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Abstract

Motivation: The Sequence Read Archive (SRA) contains raw data from many different types of se-

quence projects. As of 2017, the SRA contained approximately ten petabases of DNA sequence

(1016 bp). Annotations of the data are provided by the submitter, and mining the data in the SRA is

complicated by both the amount of data and the detail within those annotations. Here, we intro-

duce PARTIE, a partition engine optimized to differentiate sequence read data into metagenomic

(random) and amplicon (targeted) sequence data sets.

Results: PARTIE subsamples reads from the sequencing file and calculates four different statistics:

k-mer frequency, 16S abundance, prokaryotic- and viral-read abundance. These metrics are used

to create a RandomForest decision tree to classify the sequencing data, and PARTIE provides

mechanisms for both supervised and unsupervised classification. We demonstrate the accuracy of

PARTIE for classifying SRA data, discuss the probable error rates in the SRA annotations and intro-

duce a resource assessing SRA data.

Availability and Implementation: PARTIE and reclassified metagenome SRA entries are available

from https://github.com/linsalrob/partie

Contact: redwards@mail.sdsu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The combination of high-throughput sequencing technologies and

advanced bioinformatics techniques are rapidly accelerating genomic

and metagenomic analysis (Aziz et al., 2008; Meyer et al., 2008) and

leading to the explosive growth of sequence data (Cochrane et al.,

2013; Kodama et al., 2012). The NIH Sequence Read Archive (SRA)

was started in 2009 and is the primary archive of high throughput se-

quence data (National Center for Biotechnology Information, 2009).

Sequence data was deposited into the SRA at more than 10 Tbp per day

in 2016 (data from https://www.ncbi.nlm.nih.gov/sra/docs/sragrowth/).

Sequence data deposited in the SRA is necessarily dependent on

the submitters for accurate classification of the data. The SRA cur-

ators strive to accurately capture appropriate metadata on the

deposited sequences; however, annotations are not uniform or stand-

ard leading to a variety of ways to describe samples deposited to the

databases. DNA sequencing has revolutionized microbial ecology

(Dinsdale et al., 2008), however there are two orthogonal approaches

commonly used to explore the microbial universe: amplicon where a

part of a single gene (usually the 16S gene) is amplified and sequenced

(Human Microbiome Project Consortium, 2012), and shotgun meta-

genomics (random) (Handelsman, 2004) where all the DNA is ex-

tracted and sequenced (Edwards, 2006;DeLong et al., 2006). The

former provides a rapid, portable and cheap method to identify the

organisms in a sample, while the latter provides details about those

organisms and the functions that they are performing (Dinsdale et al.,

2013). Unfortunately, these two techniques, which provide different
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data sets and require different analyses, are often included under the

‘metagenomics’ umbrella in the SRA.

We created the partition engine, PARTIE to curate metagenomics

data from the SRA into amplicon (targeted) and shotgun metagenomic

(random) data sets. PARTIE analyzes four aspects of the sequence file:

the unique k-mer frequency, the abundance of 16S rRNA sequences and

the prokaryotic- and viral-read abundance. We demonstrate the accur-

acy of PARTIE for classifying SRA data, discuss the probable error rates

in the SRA annotations and introduce a resource assessing SRA data.

2 Materials and methods

Three sequence databases were created: a 16S rRNA database (9254

genes), a phage database (2662 genomes) and a prokaryotic genome

database (1650 genomes). The 16S and prokaryotic databases were

downloaded from the GenBank ftp site. The phage genomes were

downloaded from the PHANTOME website.

The sra-toolkit’s fastq-dump program is used to extract the first

10 000 reads from the SRA file and to output the reads in fasta format.

These reads are aligned against the three previously discussed databases

using the program Bowtie2, and the percentage of reads that hit to each

databases is calculated (Langmead and Salzberg, 2012). The percentage

of ‘unique k-mer’ is also calculated for each metagenome by using the

program Jellyfish to find all k-mer (default, k¼15) in the metagenome

read subset, and counting those k-mer that appear 10 or less times

(Marçais and Kingsford, 2011). This criterion relies on the observation

that samples containing amplicon sequences have a high number of

similar k-mer resulting in a decrease in unique k-mer abundance.

