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Abstract
Computational modelling and simulation is increasingly being used to complement tradi-

tional wet-lab techniques when investigating the mechanistic behaviours of complex biologi-

cal systems. In order to ensure computational models are fit for purpose, it is essential that

the abstracted view of biology captured in the computational model, is clearly and unambig-

uously defined within a conceptual model of the biological domain (a domain model), that
acts to accurately represent the biological system and to document the functional require-

ments for the resultant computational model. We present a domain model of the IL-1 stimu-

lated NF-κB signalling pathway, which unambiguously defines the spatial, temporal and

stochastic requirements for our future computational model. Through the development of

this model, we observe that, in isolation, UML is not sufficient for the purpose of creating a

domain model, and that a number of descriptive and multivariate statistical techniques pro-

vide complementary perspectives, in particular when modelling the heterogeneity of dynam-

ics at the single-cell level. We believe this approach of using UML to define the structure

and interactions within a complex system, along with statistics to define the stochastic and

dynamic nature of complex systems, is crucial for ensuring that conceptual models of com-

plex dynamical biosystems, which are developed using UML, are fit for purpose, and unam-

biguously define the functional requirements for the resultant computational model.

Introduction
Over the past twenty years, a systems approach to research has become more widespread
within biology. Researchers in the biological sciences are now increasingly using computer
models and simulations to better understand intercellular and intracellular processes of living
organisms. The merits of a systems biology approach have been discussed in depth by Kitano
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[1–3], with his project lifecycle diagram (Fig 1 from [2]) having the potential to become the
classic diagrammatic representation of how systems biology is underpinned by a hypothesis-
driven research cycle. More recently, the Complex Systems Modelling and Simulation (CoS-
MoS) process has been developed [4–6]. This process provides a framework of leading practice
for developing and using simulations to explore complex systems, and is comparable to project
lifecycle methodologies used in industry. Like these traditional methodologies, the CoSMoS
process is organised around phases, which contain a set of products (deliverables), and associ-
ated activities. The CoSMoS process has three phases: Discovery phase, which establishes the
scientific basis of the project, identifies and models the domain of interest, and formulates sci-
entific questions; the Development phase, which produces the actual simulator; and the Explo-
ration phase, which uses the simulator for in silico experimentation; the results of which are
used to explore the scientific questions defined previously. Along with these phases, there are
key products associated with CoSMoS projects: Domain Model, Platform Model, Simulation
Platform, and the Results Model (see Fig 1).

The domain model is an abstract representation of the actual system of interest (the
Domain), which documents our understanding of the domain into explicit statements, that
may relate to assumptions, constraints, definitions, and indeed relationships or interactions
between components of the domain (discussed by Polack et al [7, 8]). One approach to semi-
formally document the required functionality of a system, which has become the de facto stan-
dard for modelling software systems by the software engineering community [9], uses the Uni-
fied Modelling Language (UML). The UML specification (version 2.4) [10] defines 14 separate
diagramming notations, split across three main groups: structure diagrams, which show the
static structure of components within a system; behaviour diagrams, which show the dynamic
behaviour(s) of components within a system; and implementation diagrams, which show the
hardware and software infrastructures within a system (see Fig 2 for the taxonomy of UML
diagramming notations).

With respect to biology, UML has previously been used by Bersini et al [11] to diagrammati-
cally model the content and functions associated with biological systems, and [12] to model
Rosen’s Metabolism-Replacement system that is used within relational biology. With specific
reference to domain modelling, UML has also been used by Read et al [13], to define the
domain model of the intercellular interactions within an autoimmune disease (Experimental
Autoimmune Encephalomyelitis, an animal form of multiple sclerosis), and Alden et al [4], to
define the domain model of cell interactions within tissue formation in the immune system
(specifically the lymphoid organ). In addition to UML, the Systems Biology Graphical Notation
(SBGN) [14] has also been used as a diagrammatic notation to model biological systems, such
as the Toll-like receptor network [15] and the mTOR signalling network [16]. The SBGN was
developed by an international collaboration of biochemists, computational biologists and com-
puter scientists, with the overriding objective to allow scientists to diagrammatically represent
networks of biochemical interactions using standardised terminology and notation. Whereas
UML contains 14 different notations, the SBGN currently only contains 3, being: the process
diagram, the entity-relationship diagram, and the activity diagram.

Taking these 3 notations in turn, firstly, the process diagrams are used for modelling the
interactions that take place between biomolecules and the various state-transitions that occur
as part of the biochemical reaction. They are able to convey the temporal aspects of molecular
events occurring in biochemical reactions, and are analogous to UML sequence and communi-
cation diagrams. The main drawback with process diagrams appears to be that a given compo-
nent must appear multiple times on the same diagram if it exists under several states, whereas
in UML you can have one entity with several activities coming off, that through the use of
guard conditions, can specify which activity occurs under specific circumstances. Indeed, the
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Fig 1. The CoSMoS Process. The CoSMoS process advocates an iterative lifecycle, consisting of three separate phases (discovery, development and
exploration), and creation of four key project artefacts (domain model, platformmodel, simulation platform, and results model). The discovery phase focuses
on formulation of the problems to be investigated through use of the computational model, resulting in creation of a functional specification of the required
biological behaviour to be simulated (domain model). The development phase focuses on transforming the domain model into a technical specification
(platform model) specific to the programming language(s) and computer architectures to be used, and actual development of the computational model
(simulation platform), including calibration, validation and verification. The exploration phase focuses on the in silico experimentation to investigate the
biological problems of interest, and the generation of predictions (documented in the results model), which facilitate the generation of novel hypotheses for
subsequent testing in the biological arena.

doi:10.1371/journal.pone.0160834.g001
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requirement for SBGN process diagrams to diagrammatically define all states that a component
can take, can become problematic. For example, a biological component that acts as a hub in a
network will have a large number of connections and therefore possible network states. These
all have to be defined separately in process diagrams, which leads to the issue of combinatorial
explosion identified by [17]. Secondly, the entity-relationship diagrams are based on Kohn’s
molecular interaction maps and are used for modelling the relationships between biomolecules.
These focus on the influences that entities have on each other, but not the state transformations
that occur following interactions; they are akin to UML class diagrams and activity diagrams.
Unlike the process diagrams, an entity appears only once, which is closer to the approach of
UML. An enhancement over UML with respect to modelling biology is that these diagrams
have specific notations for low-level biochemical reactions such as phosphorylation, which can
be displayed on specific amino acid residues of protein entities. Finally, the activity flow dia-
grams are used for modelling the activities of biomolecules at a high-level of abstraction. They
can be used to convey component-level interactions (e.g. protein-protein), without the need to
show the detail of specific chemical reactions at the level of individual amino acids (e.g. phos-
phorylation events). As the activity diagram ignores the specific biochemical processes that
entities are involved in, and their associated state transitions, they are quite compact in nature,
and can be thought of as the typical network diagram found in traditional biochemical text-
books. As per UML, these 3 notations complement each other and are used to diagrammati-
cally model different aspects/views of the biological system.

