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A galactic microquasar mimicking winged radio
galaxies

Josep Marti® !, Pedro L. Luque-Escamilla?, Valenti Bosch-Ramon3 & Josep M. Paredes3

A subclass of extragalactic radio sources known as winged radio galaxies has puzzled
astronomers for many years. The wing features are detected at radio wavelengths as low-
surface-brightness radio lobes that are clearly misaligned with respect to the main lobe axis.
Different models compete to account for these peculiar structures. Here, we report obser-
vational evidence that the parsec-scale radio jets in the Galactic microquasar GRS 1758-258
give rise to a Z-shaped radio emission strongly reminiscent of the X and
Z-shaped morphologies found in winged radio galaxies. This is the first time that such
extended emission features are observed in a microquasar, providing a new analogy for its
extragalactic relatives. From our observations, we can clearly favour the hydrodynamic
backflow interpretation against other possible wing formation scenarios. Assuming that
physical processes are similar, we can extrapolate this conclusion and suggest that this
mechanism could also be at work in many extragalactic cases.
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not-so-large but significant number of low-luminosity
radio galaxies exhibit extended radio lobes with an addi-
tional pair of large, low-brightness wings oriented at some
angle from the jet. This gives these extragalactic sources the X or
Z-shape that led to their nickname of winged radio galaxies
(WRGs). Historical analysis of a scarce sample of 3C sources! has
already revealed that more than 60% of the more powerful, edge-
brightened, radio galaxies of FRII-type? exhibit some kind of
distortion in their large-scale structure, of which 23% were found
to have anti-symmetric wings. The population of WRGs has
continued to increase by nearly an order of magnitude in most
recent works> 4, with no definitive example of FRI-type galaxies
being reported®. These sources have recently received much
attention because they could be signposts of the coalescence of
supermassive black holes in galaxy mergers. According to spin-
flip models®®, the merger process leads to a change in the
rotation axis of a supermassive black hole producing the jet to
which the WRG morphology is attributed. Moreover, their
abundance might be useful for predicting the magnitude of the
gravitational wave background®.

However, spin-flip is not the only possible explanation for
origin of the wings. These features may still be relic emissions
from previous orientations of a jet suffering conical precession’ or
an apparently double bipolar jet system associated with a pair of
unresolved active galactic nuclei® 19 (AGNs). On the other hand,
some authors have claimed that the wings originate hydro-
dynamically from the diversion of the backflow of shocked jet
material along the steepest pressure gradient of the surroundin
medium, rising buoyantly or being driven in this direction® 171>,
It has been stated that subsonically moving wings of hydro-
dynamic origin should appear shorter than supersonically
advancing primary lobes, although this is contradicted by
observations’. To circumvent this issue, wings could be acceler-
ated out of an overpressured cocoon, via a de Laval nozzle, to
form a 1pair of loosely collimated supersonic flows of synchrotron
plasma'® 6. The Z-shape of some WRGs, which cannot be
naturally explained from spin-flip models, has been modelled as
the interaction of the jets with a rotational medium induced by
galaxy mergers!”> 18, This model was later generalised to a jet-
shell scenario'®. All these theories have drawbacks and merits,
and no consensus has yet been reached regarding the onset of the
WRG morphology.

A key aspect here is whether the WRG shape somehow ori-
ginates from the final interaction between the jets and their
environment. In this case, one expects that the underlying physics
will be hydrodynamical, being mainly dependent on a few basic
parameters, such as the jet density, medium density and jet
power, among others. The relationship between these parameters
is anticipated to follow a dynamic similarity at different scales.
This jet/medium interaction hypothesis would become strongly
supported if WRG-analogues were found to exist in downscaled
systems with bipolar relativistic jets, such as stellar micro-
quasars'® 20, These systems are well known for the strong par-
allelism of their accretion-ejection phenomena with radio galaxies
and AGNs?! 22, By appropriately scaling the dynamic similarity
laws of fluid mechanics to the very different environments of
microquasar and extragalactic jet sources, there is no a priori
argument against this parallelism also applying to regions far
beyond the central engine of these systems where the lobes form.

