human placenta and their expression in malign tumors are showed in the table. CK7, cytokeratin 7; VE-cadherin, Vascular endothelial-
Cadherin; PECAM, platelet endothelial cell adhesion molecule; NCAM, neural cell adhesion molecule; MMP-2, matrix metallopeptidase 2; MMP-9, matrix metallopeptidase 9; MMP-14,
matrix metallopeptidase 14; hCG a, human chorionic gonadotropin a; hCG b, human chorionic gonadotropin b; hPL, human placental lactogen; TGF b, transforming growth factor beta;
VEGF, vascular endothelial growth factor; sFLT-1, Fms-like tyrosine kinase-1; EGF, epidermal growth factor; HLA-G, human leukocyte antigen G.
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Growth Factor (PDGF) (72) and in EVT the c-ras family (Kirsten
rat Sarcoma viral oncogene (K-RAS), Neuroblastoma RAS viral
oncogene homolog (N-RAS), and Harvey rat sarcoma (H-RAS)) is
expressed encoding for Rat sarcoma (RAS) proteins that regulate
cellular proliferation and inflammation in the human placenta (73,
74). All the aforementioned proto-oncogenes are crucial in the
first step of malignant transformation and its physiological
expression occurs during the first week of pregnancy promoting
proliferation, migration, and invasion of the trophoblast (2).

The Telomerase is a factor that regulates the proliferative
capacity of a cell, as it maintains chromosome stability in actively
dividing cells (75). CTB expresses a functional Telomerase,
which is downregulated during differentiation, but expressed in
term placenta. During human pregnancy, Telomerase activity is
the highest during the first trimester, and decreases with the
maturation of the placenta (76). Telomerase activity ensures a
high rate of proliferation and could be a factor controlling
placental growth (77–79). Consistently, in cancer cells, the
Telomerase allows uncontrolled cell proliferation, which is
essential for tumor progression (80). Additionally, Survivin, a
protein overexpressed in many cancers (81), where it promotes
proliferation and inhibits apoptosis, is expressed in trophoblast
cells, however its role in this location has not been elucidated yet
(82, 83). Altogether these studies indicate that the Telomerase
and Survivin have an important role in cell proliferation in both
trophoblast and cancer cells.

As mentioned, placental development during the first
trimester occurs in a stable state of low oxygen concentration
(84); by comparison, in tumors, hypoxia is necessary to support
tumor growth and metastasis (85). In response to low oxygen
levels, cells upregulate Hypoxia-Inducible Factor (HIF), a family
of transcription factors that functions as a Heterodimer with a
regulatory a subunit (HIF-a) and a constitutive b subunit (HIF-
b) (86, 87). The activation of the different HIF isoforms leads to
the transcription of genes involved in several processes such as
metabolism, angiogenesis, and immunomodulation (86). Thus,
this low oxygen concentration environment in trophoblast and
cancer cells could be considered as key to stimulate proliferation,
invasion, and vasculogenesis in host tissues (88).

During placentation and cancer growth, invasion is required
to provide blood and nutrient supply. Different events need to
occur for a successful invasion process: (i) changes in the
expression of Cell Adhesion molecules (ii) secretion of
Proteases, and (iii) availability of Growth Factors (5). One
feature shared by both cell types is the process of epithelial to
mesenchymal transition (EMT), which leads to the loss of cell-
to-cell contact inhibition, and to the increased expression of
proteins that degrade the extracellular matrix. During EMT the
Integrin expression pattern changes, and the expression of E-
cadherin decreases, enhancing cell movement through tissues by
reducing cell polarity (89, 90).

EVT and invasive cancer cells also share enzymes required for
the degradation of the basal membrane that allow the process of
invasion. Among those there are Serine Proteases, Cathepsins
and Matrix Metalloproteinases (MMPs), the Heparan Sulfate-
degrading Endoglycosidase, the Protease-Activated Receptor
Frontiers in Oncology | www.frontiersin.org 5
(PAR) and the Receptor of Thrombin (91, 92). These enzymes
are expressed transiently in the trophoblast, in a very regulated
manner, while in cancer cells their expression becomes
constitutive (2, 4). As an example, the expression of MMP-2
and MMP-9 is increased during trophoblast invasion, promoting
proteolysis and therefore invasion. Importantly, when the
invasion is completed, decidual cells inhibit MMP-2 and
MMP-9 activity by the release of protease inhibitors (53, 93,
94). When the control of the protease activity is lost abnormally
invasive placentas develop, consistently, this regulation
disappears in cancer invasive cells (60).

Additionally, Placenta-Specific Protein 8 (PLAC-8) is a
placental protein implicated in embryo implantation, which is
expressed in iEVT on the feto-maternal interface promoting
trophoblast invasion and migration (57, 95) nevertheless PLAC-
8 is also expressed in cells from different cancers such as lung
adenocarcinoma, pancreatic cancer, colorectal cancer,
gastrointestinal cancer, and cervical cancer (96–100), where it
is involved in malignant tumor progression by regulating cell
differentiation (100), proliferation (101), apoptosis (102) and
autophagy by mediating autophagosome/autolysosome
fusion (103).