With respect to the conceptual modelling of complex biological systems, we agree with
Grizzi [18] who advise that complex systems can be viewed from many perspectives, and

Fig 2. Taxonomy of UML diagramming notations. Structure diagrams show the static structure of the components within a system, and comprise: Class,
Composite Structure, Package, Profile and Object diagrams. Behaviour diagrams show the dynamic behaviour of the components within a system, and
comprise: Activity, Sequence, Communication, State Machine, Use Case, Interaction Overview, and Timing diagrams. Finally, implementation diagrams
comprise Component and Deployment diagrams (after [10]).

doi:10.1371/journal.pone.0160834.g002
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therefore can be described in many ways, each of which will be only partially true. We believe
that SBGN and UML are both suitable for developing domain models of complex biological
systems, however we do not believe that SBGN will be suitable for the platform model (techni-
cal specification) that will be developed in the next phase of our CoSMoS project. As such, we
have selected UML as the technique of choice, so that we are able to utilise a single diagram-
matic notation throughout the full lifecycle of our CoSMoS project.

The Domain
The NF-κB signalling pathway is one of the key signalling pathways involved in the control and
regulation of the immune system [19]. Activation of the NF-κB transcription factor and signal-
ling pathway is a tightly regulated event, involving activation of a number of signalling compo-
nents [20]. NF-κB is normally sequestered in the cytosol of non-stimulated cells and
consequently must be translocated into the nucleus to function as a transcriptional activator of
target genes. NF-κB is activated by a wide variety of different extracellular stimuli, including
proinflammatory signalling molecules, bacteria, viruses, and physical and chemical stresses [21].

As previously advocated by Kitano [2], we also believe that computational modelling and
simulation can complement wet-lab experimental approaches. With specific reference to the
NF-κB intracellular signalling pathway, there is potential to facilitate a more comprehensive
understanding of the underlying mechanistic behaviours of the system, which could then be
harnessed for identifying targets for therapeutic interventions to resolve system dysregulation
[1]. Existing Ordinary Differential Equation (ODE) based models [22–24] have been useful in
increasing our understanding at the cell population-level, however we believe that the field will
gain further benefits from computational models at the single-cell level that contain increased
scope and granularity of components over and above these mathematical models, and will also
allow us to investigate the mechanistic underpinning (i.e. not just the dynamics) of the system
(see [25] and our recent review [26]). Our long term objective is to build on previous work [27,
28] that used agent-based modelling, and develop a detailed model of the IL-1 stimulated NF-
κB signalling pathway, for the purpose of performing in silico experimentation as a basis of
hypothesis generation for the biological domain.

In order to ensure that the computational model appropriately reflects the biological case-
study, good software engineering practices through a principled approach to design and devel-
opment, such as the CoSMoS process [5] should be adopted. This advocates the creation of a
domain model, which captures the essential processes and entities of the real-world system
under study; in particular, the emergent behaviour, at an appropriate level of abstraction. Hav-
ing a separate domain model (akin to a functional specification) from a platform model (which
details how the simulation is designed, and is akin to a technical specification), allows for the
concentration on biological fact and for us to scope the system to be modelled, and therefore
not be biased by implementation specific details at this early stage of the research project.

There exist substantial quantities of literature on the NF-κB signalling pathway, with vari-
ous aspects of the pathway being independently studied by a wide variety of labs. Furthermore,
it is generally understood that representing every aspect of a real-world system in models and
simulations is computationally intractable, and therefore requires focus on a subset of the
properties and behaviours for subsequent model-driven investigations. One of the primary
purposes of the domain model is to capture this subset of real-world system properties, and
therefore provide a definition of the abstraction level taken for the modelling project. This
paper presents our domain model of the IL-1 stimulated NF-κB signalling pathway, based on
the previously published work of Carlotti et al [29, 30] and Yang et al [31, 32], who used fluo-
rescent protein constructs and confocal fluorescence microscopy to investigate pathway
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dynamics in living cells. Data from the observations presented in the publications by Yang et al
were selected for analysis to test the effectiveness in using the Unified Modelling Language in
developing a domain model of the widely distributed data.

Materials and Methods
The domain model utilises the empirical findings of Carlotti et al [29, 30] and Yang et al [31,
32], with the statistical analysis being specifically based on a subset of data from Yang et al
[32]. This subset contained measurements from single-cell analysis performed on 88 cells: 52
were transfected with IκBα Enhanced Green Fluorescent Protein (EGFP) and stimulated with
IL-1; and 36 were transfected with IκBα-EGFP, but not stimulated with extracellular ligand,
thus representing a control group. Single-cell analysis on live cells, include continuous monitor-
ing of the same set of cells over time. All measurements within the data related to cytoplasmic
fluorescence and were taken over a period of one hour, at intervals corresponding to 0, 10, 30
and 60 min. The subset of data used within the statistical analysis of this manuscript can be
found in S1 and S2 Tables of the supplementary information. The data sets were divided into 3
groups based on transfection levels of the exogenous protein as in the original analysis by Yang
et al: 0-1.5 fluorescent units (corresponding to up to 4 fold levels of the endogenous protein);
1.5-3.0 fluorescent units (4-8 fold levels of the endogenous protein); and above 3.0 fluorescent
units (above 8 fold levels of the endogenous protein) [32].

The domain model was developed in an iterative manner by the modeller (RAW), senior
software engineer (JT) and domain expert (EEQ), using the deep-curation approach [33]. We
have chosen to follow the approach of Read et al [13] in using UML as the basis to semi-for-
mally define the domain model of our complex dynamical biosystem. Along with a number of
UML diagrammatic notations (UML v2.4, [10]), a number of less formal cartoon diagrams
were also used to ensure the biological meaning could be conveyed efficiently. Furthermore, a
number of statistical techniques were used to complement UML when modelling the temporal
dynamics and stochastic characteristics of the system. Initial focus is the emergent system-wide
behaviours of the pathway, before increasing the level of detail to the interactions between sys-
tem components, and then the dynamics of individual components. The domain model is pre-
sented in a top-down manner, comprising three levels of abstraction, as defined below:

1. A system-level overview of the domain model. This highly abstract level provides an out-
line of the biology of the IL-1 stimulated NF-κB signalling pathway. Particular focus is
made to the behaviours of the system following induction by extracellular signal, and how
these are believed to correspond to phenomena observed in the real-world domain. This
abstraction level of the domain model does not make use of UML, but instead utilises less
formal cartoon diagrams to convey system-wide properties, along with a number of statisti-
cal approaches to convey temporal dynamics. In particular, we have used the R data analysis
and graphics software [34] to perform Chi-squared goodness of fit tests to ascertain the sta-
tistical distribution of the wet-lab data, along with hierarchical clustering and Principal
Component Analysis to investigate any underlying groupings with the dataset of Yang et al
[32] (see supplementary information for detailed descriptions).

