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Abstract

The ability to efficiently perform actions immediately following instructions and without prior

practice has previously been termed Rapid Instructed Task Learning (RITL). In addition, it

was found that instructions are so powerful that they can produce automatic effects, reflected

in activation of the instructions in an inappropriate task context. RITL is hypothesized to rely

on limited working memory (WM) resources for holding not-yet implemented task rules. Simi-

larly, automatic effects of instructions presumably reflect the operation of task rules kept in

WM. Therefore, both were predicted to be influenced by WM load. However, while the

involvement of WM in RITL is implicated from prior studies, evidence regarding WM involve-

ment in instructions-based automaticity is mixed. In the current study, we manipulated WM

load by increasing the number of novel task rules to be held in WM towards performance in

the NEXT paradigm. In this task, participants performed a series of novel tasks presented in

mini-blocks, each comprising a) instructions of novel task rules; b) a NEXT phase measuring

the automatic activation of these instructed rules, in which participants advance the screen

using a key-press; and c) a GO phase in which the new rules are first implemented and RITL

is measured. In three experiments, we show a dissociation: While RITL (rule implementation)

was impaired by increased WM load, the automatic effects of instructions were not robustly

influenced by WM load. Theoretical implications are discussed.

Introduction

In the past few years, there is growing interest in the human ability to perform actions immedi-

ately following instructions and without prior practice [1–3]. This ability is mostly evident in

relatively simple tasks that combine a small number of familiar elements in a novel association

and is termed Rapid Instructed Task Learning (RITL; [4]). RITL can be exemplified in many

real-life situations, such as operating a machine or software for the first time, or assembling a

new piece of furniture. Moreover, instructions are sometimes so powerful that they even pro-

duce automaticity, reflected in activation of the newly instructed rules in an inappropriate con-

text [2,5], henceforth “automatic effects of instructions”. Since the instructed task-rules have
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never been executed before, their representations (at least in their first implementation) cannot

rely on long-term memory (LTM) traces from past performance [6,7]. Thus, instructions-

based performance was hypothesized to rely on active maintenance in WM [1,8,9], a neuro-

cognitive system responsible for holding novel representations [10].

In the following Introduction, we first review the theoretical basis and empirical evidence

for the involvement of WM in RITL in order to establish the hypotheses for the current study.

Next, we review the theoretical and empirical basis for our hypotheses concerning WM

involvement in automatic effects of instructions.

Theoretical involvement of working memory in rapid instructed task

learning

Extant models assume that WM has limited resources, and that it interacts with LTM, as well.

For example, Cowan [11] characterized WM as comprising of both a central component, severely

limited in resources, and a comprehensive component relying on LTM and characterized by a

much higher availability of resources. Oberauer’s [12] WM model may be viewed as an elabora-

tion of Cowan’s model. It divides WM into two parts: procedural and declarative. The procedural

subsystem is responsible for holding novel bindings between stimuli and responses; whereas the

declarative subsystem is responsible for holding novel bindings between stimulus elements. Each

of these subsystems is divided into three components: a) “activated LTM" that has a very large

capacity, and can make familiar representations highly accessible; b) "bridge" (or “region of direct

access” in the declarative system), with severely limited capacity, holding novel bindings between

familiar representations (e.g., a novel binding between a familiar stimulus and a familiar

response, i.e., a novel task-rule); and c) "response focus" (or “focus of attention” in the declarative

system), which only holds the representation of the currently selected item/task-rule.

The current study does not aim to contribute to the debate regarding whether the distinc-

tion between the procedural and declarative WM subsystems is justified [13–16]. We simply

note that, since RITL focuses on instructed task rules which are to be executed, we refer to the

information regarding the instructions as procedural information. In detail, when a task rule is

novel and has never been executed before, the familiar elements of the rule can be represented

in activated LTM, but their novel elements (e.g., the novel binding between a stimulus and a

response; S-R binding) must be represented in the “bridge”, which is a part of procedural WM

in Oberauer’s model. This point is exemplified below.