In this context, here, we report that the Galactic microquasar
GRS 1758-258 has a large-scale Z-shaped morphology that
mimics that of many extragalactic WRGs. This object, which has
this previously unseen behaviour, is one of the two strongest hard
X-ray sources in the vicinity of the Galactic Centre??. Its arcmin
radio jets change in morphology over a matter of a few years, and
based on causality arguments the source cannot be located
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Fig. 1 Z-shaped radio morphology of the microquasar GRS 1758-258. This
map was obtained from the concatenation of VLA runs carried out at the 6 cm
wavelength in the D and C array configurations conducted in 1992, 1993, 1997
(archival data) and 2016 (new data from this work). Details are given in the
Methods section and Table 1. The central core and the north and south radio
lobes are labelled together with the unrelated sources #1, #2 and #3 in the
same field of view. The white dashed line outlines the Z-shaped appearance of
the faint emission extensions emanating from both lobes. The bottom left
ellipse shows the angular resolution and corresponds to the full width at half
maximum of the VLA synthesised beam (11.31 x 7.18 arcsec?, with a position
angle of 13°). The right horizontal bar (30 arcsec long) provides the map
angular scale, with north being up and east being left. The brightness levels
are illustrated by the colour bar to the right. The intensity scale used is
logarithmic and expressed in Jansky units (1Jy =10"20W m™2 Hz ™).
Meaningful radio emission starts at the 4o level of approximately 15 ply

beyond 12kpc?®. A heavily absorbed optical and infra-red
counterpart is consistent with an intermediate-mass binary
likely hosting an A-type main sequence star at a distance similar
to that of the Galactic Centre, and a compact stellar companion,
i.e. either an accreting neutron star or a black hole?. A distance
value of 8.5kpc will be adopted throughout this work. This
ensures consistency with both the previous upper limit and the
spectral energy distribution fits based on optical and near-infra-
red observations made using the Gran Telescopio CANARIAS
and the Hubble Space Telescope, respectively>> %6, As evidenced
in the following sections, the Z-shaped structures in GRS 1758-
258 allow us to strengthen the plausibility of the wing backflow
scenario over alternative interpretations proposed for its extra-
galactic analogues at a larger scale.

Results

Interferometric radio observations. Using the Karl G. Jansky
Very Large Array (VLA), in 2016, we conducted a new obser-
vation of GRS 1758-258, which had remained unmonitored by
sensitive radio interferometers for nearly a decade. The map in
Fig. 1, resulting from the combined analysis of our new campaign
and selected sensitive VLA archival radio observations (see
Methods section and Table 1), provides the current deepest view
of this microquasar environment at cm radio wavelengths.

Discovery of a Z-symmetric radio morphology in GRS 1758-
258. Extended emission features, emanating from the northern
and southern radio lobes, can clearly be seen in Fig. 1. These
features were marginally detected in previous works*® 27, being
interpreted as a surrounding cocoon-like structure made of
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Table 1 Log of VLA 6 cm observations used in this work

Project code VLA conf. Observation date On-source time (s) Bandwidth (MHz) rms Noise (uJy/beam) Relative weight?
16A-005 @ 2016 Mar 04-22 7659 2048 43 75%

AS930 C 2008 Apr 01-12 14,505 50 9.4 b

AM560 @ 1997 Aug 03-24 20,810 50 9.2 17%

AM428 CD 1993 Oct 03-04 6460 50 1.8 8%

AM345 D 1992 Sep 26-27 5690 50

AM385 D 1992 Sep 10-11 8550 50

b Not used for imaging in Fig. 1

@ Weight indicative of contribution to final image shown in Fig. 1. For CD-D configuration data, the stated value is for the three available projects combined

shocked jet matter originating from the interaction of the jet with
its interstellar medium (ISM). With the new, more sensitive data,
the faintest southern jet wing is detected well above the 6c level
(see also the contour map in Supplementary Fig. 1). Now, the
extended emission complex actually exhibits the Z-symmetric
appearance typical of some WRGs. The observed morphology
also departs significantly from the one-sided, elliptical ring-like
feature known to surround the microquasar Cygnus X-1 and
probably inflated by a dark jet?®. A few radio sources that overlap
with the field of view (numbered #1, #2 and #3 in Fig. 1) are also
present. They remain detected even in super-resolution maps
with pure uniform weight. This observation clearly indicates a
compact nature; therefore, these radio sources are likely to be
unrelated to the extended jet flow.