2. Modelling component-level interactions of the domain model. This medium level
abstraction, decomposes the IL-1 stimulated NF-κB signalling pathway into its constituent
molecular components. This level models an abstracted view of the key molecular interac-
tions between the components, that together give rise to the emergent behaviours of the sys-
tem. A cartoon diagram, along with UML communication and activity diagrams have been
used in modelling these component-level interactions.
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3. Modelling individual component dynamics. This level of abstraction provides the greatest
detail within the domain model, through modelling the dynamics of individual components
within the system. A set of linked UML state machine diagrams have been used to develop
this level of the model.

Validation of the Domain Model
The iterative approach to developing the domain model within a CoSMoS project provides an
ability to use a number of validation techniques during model formulation. Balci [35] has
extensively reviewed the verification and validation techniques that are suitable for computa-
tional model development and simulation-based experiments. We have used a subset of these
techniques to validate our domain model, comprising: audits by the senior software engineer to
ensure that the modelling adheres to established practices; desk checking by the modeller to
ensure that individual diagrammatic and statistical models are correct, complete, consistent
and unambiguous; face validation by the domain expert to compare the complete domain
model against her detailed understanding and judgment of the real-world biological system;
and structured walkthroughs by the whole group (modeller, senior software engineer and
domain expert) to detect and document faults.

Results
As recently argued by Read et al [36], the domain model defines our understanding of how sys-
tem-level behaviours emerge from the cumulative actions of lower-level components, such as
intracellular signalling molecules. The domain model presented in this paper represents the
subset of signalling components that give rise to system-level dynamics. It was developed in a
top-down manner, through close alignment to the process advocated by Read et al, and com-
prises three levels of abstraction, at the system-level, component-level, and individual
components.

Modelling System-Level Properties
This highly abstract level provides an outline of the biology of the IL-1 stimulated NF-κB sig-
nalling pathway. Particular focus is made to the behaviours of the system following induction
by extracellular signal, and how these are believed to correspond to phenomena observed in
the real-world domain.

Modelling Expected Behaviours. Following the approach of Andrews et al [5] and the
example of Read et al [13], we have chosen to commence the domain modelling process with a
cartoon-like diagram, termed an expected behaviours diagram (Fig 3). This diagram depicts the
observable phenomena of the IL-1 stimulated NF-κB signalling pathway, along with the
known interactions between system components that generate system-wide behaviours. The
diagram also provides us with an opportunity to define a number of hypotheses on how these
known component interactions may yield the observable phenomena. The expected behaviours
diagram therefore provides a diagrammatic view of the relationship between the real-world
domain and the domain model [13].

The top section of Fig 3 defines the observable phenomena of the signalling pathway, in that
the pathway results in an inflammatory response against extracellular stimuli, and that after a
period of time, this inflammatory response ceases. The dotted horizontal line demarcates these
observable phenomena from hypotheses that are believed to be responsible for their emer-
gence. These hypotheses consist of expected behaviours (using ‘<<expected>>’ tags) that
emerge through the interactions of the underlying system components. The known

Developing Domain Models Using Statistics and UML

PLOSONE | DOI:10.1371/journal.pone.0160834 August 29, 2016 7 / 27



interactions between system components are represented through a set of solid, directed lines,
whilst the expected behaviours are linked to these system components through a set of dashed
lines.

Wet-lab experimental research into NF-κB since its discovery in 1986 [40], has identified
that a large number of inflammatory signals (extracellular stimuli) activate cell membrane
receptors to initiate its signalling pathway. Signal transduction through the intracellular net-
work, via activation of various intermediate signalling components, amplifies the signalling
cascade so that a short, transitory burst of stimuli, induces the transcription of target genes and
the corresponding translation of the mRNA into proteins. One of the early genes activated by
NF-κB is its inhibitor IκBα, which induces negative feedback to dampen the inflammatory
response [41].

Modelling Physical Containment. The spatial relationships of the components detailed
within the expected behaviours diagram can be seen in the cartoon containment diagram (see

Fig 3. Expected behaviours diagram. Expected behaviours diagram depicting the observable phenomena of the IL-1 stimulated NF-κB signalling
pathway; the behaviours that are hypothesised to be responsible for these phenomena; and at an abstracted level the components of the complex system
that are believed to be responsible for the development of these emergent behaviours. At the highest level of the system, activation of the NF-κB pathway
initiates a transitory inflammatory response (the system dynamics automatically cease the response). It is hypothesised (expected) that these phenomena
occur through interaction of three functional modules that relate to activation of cell membrane receptors, amplification of the signalling cascade, and
upregulation of transcription. Developed from the reviews of [37–39].

doi:10.1371/journal.pone.0160834.g003
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Fig 4), which provides an abstract representation of a Eukaryotic cell. For the purposes of
modelling the IL-1 stimulated NF-κB signalling pathway, the cellular structure can be
abstracted away to contain just three cellular structures: the membrane, which for our purposes
contains the cell membrane receptor and co-receptor proteins; the cytoplasm, which contains
the cytosol (intracellular fluid) that further contains: adaptor proteins, intermediate signalling
components, NF-κB, IκBα, and the mRNA generated from gene transcription; and the nucleus,
which contains DNA, its nuclear membrane, which houses the nuclear membrane transporter
proteins involved in translocation (movement of proteins between cytoplasm and nucleus),
and the NF-κB and IκBα that have been translocated from the cytoplasm.

Modelling Dynamics. The single-cell analysis work of Carlotti et al and Yang et al gener-
ated time-series fluorescence data relating to the dynamics of NF-κB translocation and IκBα
degradation, which demonstrated that genetically identical cells in a standard environment dis-
play significant differences in their response to perturbations [29–32] (see S1 and S2 Tables).
At a molecular level, this was demonstrated to correlate with the level of protein expression
within individual cells, and to underlie the complexity and variations seen within biological
populations [29–32, 43]. Unfortunately, UML does not currently have a mechanism for depict-
ing this variation between individuals within a population. As such, we have found UML defi-
cient in conveying the dynamics of IκBα degradation (along with the associated NF-κB release
and subsequent activation), and also deficient in modelling the quantitative aspects of the sig-
nalling pathway. We have therefore used a number of statistical techniques to complement the
UML and cartoon diagrams, in order to develop a more comprehensive domain model of the
signalling pathway.