In conclusion, for the physiological invasion of iEVT and for
the pathological metastasis of cancer cells similar mechanisms
are used. However, despite the similarities between them, they
show a key difference: while the trophoblast follows an organized
pattern of proliferation, differentiation and invasion without
metastasizing to new tissues; cancer cells spread through the
host tissue with a high proliferation rate, with the final objective
of being able to metastasize to other tissues (3, 5).

Vasculogenic Capacity
The vascularization capacity is also a common feature between
trophoblast and cancer cells as an abundant blood supply is
necessary both for the growth of the tumor nodule, and for the
implanting embryo. To date, three processes of vessel growth
have been described: vasculogenesis, angiogenesis and vascular
mimicry (104, 105). Vasculogenesis is the process of new blood
vessel formation from angioblast precursor cells; angiogenesis is
the process of growth and development of new capillary blood
vessels from pre-existing vessels like new branches; vascular
mimicry corresponds to vessel growth from adult cells into a
vascular-like phenotype (105, 106).

During the first trimester of pregnancy, vasculogenesis and
angiogenesis are consecutive processes. Mesenchymal stem cells
differentiate to become hemangiogenic stem cells, then, in a
paracrine manner, the CTB induces the formation of the first
vessels via induction of VEGF signaling. After that, the existing
vessels become longer, a process mediated by VEGF and PLGF
(107). In cancer, angiogenesis is crucial for the newly formed
tumor nodule, since it provides blood continuously to initiate
progression and tumor growth (108). This process involves
molecular and cellular interactions between cancerous cells,
endothelial cells, and some components of the Extra-Cellular
Matrix (ECM), such as matrix proteins (Fibronectin, Laminin,
Collagen), receptors (Integrins) and enzymes that degrade the
April 2021 | Volume 11 | Article 63759
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ECM [MMP and Tissue Inhibitor of Metalloproteinase (TIMP)].
Specific proteins such as VEGF and FGF are secreted by cancer
cells to stimulate the proliferation of capillary endothelial cells
leading to the sprout and branching of them through the ECM
(109). Recent evidence suggests that in tumors resistant to
different anti-angiogenic drugs, in addition to angiogenesis,
other processes that contribute to tumoral vascularization
occur, namely vasculogenesis and vascular mimicry (110, 111).

Interestingly, human EVT and invasive cancer cells have
similar patterns of integrins expression (Table 1), which allows
the EVT to adopt a vascular phenotype capable of invading
maternal spiral arterioles, a process similar to what occurs in
endothelial cells when they migrate towards the tumor (5). This
turnover of endothelial cells to form new vessels requires
different angiogenesis regulators that are similar between EVT
and cancer cells (3). Among those, VEGF and PLGF promote
angiogenesis and are regulated by hypoxia and Fibroblast
Growth Factor (FGF) can initiate angiogenesis in both cell
types. Conversely, Angiostatin, Fibronectin, and Tissue
inhibitor of Metalloproteinases act as angiogenesis inhibitors
(109, 112, 113).

Additionally, both cell types are able to directly contribute to
their own blood supply by inducing vascular mimicry (88),
enhancing gene expression patterns and signaling pathways
shared by the two cell types (5). As an example, the Galactose-
binding protein Galectin-3, which is known to provide a vascular
phenotype, is highly expressed in EVT (114) and is also a key
factor for the development of aggressive melanomas (115).

In summary, the process of angiogenesis is essential both
in trophoblast and cancer cells. In cancer it drives tumor growth
and metastasis, and in pregnancy it allows proper embryo
implantation and placentation. However, while trophoblast
cells create new blood vessels inducing a controlled process of
vasculogenesis, the angiogenesis in cancer is uncontrolled (3).

Immune Evasion
For proper development, trophoblast and cancer cells evade the
immune response of the host. During placentation, for the
development of the maternal-fetal interface, the maternal
decidua basalis, where the maternal immune cells are located,
interacts with the fetal derived placental iEVT. Additionally the
placenta produces anti-inflammatory Cytokines, TGF-b2,
Interleukin (IL)-4 and IL-10, which reduce the deleterious
effects of pro-inflammatory cytokines (4). Fas Ligand (Fas-L)
expression on trophoblast promotes apoptosis of Fas-expressing
lymphocytes of maternal origin, having a role in placental
invasion during implantation (116). The position of
trophoblast cells in the placenta encasing the embryo produces
a barrier between maternal and fetal cells, finally being the
placenta the main separation of fetal and maternal blood and
lymphatic systems, preventing the immune system of the mother
to perceive fetal antigens. During the first trimester the immune
cells located in the decidua basalis are Natural Killer (NK, 70%),
Macrophages (20-25%) and T Lymphocytes [3-10%, (117–119)].
It has been suggested that the presence of progesterone and TGF-
b1 in the decidua promotes the differentiation of these NK into
mature Uterine Natural Killers (uNK) (120, 121). uNK cells are
Frontiers in Oncology | www.frontiersin.org 6
more immunomodulatory than cytotoxic, they secrete Growth
factors, Angiogenic factors and Cytokines facilitating immune
tolerance which suggests uNK play a role in implantation,
invasion and vascular remodeling of spiral artery remodeling,
regulating EVT invasion (122) by a mechanism that has not
yet been totally clarified (49, 123, 124). Additionally,
macrophages have been shown as capable of regulating the
process of spiral artery remodeling, metabolic regulation of
lipids, tissue regeneration, inflammation and fetal antigen
recognition (125). Furthermore, they can influence EVT
function as they are more abundant at the invasive front and
implantation site (126, 127). Despite these studies, their role in
placentation, as support of trophoblast cells, has not been fully
elucidated. The role of T lymphocytes is also poorly understood,
however, it has been described that they could have a role in
controlling infections caused by bacteria located at the maternal-
fetal interface (119).