Discussion

We have carried out a first assessment of the different WRG
scenarios mentioned above for the case of GRS 1758-258,
although a full theoretical approach is beyond the scope of this
work. A Z-shape is hard to reconcile with a spin-flip model as
there is no emission connecting the wings to the central source®”.
In addition, according to our current understanding of stellar
evolution, black hole mergers are certainly unexpected to occur
during the GRS 1758-258 jet lifetime. Moreover, assuming that
both the accretion rate and disk viscosity properties remain
constant, the jet realignment time scale’” 3! would be on the
order of

Talig 0 3( ¥ ) e (adisk> o Mgn e Macc e
Myr T \0.1 0.03 103M,, 0.1 Mgaq '

(1)

with a being the non-dimensional spin of the black hole, agis the
disk viscosity parameter, Mpy the black hole mass and M, the
rate of accretion. For a typical AGN (i.e. 3C 293), 7,5 ~ 0.7 Myr,
but for a microquasar black hole with 10M, Talig ~ 1.3 Myr, which
is completely unrealistic, as it considerably exceeds the jet travel
time and age estimated below (within 10°~10° year).

Neither precessing models are appropriate to explain the
Z-type morphology in the GRS 1758-258 case. At first glance, jet
precession-like behaviour (i.e. actual precession or pseudopre-
cession caused by Kelvin—Helmholtz instabilities) could occur in
this system given the noticeable position changes in the most
conspicuous northern hot spot (Fig. 2). These motions develop on
a few year time scale and are compatible with those previously
reported?*. From the central core point of view, the observed hot
spot shifts imply a precession-like cone angle of, at most, a few
degrees. This consideration seems difficult to reconcile with the
fact that the GRS 1758-258 wings are extremely long features.
Their projected arc-min length is almost equal to that of the
primary lobes themselves, equivalent to approximately 3 pc at an
assumed Galactic Centre distance of 8.5 kpc. Invoking precession
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to explain these features would require a much larger cone angle
of several tens of degrees. However, to our knowledge no such
significant changes in the position angles of these jets have ever
been reported.

Another possibility would be a change in the accretion disc
long-term configuration, leading to a change in the jet direction.
Independent of the jet formation mechanism (i.e. the
Blandford—Payne®? vs. the Blandford—Znajek®® mechanism), the
large-scale jet orientation depends on the global accretion disc
orientation®*, which in turn depends on the accreted material
angular momentum. This change in the accretion disc orientation
requires a strong modification in the star-compact object mass
transfer on time scales between those of the backflow and of the
overall large-scale dynamics (~10°-10° year; see below). Such a
marked change, if possible at all, would point to an evolved stellar
companion, which is more prone to significant mass-loss changes
than an ordinary main sequence star.

All the previous reasoning arguably leaves a hydrodynamical
interpretation as the only and most logical scenario. The observed
facts also point in this direction. The projected length of the
southern jet is 30% longer than that of the northern one; the
brighter northern jet and hot spot are closer to the central core
than their fainter southern counterparts. This is consistent with
these jets evolving in an inhomogeneous ISM. Continuous jets
propagating in a medium follow an evolution in terms of length
where fie(t) ~ (Pjet/p)1/5t3/5 with t being the time, Pj the jet
power, and p the medium density®> 6, With all the remaining
conditions being equal for both jets, the observed 30% difference
in e would correspond to a north-south density ratio of (Jies/
ljetN)5 ~(1.3)° ~4. On the other hand, although the brighter
northern jet emission could be associated with Doppler boosting
effects, as the jet would be approaching the observer, this cannot
be the case for the brighter emission of the northern backflow
(assuming that it is fast enough to relativistically beam its emis-
sion), as its motion should be directed away from the observer. A
brighter northern backflow is naturally explained if the proposed
higher density of the ISM gives rise to a more compact interaction
region, with a higher magnetic field, and thus stronger synchro-
tron radio emission.