The general aspect of variation was later discussed by Tijskens et al [44] and Elowitz et al
[45], when they conjecture that a degree of variance is inherent to all aspects of biology due to
the underlying stochastic physiological events of individual cells. We feel that this should be
explored further within the domain model. We have used two-tailed Chi-squared (χ2)

Fig 4. Cartoon-like containment diagram.Cartoon-like containment diagram showing the physical
containment of the components involved in the IL-1 stimulated NF-κB signalling pathway and the physical
environment in which they are situated within a Eukaryotic cell. We believe that this is a much more intuitive
way of representing physical containment than the corresponding UML class containment diagram (not
shown). Developed from [42].

doi:10.1371/journal.pone.0160834.g004
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goodness of fit tests to ascertain that the single-cell analysis (IκBα degradation) fluorescence
data approximates to a Negative Binomial distribution, which we believe follows the usual pat-
terns in biology of variation due to stochasticity [46]. Figs 5 and 6 illustrate how the control
and IL-1 stimulated single-cell data (at time 0 min) approximate to negative binomial distribu-
tion for the population of cells (see Supplementary Information for calculations).

Due to the stochastic nature of the process and the cell-to-cell variation, data on IκBα degra-
dation by the cytokine IL-1 were expressed relative to unstimulated levels at time 0, using each
cell as its own control. This is consistent with Bliss and Fisher [46], who advise that an adequate
fit of data to the negative binomial distribution provides a justification for transformation of
the data to stabilize the variance, as a preparatory step for further statistical analysis by other
techniques. Fig 7 is a graph of the control (unstimulated) and IL-1 stimulated data using a sub-
set of data that had initial fluorescence up to and including 1.5 arbitrary fluorescence units
using median average and variance bars for interquartile ranges (25th to 75th percentiles). This
accurately reproduces the findings of Yang et al, who demonstrated a pronounced reduction in
IκBα degradation levels at fluorescence levels higher than 1-1.5 [31, 32]. It can be seen that
good separation is gained at 30 min onwards, with a little overlap still apparent at 10 min. The
rates of degradation are 0.366 fluorescence units per hour for control and 0.864 fluorescence
units per hour for IL-1 stimulated.

Hierarchical cluster analysis was used to find similarities in the single-cell observations and
to assist us in understanding the significance of the characteristics of the groups [47, 48]. This
was performed using seven different clustering algorithms (Ward, single, complete, average,
McQuitty, median and centroid), which are all part of the hclust function within the standard
R library. The resulting dendrograms for each method (not shown) were consistent in that no
clear clustering was evident between unstimulated and stimulated cells (see Supplementary
Information).

Fig 5. Histogram of control observations. Histrogram of control observations from the dataset of [31], that
have been binned (grouped) using an integer interval of initial (time 0 min) fluorescence. The superimposed
line represents a Negative Binomial distribution, using the median calculated from the raw data. The median
average has been calculated as 1.947153.

doi:10.1371/journal.pone.0160834.g005
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Further investigation used Principal Component Analysis (PCA), a powerful approach for
ascertaining natural groupings and a common multivariate technique for exploration and
reduction of high-dimensional data. It identifies underlying patterns within the data by pro-
ducing linear combinations of the underlying orthogonal variables within the dataset [49].
Therefore it can be used to reduce the dimensionality of data for detecting underlying struc-
tures [50]. The variances associated with the four principal components within the data (PC1-
4), indicated that only a single principal component (PC1) is required to explain the variation.

Fig 6. Histogram of IL-1 stimulated observations. Histogram of IL-1 stimulated observations from the
dataset of [31], that have been binned (grouped) using an integer interval of initial (time 0 min) fluorescence.
The superimposed line represents a Negative Binomial distribution, using the median calculated from the raw
data. The median average has been calculated as 1.729876.

doi:10.1371/journal.pone.0160834.g006

Fig 7. Graph of median average fluorescence.Graph of median average fluorescence for control (No IL-1)
and IL-1 stimulated observations from [31]. The data has been transformed so that each cell has become its
own control. The error bars illustrate the spread of observations between the 25th and 75th percentiles.

doi:10.1371/journal.pone.0160834.g007
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In addition, it was found that separation of observations using PC1 was dominated by the fluo-
rescence measurements at time 0, 10 and 30 min (see Supplementary Information).

Subsequent analysis was performed on the four principal components, with the individual
observations being coded depending on the relevant category. Initial comparisons representing
control and IL-1 stimulated observations did not yield separation of observations. Additional
granularity of coding the individual observations allowed us to compare stimulation status
(control and IL-1 stimulated) against ranges of the cytoplasmic fluorescence data expressed rel-
ative to levels at time0. The best separation occurred using initial fluorescence ranges of 0-1.5
fluorescence units, consistent with the biological analysis by Carlotti et al [29] and Yang et al
[31, 32]. Complete separation does not occur for any combinations, however separation
emerges between control and stimulated conditions for cells with initial cytoplasmic fluores-
cence up to 1.5 fluorescence units. Fig 8 represents the plot of PC1 versus PC2, which separates
control and IL-1 stimulated observations grouped by their initial cytoplasmic fluorescence.
There is limited separation between control and IL-1 stimulated cells with initial fluorescence
levels of 1.5-3.0 and no appreciable difference at initial fluorescence> 3.0 units using PCA.
This accurately reproduces the findings of Yang et al [31, 32], which showed reduced activity at
concentrations above 1.5 fluorescent units. Similarly, Carlotti et al [29] demonstrated that lag
time and nuclear translocation rate of the transcription factor are markedly decreased at higher
concentrations and that, the subsequent step involving nuclear translocation of NF-κB, was

Fig 8. PCA plot of principal components 1 and 2. PCA plot of principal components 1 and 2, colour-coded
by observation category, i.e. control versus IL-1 stimulated and range of initial cytoplasmic fluorescence. The
six categories are: IL-1 stimulated/0-1.5 = Blue, IL-1 stimulated/1.5-3.0 = Red, IL-1 stimulated/>3.0 = Black,
control/0-1.5 = Yellow, control/1.5-3.0 = Green, and control/>3.0 = Purple. The plot shows separation of
observations with initial fluorescence < 1.5 units from the rest of the data, with partial separation between the
control and IL-1 stimulated observations within this group. There is also a limited degree of separation
between observations with initial fluorescence values of 1.5-3.0 units from the rest of the data, however the
amount of overlap between control and IL-1 stimulated is more significant here.

doi:10.1371/journal.pone.0160834.g008
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completely blocked at fluorescence units> 3.0. This likely reflects the well-controlled system
of feedback mechanisms regulating the NF-κB signalling pathway.