In cancer, NK cells are known to contribute to tumor
development via secretion of Cytokines (128, 129). Additionally,
cancer cells express tumor-associated Macrophages, which can
have an inflammatory and immunosuppressive role, being key in
tumor progression and metastasis (130). Fas-mediated apoptosis
and the expression of Fas-L allow many cancers to attack
the immune system (131, 132). Regulatory T cells are implicated
in mediat ing to lerance in cancer and pregnancy ;
immunophenotypically expressing Cluster of differentiation
(CD); CD4, CD25 and Forkead Box P3 (FOXP3) (133). In
pregnancy, regulatory T cells are induced by paternal/fetal
alloantigens (134), which is crucial for maternal-fetal tolerance.
In cancer, regulatory T cells are implicated in impaired antitumor
immunity, suppression of effector T lymphocytes proliferation,
and increased tumor blood vessel density, suggesting an essential
link between immunity and angiogenesis (5). iEVT express
Human leukocyte antigen- G (HLA-G) (19), which suppresses
cytolytic killing by NK and cytotoxic T cells inducing apoptosis of
immune cells (49). HLA-G regulates cytokine production in blood
mononuclear cells, reducing stimulatory capacity and impairing
the maturation of dendritic cells (5). In tumors, HLA-G promotes
immune evasion by interacting with NK cells via Inhibitory
receptors and Killer cell Immunoglobulin-like receptor (KIR)
(135). This molecule can directly mediate immune tolerance by
inhibiting receptors, predominantly Immunoglobulin-like
Transcript (ILT) 2 and 4 expressed on immune effectors (136).
Finally, HLA-G has been detected in melanoma and solid tumors
including cervical cancer, gastrointestinal cancer and breast cancer
(137–139).

In conclusion, both trophoblast and cancer cells actively
modulate the host immune response by different mechanisms
that are induced by similar cells and molecules, finally promoting
cell invasion.
AUTOPHAGY