Inspection of the single dish surveys of CO emission in the
Galactic Plane®” strongly supports the idea of a north-south
density difference, as illustrated by Fig. 3 and Supplementary
Figs. 2 and 3. A conspicuous gas cloud is found just north of GRS
1758-258, at a radial velocity corresponding to a distance of 8.5
kpc based on kinematic arguments®®, with the microquasar
practically lying at its outer edge. This location, and the likely
coincidence in distance, indicates a real physical interaction
between the two objects. In this context, the evolution of the
northern jet would be significantly slowed down as it impinges
the cloud, whereas the southern jet would flow towards a not-so-
dense environment, finding less resistance than the northern jet.
For the same reason, the backflow from the northern jet would
become the longest winged feature as it flows towards the south.
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Fig. 2 Comparison of the central core and northern hot spot positions in GRS 1758-258. The equatorial coordinates of these microquasar features during
selected epochs of VLA observations are displayed in the J2000.0 reference system. The a and b panels correspond to the central core and the northern
hot spot, respectively. Although the central core remains fixed within astrometric errors, the hot spot experiences clear shifts on the order of a few arcsec
in time scales of years. Error bars correspond to one standard deviation, as reported by the JMFIT task of AIPS
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Fig. 3 Cloud of CO along the GRS 1758-258 line of sight. This map has been
created from the Dame et al. survey of CO emission in the Galactic Plane3’.
The cloud is outlined with red contours and its emission peaks at a radial
velocity of 210 km s™" with respect to the local standard of rest (LSR),
corresponding to a kinematic distance of 8.5 kpc. The position of the
microquasar is marked with a white circle, and the dashed line is coincident
with the position angle of the jets. The horizontal bar (15 arcmin long) gives
the angular scale. North is up, and east is left. The brightness scale
corresponds to the antenna temperature of CO emission in Kelvin

In addition, both backflow features would exhibit the north-south
brightness difference mentioned above. This scenario could also
naturally explain the clear backflow asymmetry with respect to
the jet axis, as ISM density gradients other than the one from
north to south may exist. Namely, a negative east-west density
gradient at the north, and a positive one at the south, would
deflect the material shocked at the jet hotspots towards the less
dense region and would make the backflows point in opposite
directions away from the jet axis (similar to asymmetric density
distribution effects in WRGs'® 16). Unfortunately, the CO dis-
tribution shown in Fig. 3 does not confirm nor rule out such east-
west gradient hypothesis. Its modest resolution prevents a bold
statement beyond the existence of a strong north-south density
gradient. Nevertheless, assuming that CO emission is optically
thin at the edge of the cloud in which GRS 1758-258 is located,
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Fig. 4 Slice of CO emission centred on GRS 1758-258. The black squares
taken from the Dame survey illustrate how the CO antenna temperature
changes along the position angle of the microquasar jets. Error bars are
defined as one standard deviation of the emission-free background. The left
side corresponds to the direction of molecular cloud impingement, whereas
the right side denotes the region far away from it. The dashed line displays
the exponential fit used in the main text to estimate the density variations
on scales comparable to the jet angular size (3 arcmin long thick horizontal
bar)

the CO brightness profile would be consistent with a cloud
density actually changing by the previously estimated factor of ~4
on a linear scale comparable to the extended jets. We estimated
this from a simple exponential fit to the profile of CO emission
along the position angle of the jets, as shown in Fig. 4. Here, the
fitted antenna temperature varies by this amount within a dis-
tance of approximately three times the jet linear size (~3 arcmin).
Unfortunately, the coarse angular resolution of the Dame survey
does not allow a more detailed analysis beyond this simple order
of magnitude assessment.

It is also worth noting that assuming [ ~4 pc, Pje¢~ 103°-
10 ergs™!, and number density p/my ~0.1-10cm™, one
obtains jet ages of ~10%~10° year. Longer jet ages are not favoured
because they require low-power, high-density scenarios incon-
sistent with the undetected proper motion of the central binary
system, which would significantly affect the jet shape. In fact,
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Fig. 1 suggests an upper limit for jet bending of a few degrees
(~0.1rad), which implies jet ages below ~4-10%year
(100 km s71/v), where v is the projected proper velocity of the
system. From the most recent core position in Supplementary
Table 1 and previous high-angular resolution VLA observa-
tions®”, one infers that v <400 km s~1, thus constraining the jet
age to be greater than ~ 10° year.

From all these results, we can state that GRS 1758-258 presents
a Z-type morphology strongly resembling that of many WRGs,
which can be simply explained by a light jet propagating in a
medium with an asymmetric density distribution. In this context,
long wings are allowed to exist, accounting for the same mor-
phological characteristics observed in WRGs™ . In addition, 3D
simulations of interactions of jets with medium inhomogeneities
under suitable conditions are in agreement with the observed
morphology in this microquasar®® *!. Assuming dynamic simi-
larity in the jet/medium interaction, what we expect to observe in
GRS 1758-258 and WRGs would be the manifestation of the same
type of phenomenon; therefore, from microquasars we can
extract inferences adaptable to the extragalactic case. The
hydrodynamical scenario appears then as a natural interpretation
of the WRG morphology with clear observational proof in a
scaled-down Galactic context. Nevertheless, our finding does not
necessarily exclude that other proposed scenarios for WRGs are
at work in some cases.