Modelling Component-Level Interactions
This medium-level abstraction decomposes the IL-1 stimulated NF-κB signalling pathway into
its constituent molecular components. This level models an abstracted view of the various
molecular interactions between the components, which together give rise to the emergent
behaviours of the system.

Modelling the Cascade of Interactions. As per the system-level properties, the NF-κB sig-
nalling pathway can be described from a high-level perspective using cartoon diagrams to com-
municate the interactions between system components, and in this instance the diagram can
also act as a network map and illustrate the sequence of interactions between components (see
Fig 9). The UML communication diagram (see Fig 10) builds on this high-level cartoon to con-
vey the network map in a more formalised way.

Briefly, the network commences with an extracellular ligand (signalling molecule) binding
to a cell membrane receptor (which is a member of the TLR/IL-1 receptor superfamily). The
receptor then dimerises, and co-receptors such as CD14 [58], MD2 [59] (in the case of TLR4,
[60]) and TILRR [55, 61] (in the case of IL-1RI/IL-1AcP) help facilitate and amplify the

Fig 9. Cartoon diagram of high-level interactions. Simplified cartoon diagram depicting the high-level
interactions between the TLR or IL-1R superfamily of receptors, the co-receptors and adaptor proteins, and
the protein kinases within the NF-κB canonical signalling pathway. Diagram developed from findings of [51–
55].

doi:10.1371/journal.pone.0160834.g009
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receptor response. In situations where the Tollip adaptor protein binds, it mediates association
of IRAK protein kinase to the IL-1 receptor complex, but then inhibits IRAK [52] and trans-
duction of the signal down the signalling pathway. Conversely, in situations where the MyD88
adaptor protein binds, it mediates association of the receptor complex with IRAK protein
kinase [62], which in turn activates TRAF6 through phosphorylation [63] for propagation of
the signal. Once activated, TRAF6 continues signal transduction through activation of TAK1,
which subsequently activates the IKK complex [53, 54]. The activated IKK complex phosphor-
ylates NF-κB inhibitors, such as IκBα, which facilitates its dissociation from the NF-κB mole-
cule within the complex [64]. The released IκBα undergoes a second modification called
polyubiquitination [65], which then targets IκBα for rapid degradation by the proteasome.
Conversely, the released NF-κB is able to translocate from the cytosol to the nucleus, where it
is subsequently activated and upregulates the transcription of target genes.

Fig 10. UML communication diagram.UML communication diagram for the IL-1 stimulated NF-κB signalling pathway. Although portraying temporal
interactions as per sequence diagrams (not shown), we believe that these diagrams are more intuitive for non-Computer Science audiences as they are more
flexible in relation to the position of system components, thus allowing the positioning of components to approximate to the spatial locations within a
Eukaryotic cell. Developed from reviews of [56, 57].

doi:10.1371/journal.pone.0160834.g010
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Modelling Activities. Another complementary UML notation that provides a view of
activities within the system instead of component interactions is the activity diagram, which
through the use of swim-lanesmay also be used to convey the location of activities (see Fig 11).
As activity diagrams focus on activities and not components, they are able to convey the indi-
vidual interactions (expressed as activities) that give rise to the emergent behaviour of the sys-
tem. Furthermore, the focus on activities allows us to aggregate sets of individual interactions
into functional modules. This is beneficial when domain modelling, as biological systems can
generally be abstracted into groupings of components by functionality. With particular refer-
ence to the IL-1 stimulated NF-κB signalling pathway, we can separate the system into three
functional modules relating to cell membrane receptor activation, activation of the NF-κB sig-
nalling module, and generation of new IκBα to dampen the response through negative feed-
back regulation.

As per the cartoon network diagram (Fig 9) and UML communication diagram (Fig 10), the
set of activities within the system begin with extracellular stimuli and the formation of the
active receptor complex. The associated signal transduction then follows, with the first activity
being the activation of IRAK, which then propagates the stimuli-related signal through the
pathway via phosphorylation of intermediates. Upon phosphorylation of the IκBα inhibitor
which is bound to NF-κB, the activity splits into two branches: a) phosphorylated IκBα is
released from the NF-κB complex and becomes degraded via the proteasome, and b) the NF-
κB dimer is released, binds to an importing nuclear receptor, is translocated from the cytosol
to the nucleus, and is then activated. Once active, the NF-κB dimer may bind to the promoter
region of an inflammatory response gene and initiate transcription, which ultimately generates
new inflammatory response proteins.

Modelling Individual Component Dynamics
This level of abstraction provides the greatest detail within the domain model, through model-
ling the dynamics of individual components within the system. The final set of UML diagrams
that represent the domain model, refer to low-level dynamics of individual components and
use the state machine diagram notation. Fig 12 depicts a set of linked state machine diagrams
for the receptor, intermediate components, IκBα, NF-κB, nuclear transporter, inflammatory
gene, and inflammatory mRNA components of the signalling pathway. We believe the ability
to link individual state machine diagrams into a single end-to-end diagram provides a powerful
approach for domain modelling, as it allows the low-level dynamics of components to be cap-
tured in a single diagrammatic view of the system as a whole.

It can be seen that the cell membrane receptor initially starts off in a dormant state, but may
become active upon binding of extracellular stimuli, along with the co-receptor and MyD88
adaptor protein (defined using UML guard notation). Conversely, and as discussed previously,
the cell membrane receptor may also become inhibited upon binding of Tollip. As defined in
the previous cartoon and UML diagrams, following activation of cell membrane receptor, the
extracellular signal is propagated through the signalling pathway through activation of inter-
mediate components, culminating with activation of IKK. For the purposes of the domain
model, we have abstracted away the granularity of these intermediate components (e.g. IRAK,
TRAF6, TAK1 and IKK) to that of a generic intermediate component, which by default is dor-
mant, but becomes active following phosphorylation as the signal is propagated through the
transduction cascade.