Autophagy is a catabolic process highly conserved among
eukaryotic organisms, which allows the lysosomal-mediated
degradation of cytoplasmic components, thus contributing to
April 2021 | Volume 11 | Article 637594
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cell homeostasis. Three types of autophagy have been described
based on the mechanism by which the cargo is delivered to the
lysosome: (i) microautophagy, where the cytosolic material is
delivered to the lysosome by a direct invagination or protrusion
of the lysosomal membrane (140) (ii) chaperone-mediated
autophagy, where unfolded soluble proteins containing a
specific consensus motif translocate across the lysosomal
membrane (141–143), and macroautophagy, herein referred to
as autophagy, where the cargo is sequestered in a special double
membrane organelle known as autophagosome and then
delivered to the lysosome. Briefly, during autophagy the
autophagosome fuses to lysosome, forming the autolysosome,
where the cargo is degraded (144) (Figure 2). The new
metabolites derived from the degradation return then back to
the cytosol and will be used for the synthesis of new
macromolecules and/or energy production (145). Different
autophagy-related (ATG) proteins are required for autophagy
to occur, these are organized in protein complexes that are
necessary in the different steps of the autophagic process.
These can be divided into five stages (initiation, nucleation,
elongation, fusion with the lysosome, and cargo degradation)
(Figure 2). During “initiation” the unc-51-like kinase 1 (ULK1)/
focal adhesion kinase family interacting protein of 200 kDa
(FIP200)/ATG13 complex (ULK1 complex) is activated, in
response to the metabolic status of the cell (146). Once active,
the ULK1 complex translocates to membranous sites, known
as omegasomes, where the autophagosome will form
Frontiers in Oncology | www.frontiersin.org 7
(i.e. endoplasmic reticulum and mitochondria contact sites) (147,
148). Then, during the “nucleation”, the isolation membrane of
the new autophagosome is generated. This process is mediated
by the kinase complex formed by Vacuolar Sorting Protein (VPS)
34 (VPS34), Beclin-1, and VPS15 and Autophagy related 14-like
protein (ATGL14), which generates phosphatidylinositol 3-
phosphate (PI3P), necessary for the recruitment of the
machinery required for the generation of the new
autophagosome (146, 149). ATG9-containing vesicles cycle
between the omegasome and the Golgi/endosomes, and they
contribute to the recruitment of membranes for the nucleation of
the phagophore (147, 150, 151). Then, the phagophore extends
during the “elongation stage”, a process that is tightly regulated
by two ubiquitin-like systems: the microtubule-associated
protein 1A/1B-light chain 3 (MAP1LC3A, also known as
LC3-I) system and the ATG5–ATG12 system (152) and by the
ATG5–ATG12 complex. The ATG5–ATG12 complex then
interacts with ATG16L, forming a new complex that works
like an E3 enzyme, assisting the incorporation of LC3-II into
the membrane of the phagophore (153). In parallel with the
elongation the autophagic cargo is selected. Proteins targeted for
autophagy are labeled with the receptor p62/Sequestosome-1
(p62/SQSTM1), which interacts with LC3 through an LC3
interacting region (LIR) (154, 155). Following elongation, the
elongated phagophore is finally closed forming the
autophagosome. This step is completed by a membrane
abscission process mediated by the endosomal-sorting complex
FIGURE 2 | Autophagy process and principal proteins involved in the different steps. The figure shows the principal proteins required for autophagy process, the
different steps of the process are described in the section “Autophagy” (initiation, nucleation, elongation, fusion with the lysosome, and cargo degradation and
recycling). Figure (1) corresponds to phagophore formation that includes initiation and nucleation. (2) Autophagosome maturation includes the elongation process.
(3) Autophagosome and lysosome fusion. (4) Represent the structure of the autolysosome, and (5) corresponds to degradation and recycling. In each step are
indicated the main proteins required: ULK1/2 complex, LC3 I, LC3II, ATG7, ATG3, ATG12-ATG5-ATG16L, Class III Ptdlns3K, ATG9 and p62/SQSTM1. The yellow
semi-circumferences and circumferences correspond to the phagosome membrane. See the main text for further details.
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required for transport (ESCRT) (156, 157). Upon closure, the
nascent autophagosome dissociates from the assembly site and
undergoes maturation (158). The mature autophagosome then
fuses with the lysosome generating autolysosomes (159), a
process mediated by Rab GTPases, membrane-tethering
complexes and soluble N-ethylmaleimide-sensitive factor
attachment protein receptors (SNAREs) (160). The inner
membrane of the autolysosome breaks down and the process
of autophagosomal cargo degradation begins (161). The
degradation products are recycled and turn back to the cytosol
for being reused (162, 163) (Figure 2).

Autophagy is a complex and highly regulated process that
under stress conditions such as hypoxia, low glucose
concentration and oxidative stress is triggered to promote cell
survival or leads to cell death. Physiologically autophagy
maintains cellular and energy homeostasis, cooperates with the
immune system to promote adaptation, and represents a
quality control system for proteins and organelles (164).
Impaired autophagy contributes to the development of
neurodegenerative (165), infectious (166) and metabolic
diseases (167, 168), due to the accumulation of abnormal and
damaged proteins and/or organelles, forming intracellular
aggregates that induce cellular stress, finally promoting
cell death.

During placentation it has been reported that autophagy
could be relevant for different processes required for a proper
development of the placenta; however, how this occurs is still
under investigation (7). On the other hand, in the context of
cancer, autophagy has a dual role, where it could be tumor-
suppressive or tumor-promoting depending on the stage of
cancer development and the type of cancer considered (10).
ROLE OF AUTOPHAGY IN IMMUNE
EVASION AND VASCULAR REMODELING:
DIFFERENCES BETWEEN PLACENTATION
AND CANCER

As previously described, the processes of placentation and tumor
development share similarities and autophagy activation has
been described in both (6, 7). The role of autophagy in cancer
has been widely explored, however, as previously mentioned, its
role has not completely been elucidated (169). On the other
hand, how modulation of autophagy affects trophoblast function
is still largely unknown.

Role of Autophagy in Placental and
Cancer Immune Evasion
The role of autophagy in the placentation process remains
unclear, and its contribution to immune evasion is still
unknown (170). It has been described that autophagy is highly
activated in decidualized endometrium of early pregnancy,
which increases NK cell adhesion and retention in the decidua.
Also, when autophagy is inhibited, decidual NK (dNK) cell
residence is decreased, contributing to spontaneous abortion
(171). Tan et al. described that autophagy levels are highly
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reduced in cases of recurrent miscarriage. Indeed, suppression
of autophagy in an in vitro model of trophoblast cells enhances
the cytotoxicity activity of dNK, impairing trophoblast invasion,
finally causing abortion (172).