The preferred hydrodynamic model that most closely matches
our observations is the one based on a light jet/medium colli-
sion'> 17, The alternative scenario of overpressured cocoons is
less likely, as microquasars usually evolve in low-density envir-
onments*> 43, and no channel connecting wings with the central
source is evident in our highly sensitive maps. Moreover, the
strong axial asymmetries would still require inhomogeneous
environments in this case. Buoyancy may have a role here, but
not a protagonist one.

Therefore, our discovery strengthens the plausibility of the
jet/medium interaction and backflow scenario in the genesis of
Z-shaped morphologies. Beyond this robust result, understanding
Z-type sources such as GRS 1758-258 might yield clues regarding
the nature of X-shaped WRGs considering that a high percentage
of these sources could be in fact Z-shaped ones'> 2 located in the
distant universe, being observed without enough sensitivity.
Provided that dynamic similarity applies, our finding that the
WRG morphology occurs in a Galactic source as a result of a clear
jet/medium collision yields another possible implication in the
extragalactic field. In particular, our GRS 1758-258 results lead us
to speculate regarding a lower frequency of spin-flip events in the
observed WRG population. One should then be cautious and not
consider all wing-like features in radio galaxies as secure signposts
of past merger events. If correct, this could also affect the
expected gravitational wave background, whose study is beyond
the scope of this paper.

One can also anticipate that additional WRG-like microquasars
will possibly emerge in the near future when modern inter-
ferometers other than the existing Jansky VLA or eMERLIN, such
as the Square Kilometre Array and MeerKAT, become available.
Although a quantitative prediction is not straightforward, this
expectation appears conceivable when considering that nearly
one-third of confirmed microquasars currently known in the
Galaxy** display compelling evidence of interaction with their
ambient ISM. This includes not only co-location within a dense
molecular cloud*> #¢ but also deceleration of the relativistic
ejecta?’, direct jet collision with nearby clouds*®, and long-
distance effects due to jet impact’, in addition to the Cygnus X-1
jet-driven bubble mentioned above?3. Nevertheless, for a defini-
tive answer to the question of WRG morphology, we need further
observations of sufficient quality to fully trace the lobe/wing
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structure and thus to have a useful characterisation of these
sources to test the theoretical models. Only microquasars offer us
hope of studying the live evolution of relativistic jets at large
distance scales from their sources. Meanwhile, GRS 1758-258,
with its bipolar jets evolving at human time scales, provides an
excellent and nearby testbench for such a purpose.

Methods
Selection of VLA observing runs. In our quest for better sensitivity in an attempt
to reveal fainter structures around the microquasar GRS 1758-258, in this work we
combined both historical and modern VLA observations. The log of the observing
runs used is listed in Table 1, all of which correspond to C-band receivers at the 6
cm wavelength. The selection criterion used was to search for observing runs
longer than one hour that were either continuous or accumulated within less than a
week. Some 1992 observing runs satisfying this criterion were rejected because the
central source was clearly undetected, which could affect the homogeneity of the
combined data set. The sensitivity of modern observations, after the state-of-the-art
VLA upgrade that began in 2011, is remarkably boosted with respect to the old
system, especially thanks to the GHz bandwidth routinely available at present.
The VLA antenna positions were selected to be in the C configuration of the
array, with maximum baselines of 3.4 km. For GRS 1758-258, the largest angular
scale that can be mapped with this configuration matches well the arcmin
dimensions of the jets. To further enhance the sensitivity to extended emission, we
also retrieved the best data sets available for our target in the more compact D and
CD configurations with the same selection criterion as stated above. The historical
data sets were all acquired in two intermediate frequency bands, both of which
were 50 MHz wide, sampling both the right and left circular polarisation products
from the VLA correlator. In turn, our modern observing runs were acquired using
an NRAO default spectroscopic mode that provided similar correlator products but
for 16 spectral windows divided into 64 channels, with each window covering 128
MHz. The full bandwidth was then 2.048 GHz. Historical and modern data sets
were calibrated using the AIPS and CASA software packages of NRAO,
respectively. Special attention was devoted to flagging data that were bad or corrupt
due to instrumental or radio frequency interference problems. Calibrator 3C286 or
3C48 was used to establish the flux density scale as well as the bandwidth
calibration for data in spectral mode. Phase calibration was always determined
from interleaved scans made using the NRAO calibrator J1751-253, which is
located 2.1° away from our target. Phase self-calibration could be attempted for the
2016 observing run, with reasonable success, but only when solutions were
averaged with a 2 min interval across the whole GHz bandwidth. Only the 2016
radio map obtained using CASA is included here for illustrative purposes (see
Supplementary Fig. 4); as shown, it is very similar to previous deep images of GRS
1758-258%%. We also checked for any systematic shifts between the CASA and AIPS
maps. Based on point sources in the field, the averaged offsets did not exceed 0.07
arcsec and 0.17 arcsec in right ascension and declination, respectively. These
numbers represent a small fraction of the synthesised beam and we concluded that
this would not affect our conclusions.