Within the NF-κB signalling module, the IκBα inhibitor molecule by default (i.e. following
creation via transcription and translation) is unbound (free), but may probabilistically bind to
NF-κB when it enters an interaction boundary, and therefore enters an inhibiting state.
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Fig 11. UML activity diagram. Full end-to-end UML activity diagram for the IL-1 stimulated NF-κB signalling pathway using the concept of swim-lanes to
convey sub-cellular location of components. Developed from [39, 56, 57].

doi:10.1371/journal.pone.0160834.g011
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Following activation of the IKK enzyme, the IκBα releases the NF-κB dimer, to again enter the
free state, but this time is degraded and removed from the system. Similarly, the NF-κB dimer,
is by default in an inhibited state within the system due to IκBα inhibition. Following IKK-
mediated release by IκBα, it becomes free, and able to translocate to the nucleus where it may
become active (note the guard condition), to facilitate the upregulation of inflammatory gene
transcription. Should the NF-κB dimer spontaneously unbind from the promoter region of the
inflammatory gene, it will once again enter the free state (upon which it may probabilistically
translocate back to the cytoplasm), or alternatively new IκBαmolecules, this time within the
nucleus may also bind to return the NF-κB dimer to an inhibited state, upon which the nuclear
localisation sequence will be masked and it will be translocated out of the nucleus into the cyto-
plasm [39].

As per previous UML diagrams, binding of an IκBαmolecule or NF-κB dimer to a nuclear
membrane transporter, transitions the transporter protein from a dormant to an active state,
for the translocation of the ligand from either the cytoplasm to the nucleus, or vice versa. Fol-
lowing translocation of an NF-κB dimer to the nucleus and its binding to the promoter region
of an inflammatory gene, the gene transitions from a dormant to an actively being transcribed
state for generation of mRNA. Upon creation, the new mRNA is translocated to the cytoplasm,
where it is translated into new inflammatory protein by the ribosome.

Fig 12. Linked state machine diagrams. Linked series of state machine diagrams for the IL-1 stimulated NF-κB signalling pathway. The individual
components have their own state machines, which are explicitly linked using UML join notations and embedded within a single large state machine that
represents the cell. Here the cell has two states relating to dormant or active. Developed using [41, 52, 56, 57, 66–68].

doi:10.1371/journal.pone.0160834.g012
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Modelling Numerical Aspects of the System
The three different views outlined above provide a top-down perspective of the IL-1 stimulated
NF-κB signalling pathway, which reflects the hierarchical nature of complex systems. The
UML and cartoon-like diagrams used so far, have been useful for semi-formally defining the
relationships and dynamics at the system, component, and intra-component levels, however
they have not been able to appropriately capture the numerical aspects of the signalling path-
way. For example, we have found diagrammatic notations to be deficient in modelling details
regarding the ratios of NF-κB molecules (in free and inhibited states) against free IκBαmole-
cules across the cytoplasmic and nuclear compartments. Similarly, we have been unable to con-
vey nuclear translocation dynamics or details of IκBα degradation within UML in a form that
would be intuitive to biologists. Table 1 therefore defines the key rates, ratios, and physical
attributes associated with the IL-1 stimulated NF-κB signalling pathway.

Discussion
Biological systems are complex, with behaviours and characteristics that result from a highly
connected set of interaction networks that function through time and space. As discussed pre-
viously, the IL-1 stimulated NF-κB signalling pathway is a complex intracellular network that
manifests in stochastic and dynamic responses to inflammatory stimuli. The system-wide
behaviours, generated as an inflammatory response to pathogenic invasion and other physio-
logical perturbations, emerge through the cumulative effect of low-level intracellular

Table 1. The key rates, ratios and constants.

High-Level
Attribute

Specific Attribute Value

Cell Environment Cell Volume 2,000 μm3

Nucleus Volume 100 μm3

Approx. No. per
Cell

IL-1RI Receptors 5,000—10,000

RelA (NF-κB) 60,000 (Endogenous)

IκBα 66,000 (Endogenous),*135,000 (Endogenous, cytoskeleton-bound)

NF-κB Cytoplasmic:Nuclear
Location

10:1

Bindable NF-κB: IκBα 1:1 ratio;*17% NF-κB ‘free’ in resting cells

Total NF-κB: IκBα 1:3 (including cytoskeleton sequestered)

IL-1 Stimulated *20% decrease in cytoplasmic NF-κB;*40-fold increase in nuclear NF-κB;*8-fold increase in
transfected v endogenous NF-κB

IκBα Phosphorylation Peaks at 10 min post IL-1 stimulation

Ubiquitination Peaks at 30 min post IL-1 stimulation

Degradation *40% degraded after 10 min;*60% degraded after 30 min;*80% degraded after 60 min

Nuclear
Translocation

NF-κB flow to nucleus 40-60 molecules/sec (max IL-1 stimulation); Following nuclear NF-κB peak, takes*90 min to reach basal
steady-state cytoplasm: nucleus ratio

Shuttling Dissociation of NF-κB-IκBα complex within cytoplasm and independent import of subunits; Continuous
process, i.e. steady-state dynamics of in- and out- fluxes; Lag time in nuclear translocation following IL-1
stimulation; Negligible NF-κB-IκBα complex translocation; IκBα translocation more rapid than NF-κB; After
IL-1 stimulation, increased rate of nuclear to cytoplasmic translocation

The key rates, ratios and constants of the IL-1 stimulated NF-κB signalling pathway. This table provides key details for the cell environment, approximate

number of key molecules, IκBα biochemistry, nuclear translocation, and ratios of NF-κB and IκBαmolecular states within the cytoplasm and nucleus.

Developed from the work of [27, 29–32].

doi:10.1371/journal.pone.0160834.t001
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interactions within an individual cell, being amplified across a population of immune response
cells. As such, the inherent complexity of the signalling pathway and its associated stochasticity
and dynamics, renders the process of domain modelling both time consuming and non-trivial
in nature.

Being analogous to a functional specification (from software engineering), the primary pur-
pose of the domain model is to clearly and unambiguously capture our abstracted view of the
functionality of the real-world domain, which will be incorporated within the future iterations
of the resulting computational model. We found the iterative process of domain modelling to
be extremely helpful in allowing the modeller to explore the biological domain (in conjunction
with the domain expert) before development of the computational model. Once complete, and
validated, the domain model acts as the functional specification for the computational model,
and provides a comprehensive and transparent understanding of the domain that underpins
both the scope of the computational model and the resulting in silico experimentation that will
be performed as part of the exploration phase of the CoSMoS project. As such, the domain
model is an essential project deliverable that provides an audit trail on how the real-world biol-
ogy is linked, through abstractions, assumptions, and constraints to the functionality of the
computational model. Furthermore, in this specific case, the actual process of developing the
domain model in conjunction with the domain expert, facilitated a much more in-depth
understanding of the domain than would have been gained through published literature alone.