On the other hand, autophagy has been describes as an
important regulator of cancer immunity in the tumor
microenvironment; however, the exact mechanisms involved
remain unclear (173, 174). The tumor microenvironment
contains different factors that promote autophagy, such as
hypoxia or inflammation (166, 175). Remarkably, it has been
described that autophagic activation correlates with immune
evasion (176, 177). Conversely, inhibition of autophagy
associates with NK-dependent immune responses. In breast
cancers, in tumors presenting hypoxia, blocking autophagy
restores NK-mediated lysis in vitro, facilitating breast tumor
elimination by NK cells in mice (178). Inhibition of autophagy
also reduces NK cell-mediated cytotoxicity in melanoma (175),
non-small cell lung cancer (179) and liver cancer (180). In
contrast, the role of autophagy is dual in the response to
immune cell recognition, being a suppressor or inductor of
tumorigenesis depending on the specific context (181).
Altogether these data suggest that autophagy actively
participates and regulates the immune evasion of dNK in
placental development and NK activity in cancer cells.
However, the mechanism involved in both phenomena
remains to be elucidated, a crucial aspect that needs to be
studied for the development of immunotherapy in each field.
Role of Autophagy in Placental Vascular
Remodeling
As indicated, trophoblast invasion and vascular remodeling
allows the replacement of the endothelial layer of the maternal
spiral arteries, which is essential for proper placental perfusion
and adequate fetal growth. It has been described that activation
of autophagy occurs in human placentas from normal
pregnancies at weeks 8 to 12 of gestation, as indicated by LC3
and Beclin-1 protein in CTB and STB cells (182) (Table 2).
Moreover, autophagosomes have been identified in human
placentas throughout gestation from early (8 weeks) (189, 194)
to term pregnancies (39 weeks) (189, 194, 261).

The key role of autophagy in implantation was demonstrated
by studies in ATG5-deficient mouse oocytes, where pre-
implantation cannot occur correctly. Indeed, autophagy
increases in the oocytes after fertilization, and it is necessary
for pre-implantation development, which is essential to allow the
differentiation from zygote to blastocyst in mammals (262). In
different mouse models it has been shown that proteins of
the LC3 family are expressed in the labyrinth zone and in the
decidua basalis, which suggests a possible role in the placentation
process (263).

In vitro assays in the trophoblast cell line HTR8/SVneo (i.e., a
first-trimester human trophoblast cell line) showed increased
LC3 lipidation and LC3 puncta in cells cultured in 2% of oxygen,
which mimics the physiological O2 concentration in the early
pregnancy period (186, 189, 192). In the same cell line, higher
LC3 and Beclin-1 expression was determined in conditions of
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TABLE 2 | Changes in protein involved in the autophagic process described in human placental tissues and trophoblast cell lines.

Study model
Human placental tissue Cell line Autophagy marker Reference

CS vs VD – ↑LC3 (183)
PES vs N – ↑LC3, ↑Beclin-1 (184)
IUGR vs N – ↑LC3, ↑Beclin-1 (185)
– HTR-8/SVneo inhibition of Hypoxia inducible factor (HIF)-1a ↑LC3, ↓Beclin-1 (186)
CTB exposed to hypoxia vs normoxia – ↑LC3, ↑p62 (187)
MC sIUGR vs MC – ↑LC3 (188)
EVT exposed to hypoxia vs normoxia HTR-8/SVneo exposed to hypoxia vs normoxia ↑LC3, ↓p62 (189)
FTP, N – LC3, Beclin-1 (182)
SP vs IL – ↑LC3 (190)
NE vs N – ↑LC3 (191)
– HTR-8/SVneo exposed to Cobalt chloride (CoCl2) ↑LC3 (192)
PE vs N JEG-3 ↑LC3 (193)
FTP,MD, N, CS, VD – = LC3, = Beclin-1 (194)
N ↑LC3, ↑ATG5-12 (195)

JEG-3 ↑LC3
PIH vs N – ↑LC3, ↓p62 (196)
PE vs N
HUVEC

HTR-8/SVneo ↑LC3, ↑Beclin-1 (197)

Early placenta-SM vs Normal-early placenta – ↑LC3 (198)
– JEG-3 with ASAH1 inhibition or ceramide treatment ↑LC3, ↑p62 (199)
Fetal membrane SP vs Fetal membrane N – ↓Beclin-1, ↓ ATG3, ↓ATG5, ↓ATG7,

↓ATG12, ↓AT16L1
(200)

– BeWo treated with dexamethasone ↑LC3 (201)
PE vs N – ↑p62 (202)
STB treated with punicalagin – ↓ LC3, ↓p62 (203)
OB vs N – ↑Beclin-1, ↑ATG3, ↑ATG7, ↑LC3 (204)
– BeWo exposed to an increase in reactive oxygen species ↑ATG5, ↑ATG7, ↑LC3, ↓p62 (205)
PE vs N JEG-3 ↓LC3, ↓Beclin-1 (206)
PTD vs N ↓LC3, ↑p62, ↓ ATG6L, = Beclin-1, = ATG7 (207)