Merging of VLA data sets. Combining the historical and modern data sets is by
no means an easy task given their noticeably different instrumental setups. We
proceeded by averaging channels in each 2016 spectral window and splitting the
modern observing run into data sets, each with consecutive pairs of spectral
windows. This rendered the modern and historical observations compatible and
ready to be finally concatenated using the DBCON AIPS task. To combine the data
sets from different project codes presented in Table 1, we adopted a reweighting
criterion based on the sum of gridding weights reported by the IMAGR AIPS task.
The DBCON parameters were adjusted such that each project code was weighted
according to the inverse squared of its individual root mean square (rms) noise, as
listed in Table 1. The last column of the table gives the final relative weight of each
project in terms of its contribution to the final image in Fig. 1. The CD and D
configuration projects were first separately stacked before merging with the com-
bined C configuration runs. The oldest data sets were converted from the B1950.0
to the J2000.0 reference system using the UVFIX AIPS task. Minor shifts in the
phase centre had to be accounted for in some cases, but only at the few arcsec level.

There is a price to pay for this merging process, i.e. some degree of bandwidth
smearing, as data from significantly different frequencies within the C-band are
being combined. Fortunately, this kind of chromatic aberration is only severe far
from the phase centre; our target and its extended jets were always very close to it.
The central observing frequencies were 4.8 and 5.5 GHz for historical and modern
VLA data, respectively. The smearing effect can be parametrised in terms of the
fractional bandwidth times the angular offset in units of the synthesised beam. The
average fractional bandwidth of the whole data sets can be estimated as ~1/4, and
the hot spot angular offset is ~6 synthesised beams. Thus, the smearing parameter
becomes approximately 1.5 at the hot spot locations. The expected reduction in
peak response and synthesised beam broadening in Fig. 1 should not exceed 35 and
50%, respectively®”. With this in mind, full natural weight maps were created using
IMAGR and deconvolved using the CLEAN algorithm applied to the combined
data set. A taper of 25 kA was applied to the interferometric visibilities to better
enhance the extended emission (Fig. 1).
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After some tests, the 2008 observing run was dropped from the combined data
set as faint extended emission could not be well imaged from it alone, and was used
only for the hot spot astrometry in Fig. 2. This action is also justified because the
2008 coverage of the Fourier plane and the hot spot signal-to-noise ratio were not
as good as in 1997 and 2016. The effects of Fourier plane sampling on Fig. 2
positions were further explored by taking the best 2016 map as a model and
generating a simulated data set with the uv-coverage of 1997 and 2008. The core
and hot spot coordinates were consistently recovered within 0.2 and 0.5 arcsec,
respectively. Thus, this possible systematic error appears to be well below the > 2
arcsec position shifts displayed in Fig. 2.

Going back to the bandwidth smearing concerns, the comparison of the final
image in Fig. 1 with the CASA map in Supplementary Fig. 4 provides confidence
regarding the reality of the backflow features being detected. Despite their different
sensitivities to extended emission, the same backflow emission features can be
traced in both images. This is very reassuring, as the CASA map was computed in
multifrequency synthesis mode, where no bandwidth smearing effects are expected.

The final result in Fig. 1 clearly reveals the Z-morphology in GRS 1758-258. The
secondary lobes in this microquasar are likely to evolve at subrelativistic speeds on
time scales of at least several decades, i.e. longer than those of the relativistic
primary jets and their hotspots (~10 year). Therefore, we do not expect too much
blurring; thus, their arcmin morphology can be obtained by combining observing
runs separated by ~20 year.

Data availability. All VLA original raw data sets can be directly downloaded from
the public NRAO Science Data Archive at https://archive.nrao.edu/archive/
advquery.jsp. They can be searched for using the project codes listed in Table 1.
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