The domain model may be a collection of informal notes relating to relevant aspects of the
domain, but may also include informal sketches (such as cartoons), more formal diagrams
(such as those produced with UML), mathematical equations, scientific constants (e.g. bio-
chemical rate constants), and physical descriptors (such as size, quantity, location, and speed).
The key constraint of the domain model is that it should remain free from an implementation
specific focus and should therefore not contain any reference to the programming languages or
workarounds, which may be required during development of the simulator. As such, the
domain model should be focused on the scientific domain, and not design considerations for
the resulting computational model. Through this approach of using cartoon diagrams, UML
notation, statistical techniques, and descriptions of rates, ratios and constants within a table,
we have developed an accurate reproduction of the biological domain.

There exists substantial quantities of literature on NF-κB signalling dynamics, and various
aspects of the signalling dynamics are independently studied by a wide variety of labs. It is gen-
erally understood that representing every aspect of a real-world system in models and simula-
tions is computationally intractable. As such, a subset of the properties and behaviours from
the real-world system need to be defined for subsequent investigation. One of the primary pur-
poses of the domain model is to capture this subset of real-world system properties, at the cor-
rect abstraction level to answer the questions of scientific interest; for example, the single-cell
data relating to NF-κB pathway dynamics, mean that our future computational model should
be at the level of subcellular interactions and biochemical reactions within a single cell.

Due to the complex, stochastic nature of the IL-1 stimulated NF-κB signalling pathway, we
have been unable to develop a single diagrammatic view that could capture the various compo-
nents, interactions, and dynamics of the system. It has therefore been necessary to utilise a
number of different cartoons and UML notations throughout our domain modelling exercise.
These different diagrammatic views allow us to capture the initiation and propagation of the
signalling pathway across the inherent hierarchies of the system (i.e. system-wide, component
interactions, and individual component dynamics), which we believe to be a natural progres-
sion when domain modelling and reflects the concepts of hierarchy and modularity from sys-
tems biology [69]. The use of cartoon and UML diagrams were an essential first step towards
development of our domain model, however in isolation they were not enough to provide a
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comprehensive model. In particular, they were unable to convey the dynamics of IκBα degra-
dation (along with the associated NF-κB release and subsequent activation), or indeed model
the quantitative aspects of the signalling pathway. We therefore used a number of descriptive
and multivariate statistical techniques to complement the UML diagrams, in order to develop a
more comprehensive domain model of the IL-1 stimulated NF-κB signalling pathway.
Through this use of statistical techniques to complement UML, we have successfully repro-
duced the system interactions and stochastic dynamics found in biology.

Two tailed χ2 goodness of fit tests were used due to the uncertainty about direction of differ-
ence of the observed versus expected data. The full dataset has been shown to approximate to a
Negative Binomial distribution (see Figs 5 and 6), which is in keeping with the findings of
White and Bennetts [70] and Bliss and Fisher [46] who advise (through statistical modelling of
a number of biological systems) that biological populations, be that cell or organism level, often
approximate very closely to negative binomial distributions. There is also a subset of observa-
tions within the 0-3.0 fluorescence units range however, which tend to Normality when using
non-integer binning frequencies (not shown). As such, future statistical tests on the data, and
indeed any simulation-level data produced from in silico experimentation, should be non-
parametric in nature as these are applicable to any distribution, and do not assume normality.
Furthermore, due to its non-parametric nature, the central measure used should be the median
average, as this is not affected to the same extent from skewed data as the mean average [71].

Additionally, we have shown that multivariate techniques may be used to classify single-cell
analysis observations into groups dependent on their initial fluorescence, and to separate control
from IL-1 stimulated observations within ranges of fluorescence units. Through hierarchical clus-
ter analysis, and analysing the various PCA plots (for example, the PC1 v PC2 plot in Fig 8), it
can be deduced that there is evidence of partial separation of control versus IL-1 stimulated
observations, beyond which the inherent variance associated with the data becomes too great.
We accept that the large degree of variation is consistent with normal biology, however believe
that for the purposes of our research, we should focus on a subset of experimental data. As the
advantage of single-cell analysis is lost if you pool the data and calculate an average, and with the
results of the above multivariate statistical tests in mind, we propose that a series of expression
levels are used for development and calibration of our future computational model. This
approach agrees with earlier findings by Carlotti et al [29] who advised that cells with high
expression of the enhanced green fluoresecent protein and NF-κB (RELA) construct show
impaired nuclear translocation dynamics, and that these aberrant cells mask the dynamics (at the
population level) of cells expressing near-physiological amounts of the fusion protein. We also
believe that in order to get rational results, each cell needs to form its own control (which was
also the approach taken for the model of Pogson et al [28]), in order to eliminate the wide varia-
tions observed when averaging dynamics over multiple cells, and by implication simulations.
Furthermore, it is believed that such an approach would yield more consistent results as cell
time-course dynamics would be expressed as a percentage of initial fluorescence for each cell.

As per Read et al [72] and Bersini [73], we agree that a subset of UML notations are able to
efficiently represent elements of the domain model of biological systems (in our case the IL-1
stimulated NF-κB signalling pathway). We have found activity diagrams and communication
diagrams particularly effective at depicting system-wide behaviours; communication diagrams
to be effective at depicting relationships between components; and state machine diagrams
effective at depicting low-level dynamics within individual components. Furthermore, we have
found that activity diagrams are particularly effective when used in conjunction with swim-
lanes to convey the location (e.g. cytoplasm or nucleus) of activities, and sequentially linked
state machine diagrams are particularly effective at depicting the end-to-end state changes
within a system.
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Although we have found UML to be particularly useful in these cases, it does have a number
of deficiencies however. Along with the issues found by Read et al [72], we have discovered a
number of additional areas where the current UML standards have deficiencies in modelling
biology. For example, although UML facilitates detailed information to be depicted as attri-
butes of individual components, it relies on the reader to unpick the multitude of diagrams to
collate all of the information, for example parameter values (such as size of cell, and speed of
movement of intracellular components) and rate constants (such as degradation of IκBα, and
translocation of components across the nuclear membrane). We believe that a table of such
information would provide a more effective mechanism to convey this information, than to
over-engineer a UML diagram. Furthermore, although UML allows the range of individual
objects to be depicted through multiplicity, in the form of a zero to many ‘0‥�’ association, this
does not effectively convey the degree of simultaneous interactions between agents. Similarly, it
is well understood that observations of genetically identical, individual cells in a standardised
environment often display significant differences in their response to perturbations [44], thus
leading to the large degree of inherent variation within biological populations (be they cells,
organisms, or communities). At a molecular level, this may be due to the varying numbers of
particular proteins within a population of cells. UML does not have the ability to depict this
variation, and nor was it designed to.