BeWo ↑LC3
PES vs N HTR-8/SVneo, JEG-3 ↑LC3, ↑ATG4B (208)
PTD with/without inflammatory lesions – ↑LC3 (209)
EOPE vs N – ↑LC3 (210)
GDM vs N – ↓Beclin-1, ↑LC3, ↑p62 (211)
FGR vs N – ↑LC3, ↑ Beclin-1, ↓ p62 (212)
GDM vs N ↑LC3, ↓ p62 (213)

HTR-8/SVneo ↑LC3, ↓ p62, ↑ATG5
FTP vs N – ↓LC3 (214)
IUGR, EOPE vs N – ↑LC3, ↑ Beclin-1 (215)
Placenta with Malaria vs N – ↑LC3, = ATG4B, = p62 (216)
– BeWo exposed to overexpression of CYP11A1 gene ↑LC3, ↑ Beclin-1 (217)
IUGR vs N – ↑LC3, ↓ p62 (218)
PE vs N – ↑Beclin-1, ↑p62 (219)
– JEG-3 exposed to cigarette smoke ↑LC3, ↑p62 (220)
FTP Primary trophoblast BeWo ↑LC3, ↑p62 (221)
– Sw.71 exposed to saturated fatty acids ↑p62, ↑LC3 (222)
– BeWo exposed to cobalt and chromium nanoparticles ↑LC3, ↑p62 (223)
PE vs N – ↑LC3, ↑p62 (224)
PES vs N – ↑LC3, ↓ p62 (225)
CTB – ↑LC3, ↑ Beclin-1 (226)
ICP vs N HTR-8/SVneo ↑LC3, ↑ATG5, ↑ ATG7, ↑Beclin-1 (227)
– HTR-8/SVneo exposed to Titanium dioxide nanoparticles ↑LC3, ↑p62 (228)
Early miscarriage vs N – ↑ LC3, ↑ATG5, ↑Beclin-1 (229)
– HTR-8/SVneo exposed to Titanium dioxide nanoparticles ↑LC3, ↑p62 (230)
– HTR-8/SVneo, JEG-3 associated to long noncoding RNA H19

downregulation
↑LC3, ↑Beclin-1, ↓ p62 (231)

CTB BeWo ↑ATG16, ↑ATG5-ATG12, ↑ATG7, ↑LC3,
↓p62

(232)

– HchEpC1b, HTR-8/SVneo exposed to platinum nanoparticles
(npt)

↑LC3, ↓ p62 (233)

HDCP vs N HPVEC ↓Beclin-1,↓LC3 (234)
Placenta accrete vs N – ↑LC3, ↑Beclin-1, ↑p62 (235)

(Continued)
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enhanced oxidative stress (264). Additionally, using a model of
autophagy-deficient EVT cells (cells expressing a ATG4B-
negative mutant), the relevance of autophagy in the
trophoblast in the process of invasion was shown, as the
process was impaired in autophagy-deficient cells (189).
Consistently, in a mouse model where the ATG7 gene was
deleted only in trophoblast (not in fetuses), the placentas were
smaller than in wild type, due to reduced trophoblast invasion
and low vascular remodeling. Remarkably, this result needs to be
compared with those described in cancer cells lacking ATG7,
which is described in the next section. Altogether, these studies
demonstrate that autophagy plays a key role in trophoblast
function, especially in invasion and vascular remodeling during
placentation (Table 2). Despite this, how modulation of
autophagy affects trophoblast function in pathological
conditions has not been elucidated.
Frontiers in Oncology | www.frontiersin.org 10
Importantly, even if previous research indicates a positive
correlation between autophagy and cell invasion and vice-versa
(192, 264), the role of the whole autophagic process, intended as
autophagic flux, defined as the whole process from
autophagosome formation up to its fusion with lysosome and
cargo degradation (7), in the development of pregnancy-
associated diseases such as preeclampsia (PE), gestational
diabetes, or fetal growth (FGR) is still controversial. Indeed, for
example, in homogenized tissue from PE placenta and in
trophoblast cells obtained from PE placentas has been
described that LC3 and Beclin-1 are increased (197, 215),
suggesting that increased markers of autophagy correlate with
a poor placentation process (187). However, another study in PE
placenta and in the cell line JEG-3 showed an increase in LC3
without changes in Beclin-1 (265). Furthermore, additional work
showed, in homogenized tissue from PE placentas, a decrease in
TABLE 2 | Continued

Study model
Human placental tissue Cell line Autophagy marker Reference

– HchEpC1b exposed to oxidative stress ↑p62, (236)
– JEG-3 exposed to Cadmium ↑LC3, ↑p62 (237)
CTB BeWo ↑LC3 (238)
Plasmodium falciparum-infected women vs
non infected

– ↓Beclin-1,↓LC3 (239)

– HTR-8/SVneo with inhibition of Death-associated protein
kinase-3

↑LC3, ↑p62,↑ATG5 (240)

– HTR-8/SVneo exposed to hypoxia ↑LC3 (241)
– HTR-8/SVneo exposed to oxidative stress ↓Beclin-1,↓LC3, ↑p62 (242)
– HTR-8/SVneo with knockdown of plasmacytoma variant

translocation 1
↓Beclin-1,↓LC3, ↑p62 (243)