Conversely, samples containing shotgun metagenomic sequences have

more random sequences, and thus a wider distribution of unique k-mer.

The four frequency traits (16S, phage, prokaryotic, unique

k-mer) are calculated for each of the downloaded SRA metage-

nomes, along with the response type (Amplicon, Other, WGS).

Initially, an unsupervised RandomForest using the R library

(Breiman, 2001) was used to classify the data, and then we pruned

some to generate a refined classification engine.

3 Discussion

PARTIE was first used to calculate the parameters for 211 787 SRA

datasets in which the sequencing strategy was annotated by the

submitter as either Amplicon (160247 samples), WGS (44 651 sam-

ples) or a combined data set that were classified as ‘Other’ (6889 sam-

ples). The ‘Other’ is a combination of different sequencing library

construction approaches where there are too few of any individual

data sets to build a robust classifier for them (Supplementary Table

S1). The partition engine workflow begins by identifying all the poten-

tial metagenomes from the Sequence Read Archive. The SRA SQLite

dumps from SRAdb (Zhu et al., 2013) are used to identify all po-

tential metagenome sequences. We currently identify samples

where the library source is ‘METAGENOMIC’, the study type is

‘METAGENOMICS’, or where the sample’s scientific name can be ex-

panded from microbiome or metagenome. We focus on correctly clas-

sifying the whole genome shotgun (WGS) sequencing data sets, and so

we filter those to remove any in which the annotators identify the li-

brary strategy as AMPLICON or PCR. The relative contribution of

each of the approaches is shown in Supplementary Figure S1. Those

metagenomes are downloaded using the sra-toolkit’s prefetch capabil-

ity and the Aspera ascp-client (National Center for Biotechnology

Information, 2009). The initial classification of these samples (Fig. 1)

by the random forest resulted in a 5.4% out of bag error with the

most important predictor variables being the percent unique k-mer se-

quences and the percent 16S rRNA (Supplementary Fig. S2). Random

Forests also predicted that both the instrument type and read length

are minor predictors of metagenome type. However, there is an un-

even distribution of sequencing with different machines, with currently

many more amplicon sequences generated by the Illumina

MiSeq and many more WGS data sets generated by the Illumina

HiSeq 2000 (data not shown). This is not a variable that is depend-

ent on the sequencing per se, and is likely to change over time, and

therefore was excluded from the analysis. It was apparent from the

data that the classification could be improved through manual

curating. Since the fraction of unique k-mer was the most important

predictor, a threshold value was calculated to reclassify each meta-

genome solely on the k-mer abundance. When the k-mer frequency

data was plotted on a histogram, a distinct bimodal distribution was

apparent (Supplementary Fig. S3). The centroids of the two peaks

were identified using k-means clustering (Hartigan, 1975) resulting

in a midpoint value at 47%, which was rounded to 50% for strin-

gency and simplicity. Using this revised calculation, several ques-

tionable data sets were omitted from the training data sets. The

amplicon test set was decreased by 3502 data sets to 156 745 data

sets. The WGS data was decreased by 7032 data sets to 37 619 data

sets and the other data sets were reduced by 7. This robust training

set was used to build an automatic classification and partition en-

gine that had a 2.45% error rate (Supplementary Table S2). The

PARTIE analysis package is being used to routinely reclassify data

sets from the SRA. Over 270 000 datasets have been reclassified as

of March 1, 2017, and an up to date list is available at https://

github.com/linsalrob/partie/. The number of data sets of each type

that were reclassified is shown in the matrix in Supplementary Table

S3. One fifth of the random sequencing datasets have been reclassi-

fied as amplicon projects. We also recommend examining the four

calculated parameters as there are cases in which both WGS and

amplicon sequencing is used (e.g. Run ID ERR162903), and no

automatic partition approach will correctly classify this library.
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Fig. 1. Scatter plot of percent 16S rRNA vs percent unique k-mer. The se-

quence source annotation was obtained directly from the sequence read

archive (SRA) database. Eighteen different sequence source annotations

were lumped into the ‘Other’ category
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