Conclusions
In this article, we have presented a domain model of the IL-1 stimulated NF-κB signalling
pathway using UML and statistical techniques. UML has been advocated as a modelling lan-
guage for visualization, specification, construction and documentation of software systems
[74]. Although it is not a programming language, we believe that together with a modelling
approach (such as agent-based modelling) and programming language (such as Java or C),
UML provides an excellent mechanism to develop models of complex dynamical systems. We
agree with Cook [75] that “UML is likely to influence model-driven development for the fore-
seeable future”, but through adoption of a principled approach to development of our domain
model, we have discovered that UML has a number of deficiencies when trying to convey the
stochastic, heterogeneous nature of dynamics, within complex biological systems. This lack of
functionality leads us to conclude that UML should not be seen as the only tool to be used in
the domain modelling process. We address this problem by utilising a number of statistical
techniques in order to gain a fuller understanding of the domain, and for scoping the abstrac-
tion of the domain to be taken forward into our future computational model. Likewise, UML
does not currently have the ability to depict patterns within wet-lab data, which we believe is
an essential component of the domain model for complex biological systems.

It is generally agreed [76–78], that the principled design and development of a conceptual
model (such as the Domain Model in the CoSMoS approach) is an essential step towards
ensuring the right computational model is developed. As such, our domain model represented
here will serve as evidence during validation and verification of the resultant computational
model (Simulation Platform) that will be developed during the exploration phase of our CoS-
MoS project (forthcoming). Our multi-level domain model has taken a top-down approach by
looking at the emergent system-wide behaviour, followed by component interactions, and
finally the individual component dynamics. As such, within our domain of interest, the statisti-
cal techniques have been used at the system-level only, due to the wet-lab (in vitro) data being
based on fluorescence at the single-cell level; the other levels within our multi-level domain
model have therefore been developed using UML diagrammatic notations. We therefore
believe that multi-level domain models developed using UML, benefit from the complementary
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views that emerge from statistical analysis of the underlying in vitro data. We acknowledge
however, that the ability of statistical techniques to model any interplay between the different
levels within a multi-level system, is reliant on characteristics of the empirical (i.e. wet-lab)
data.

Rumpe and France [79] advise that different stakeholders and modellers from different
domains have varying interpretations of what constitutes an appropriate UML diagram. They
further advise that as the UML specification allows the modeller a degree of flexibility through
the use of semantic variations, diagrams can be tailored to better support the varied require-
ments of individual modellers, stakeholders, and their respective domains. We therefore sug-
gest that the statistical techniques used within this case study, along with the various cartoon-
like diagrams for modelling the expected behaviours of the system (see Fig 3) and physical con-
tainment of components (see Fig 4) represent an example semantic variation point for model-
ling complex intracellular signalling pathways.

Finally, we believe that community and industry standards, such as UML, are important for
improving the communication between developers and domain experts. The use of these stan-
dards, should make the reimplementation of models by different researchers (and labs) easier,
and indeed should reduce the duplication of work, and more importantly reduce implementa-
tion errors, which may become introduced through reverse engineering of existing models and
manual walkthroughs of published papers. We therefore believe the use of cartoon and UML
diagrams to be an essential first step towards development of a domain model, which may be
published alongside the results of in silico experimental papers; however in isolation they are
not enough to provide a comprehensive model, which other researchers and labs may use to
reproduce computational models. In particular, cartoons and UML diagrams have been unable
to convey the dynamics of IκBα degradation (along with the associated NF-κB release and sub-
sequent activation), or indeed model the quantitative aspects of the signalling pathway. We
therefore conclude that the use of descriptive and multivariate statistical techniques to comple-
ment the UML diagrams, is essential for the development of comprehensive domain models of
complex biological systems, such as the IL-1 stimulated NF-κB signalling pathway. Indeed,
through our principled approach for domain modelling, we have accurately reproduced the
stochastic nature of the real-world system using a diagrammatic and statistical approach.

Supporting Information
S1 Fig. Dendrogram representing the clustering of single-cell analysis observations. Den-
drogram representing the clustering of observations from [31] by hierarchical cluster analysis
using the complete(-linkage) method. The boxes indicate that hierarchical cluster analysis
identifies the three forced clusters as observations having an initial cytoplasmic fluorescence
less than 3.0, between 3.0 and 8.0, and above 8.0 fluorescence units.
(TIF)

S2 Fig. Scree plot of the principal components from principal component analysis of the
single-cell fluorescence data. Scree plot of the principal components from principal compo-
nent analysis of observations from Yang et al [32]. Each bar corresponds to its respective prin-
cipal component; bar heights are the variances of the principal components.
(TIF)

S3 Fig. Bi-plot of PC1 and PC2 from principal component analysis of the single-cell fluo-
rescence data. Bi-plot of PC1 and PC2 from principal component analysis of observations
from Yang et al [32]. This plot shows that measurements for times 0, 10 and 30 min contribute
equally to the separation of PC1 due to their virtually equivalent arrow lengths. They are not
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fully parallel to the PC1 axis however, and therefore also contribute slightly to PC2.
(TIF)

S4 Fig. Plot of loadings for PC1 following principal component analysis. Plot of loadings for
principal component 1 following PCA. PC1 was chosen because this is the component which
contributes most to separation of the data. It can be seen that observations with initial fluores-
cence between 0-3.0 and>3.0 can be separated easily as the observation between 0-3.0 units
have negative loadings and>3.0 have positive loadings. Furthermore, observations for cells
with initial fluorescence between 0-1.5 tend to have relatively stable loadings (around -4.5),
whereas those between 1.5-3.0 begin to have more variable loadings.
(TIF)

S1 Table. Control observations for data analysis. Subset of control observations from the sin-
gle-cell analysis of Yang et al [32] that were used within our data analysis.
(PDF)

S2 Table. IL-1 stimulated observations for data analysis. Subset of IL-1 stimulated observa-
tions from the single-cell analysis of Yang et al [32] that were used within our data analysis.
(PDF)

S3 Table. χ2 test for control observations. χ2 test for control observations approximating to a
negative binomial distribution.
(PDF)

S4 Table. χ2 test for IL-1 stimulated observations. χ2 test for IL-1 stimulated observations
approximating to a negative binomial distribution.
(PDF)

S5 Table. Summary of principal component analysis of the single-cell fluorescence data.
Summary of principal component analysis of the single-cell fluorescence data, showing the
standard deviation, proportion of variance and cumulative proportion of variance for each
principal component.
(PDF)

S1 File. Subset of Single-Cell Observations used within our Domain Model.
(PDF)

S2 File. Chi-squared (χ2) goodness of fit.
(PDF)

S3 File. Hierarchical Cluster Analysis.
(PDF)

S4 File. Principal Component Analysis.
(PDF)
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