– HTR-8/SVneo exposed to Hydrogen peroxide ↑LC3, ↑Beclin-1 (244)
GDM vs N
CTB

– ↓Beclin-1, ↓ATG5, ↓LC3, ↓p62 (245)

Anemic vs polycythemic territories in TAPS – ↑LC3, ↑p62 (246)
– BeWo under hyperglycemic conditions reduce ↓LC3, ↓p62 (247)
With vs without Probiotic supplementation in
SP

– ↓Beclin-1 (248)

OB vs N – ↓LC3 (249)
– HTR-8/SVneo with overexpression of homeobox protein A7 ↑LC3, ↓p62 (250)
PE vs N – ↑LC3 (251)
– HTR-8/SVneo exposed to high glucose ↑LC3, ↓p62 (252)
GDM vs N – ↑LC3, ↑ATG7 (253)
DMSC from EPSM vs DSC normal
pregnancy

– ↑P62, ↓ LC3, ↓ATG5 (171)

– JAr exposed to cyclopamine and/or Gant61 ↑LC3 (254)
With vs without mycophenolic
Acid treatment in DMSC normal pregnancy

– ↑LC3, ↓p62 (255)

FGR vs N BeWo ↑LC3, ↑Beclin-1 (256)
N exposed to hypoxia BeWo exposed to hypoxia ↑LC3, ↑p62 (257)
– HTR-8/SVneo exposed to a-solanine ↑LC3, ↑Beclin-1↑ATG13, = p62 (258)
PE vs N – ↑p62, = LC3 (259)
– HTR-8/SVneo and Jar with Placenta specific 8 (PLAC8)

overexpression
↑ATG5-ATG12, ↑Beclin-1, ↓LC3 (260)
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Changes in protein involved in the autophagic process described in human placental tissues and trophoblast cell lines are showed in the table. Human placental tissue abbreviations: N,
normal term pregnancy; FTP, first trimester placenta; MD, midgestation; CS, cesarean section; VD, vaginal delivery; PE, preeclampsia; PES, severe preeclampsia; IUGR, intrauterine
growth restriction; FGR, fetal growth restriction; CTB, cell primary culture from human placenta cytotrophoblasts; STB, cell primary culture from human placenta syncytiotrophoblasts; MC,
monochorionic twin; MC sIUGR, monochorionic twin with selective intrauterine growth restriction; EVT, cell primary culture first trimester extravillous trophoblast; SP, spontaneous labor;
IL, induced labor; NE, neonatal encephalopathy; EOPE, early-onset preeclampsia; HUVEC, human umbilical vein endothelial cells; PIH, pregnancy-induced hypertension; EPSM,
spontaneous miscarriage; OB, maternal obesity; PTD, preterm delivery; GDM, gestational diabetes mellitus; HDCP, hypertensive disorder complicating pregnancy; ICP, intrahepatic
cholestasis of pregnancy; TAPS, monochorionic twin anemia-polycythemia sequence; DMSC, decidua mesenchymal stromal cells from human placenta. Cell line abbreviations: HTR-8/
SVneo, human first-trimester extravillous trophoblast cell line; JEG-3, human choriocarcinoma JEG-3 cell line; BeWo, human placental choriocarcinoma cell line; Sw.71, human first
trimester trophoblast cell line; HPVEC, human placental microvascular endothelial cells; HchEpC1b, extravillous trophoblast cell line; JAr, human choriocarcinoma trophoblast cell line.
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LC3 and Beclin-1 (206) and an increase in Beclin-1 and p62/
SQSTM1 (219). These controversial results could be due to
different factors: (i) the placenta is a complex organ, with
different cell types that perform different functions, so it is not
appropriate to use placenta homogenates and evaluate autophagy
in these samples, as the levels of autophagy can be different in the
different cell types. (ii) The time at which the analysis is
performed is important. Indeed, as reported, it has been
described that autophagy plays different roles in embryogenesis
and implantation, while its role in the later stages of pregnancy is
still unknown (8). (iii) It is key to evaluate a set of autophagic
markers to study the autophagic flux to reach a conclusion (at
least LC3 and an autophagic receptor such as p62/SQSTM1),
unfortunately, some of the studies only evaluate a single
autophagic protein, which is not sufficient to clearly indicate
what is happening in autophagy but only suggest that the
condition reported might affect this cellular process (Table 2).
Thus, the available information related with the role of
autophagy in placentation in terms of specific cells involved,
cellular processes affected beyond migration of invasion (i.e.,
processes of differentiation to endothelial phenotype,
angiogenesis, vasculogenesis or immune control) and the
modulation of autophagy according to gestational age, as well
as the complete autophagic flux in these different processes still
needs to be elucidated.

Role of Autophagy in Vascular Remodeling
in Cancer
As mentioned, the role of autophagy in tumor development is
controversial and dependent of the tumor characteristics and
stage of tumor development (266). Briefly, it has been suggested
that autophagy could promote aggressive characteristics of
cancer cells such as increased cellular invasion (11, 12), but it
also represents a barrier for cancer proliferation (13–15).

In cancer cells, the inhibition of autophagy results in impaired
metabolism proliferation, survival, and spontaneous tumor
malignancy depending not only on the tumor type but also of
its temporal development (267). This has been demonstrated in
different types of cancers using genetically engineered mouse
models with ablation of ATGs and consequently autophagy. For
instance, in pancreatic ductal adenocarcinoma, loss of ATG5
increases tumor initiation but avoids invasive cancer progression
(268). Consistently, in prostate cancer, lack of ATG7 delayed
tumor cell proliferation (269) and in lung cancer driven by
oncogenic Kras, the deletion of ATG7 reduces cell proliferation
and tumor weight compared with mice with intact ATG7 (270).
Conversely, Rao et al. show that ATG5 deletion accelerates early
oncogenesis, increasing the number of tumor foci and the
transition from hyperplasia to adenomas; however as cancer
develops, lack of ATG5 reduces the progression from adenoma
to adenocarcinoma, resulting in a decrease of tumors mass and
enhanced lifespan in mice (271). Altogether, these studies
demonstrate that autophagy plays a crucial role in cancer cells.

According to the stage, during the early phases of solid tumor
formation, autophagy plays an anti-tumorigenic (272) effect
because it limits the production of DNA damaging agents [i.e.
Frontiers in Oncology | www.frontiersin.org 11
Reactive Oxygen Species (ROS)], it promotes the elimination
of oncogenic proteins, and stimulates the induction of the
immune response in response to cellular stress (273).
Additionally, it has been shown that autophagy could promote
senescence in tumor cells in response to oncogenic stress, which
results in decreased tumor growth (274, 275). On the other hand,
it has been described that during tumor progression, autophagy
increases the tolerance to stressful conditions such as metabolic
changes and hypoxia within the tumor microenvironment,
leading to enhanced tumor cell survival and playing a pro-
tumorigenic role (276, 277). Autophagy can also increase
metastasis, supporting tumor growth, interacting with
pathways involved in cell motility and invasion (6), including
the promotion of Focal Adhesion (FA) turnover, which is a
component of the cell migration machinery, being Paxillin the
essential FA protein degraded by autophagy (278) and ECM
proteins. For example, in pancreatic ductal adenocarcinomas
hypoxia induces autophagy resulting in degradation of Lumican,
an extracellular matrix protein highly upregulated in different
cancers (279). Autophagy is also enhanced upon oncogenic
RAS activation (280, 281) and is required for the production
of multiple secreted factors, which include IL-6 and MMP2
in tumors bearing RAS mutations, facilitating cancer cell
invasion (282). All the described data indicate that cancer
cell migration could be molecularly regulated by autophagy
and vice versa, providing metabolites and nutrients in stress
conditions to the different cell types that form the tumor
microenvironment (169).

Thus, autophagy has a dual role in cancer since in tumor
initiation limits DNA damage agents such as ROS and increases
tumor cell senescence leading to an anti-tumorigenic
environment, preventing tumor promotion. However, in
established tumors autophagy provides the necessary
conditions for tumors to growth, regulating the invasion
and migration process enhancing tumor cell survival increasing
resistance to stressful conditions (176). Something similar
occurs in trophoblast cells, where it has been suggested that
autophagy regulates invasion, migration and vascular
remodeling of trophoblasts, allowing the optimal development
of the placenta (7). One difference between both processes is
that autophagy has a role in the promotion of the placentation
process from fertilization, whereas, as mentioned above, at
the beginning of tumor development autophagy exerts
anticarcinogenic functions protecting the host tissue, but as
the tumor progresses, autophagy supports tumor metastasis,
enhancing tumor cell survival by increasing the resistance
to stressful conditions (283). Finally, the role of autophagy
in cancer cells and trophoblast derived cells appears
quite similar, since it provides the conditions to carry out
cellular functions depending on the timing or stage in
cancer, promoting or stopping tumor growth, while in the
trophoblast autophagy could favor optimal placentation.
Nevertheless, the precise role of autophagy in modulating
the described cellular processes involved in vascular
remodeling in cancer progression or placentation needs to be
fully studied.
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CONCLUSION

In conclusion, the physiological placentation process of
trophoblast and the pathological metastasis of cancer cells
share similar mechanisms to proliferate, migrate, and invade
both trophoblast and cancer cells, modulating host immune
response. However, the main difference is that trophoblast
follows an organized pattern without metastasizing new tissues.
On the other hand, another shared process is autophagy, which is
required for invasion of trophoblast, and it has been shown in
cancer has a dual role being a tumor promoter and inhibitor,
depending on the stage and tumor considered. Nevertheless, the
precise role of autophagy in cancer progression or placentation
needs to be thoroughly studied. These studies could give a new
insight in cancer biology by evaluating the similarities with
Frontiers in Oncology | www.frontiersin.org 12
trophoblast cells and the highly regulated behavior they have
in placentation.
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