In order to illustrate the involvement of WM in RITL tasks, let us consider the NEXT para-

digm [5], which was used in the current study. In this paradigm, participants encounter a series

of novel choice tasks, each comprising two S-R bindings (e.g., “Y”! press left, and “X”! press

right; see Fig 1, upper panel). Each such novel task is implemented twice during a GO phase

where the targets appear in GREEN color. How is each such novel task represented? In this exam-

ple, the target stimuli “X” and “Y”, as well as the responses “right” and “left” are familiar elements

and as such, they are represented in activated LTM. However, the binding of stimuli to responses

is novel and is therefore thought to be represented in the “bridge” of procedural WM. This situa-

tion holds true at least until task implementation begins and LTM traces start to form [13]. In

other words, Oberauer’s model seems to imply that RITL depends on (procedural) WM. In the

following section, we review studies supporting the hypothesized involvement of WM in RITL.

Empirical evidence concerning the involvement of working memory in

rapid instructed task learning

Gathercole, Durling, Evans, Jeffcock, & Stone [17], who studied relatively complex tasks,

found that children who were better able to perform novel oral instructions had relatively high
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Fig 1. Mini-block structure, Experiments 1 and 2. Upper panel: low WM load, 2 novel task-rules; middle panel: novel-rules load, high WM load

with 4 novel task-rules (Experiment 1 and Experiment 2); lower panel: familiar-rules load, low WM load with 2 novel task-rules + 2 familiar task-

rules (Experiment 2). In all conditions of Experiment 2, the marked squares at the bottom of the screen (denoting the possible responses) appeared

as shown in the lower panel.

https://doi.org/10.1371/journal.pone.0217681.g001
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WM capacity. Yang et al. [9] additionally showed that young adults’ accuracy of recalling/

enacting instructions decreased in conditions that compromised WM functions (i.e., increas-

ing WM load). In contrast, in an individual differences study using the NEXT paradigm,

Meiran, Pereg, Givon, Danieli, and Shahar [18] showed that RITL was positively correlated

with a factor of general-fluid intelligence, and with performance in 6-choice tasks involving

novel-arbitrary bindings (in which the S-R rule had never been implemented beforehand, thus

presumably tapping procedural WM). However, RITL was equally strongly correlated with

performance in similar 6-choice tasks involving familiar bindings (in which the S-R rule is

well-practiced, hence barely tapping procedural WM). This last finding questions the unique

involvement of WM in the aforementioned individual-differences correlations. Moreover,

RITL was not significantly correlated with WM capacity, as measured with complex-span

tests. To account for these surprising findings, Meiran et al. suggested that perhaps the low

task-rule set-size involved in the NEXT paradigm (only two task rules) was not large enough

to challenge (and thus assess) WM-related individual differences.

Interestingly, Ruge et al. [19] used a larger task-rule set-size of four S-R rules (and thus pre-

sumably complex-enough to be sensitive to WM capacity differences), and manipulated WM

load as well. They found that instruction-based learning was generally influenced by WM load,

such that performance was worse under a WM-demanding condition. However, similar to

Meiran et al. [18], Ruge et al. also did not observe significant correlations between instruc-

tions-based learning and individual differences in WM capacity (measured with simple-span

tasks); albeit using a RITL task with an increased rule set-size.

To summarize, it seems that in accordance with the theoretical role of WM in keeping

novel information, increasing WM load is likely to impair RITL performance. However, there

are also indications regarding more complex regularities concerning individual differences in

WM capacity. Given that individual differences were not measured in the current study, we

predicted that WM load would impair RITL performance, confirming prior evidence [9,19].

In the following section we review theoretical and empirical evidence regarding an auto-

matic by-product of RITL that could be measured just prior to the implementation of the new

task.

Involvement of working memory in automatic effects of instructions

Automatic effects of instructions reflect the case in which novel instructions are prematurely

activated in an inappropriate context [2,20,21]. Specifically, and going back to the NEXT para-

digm, just prior to implementing the instructions (in the GO phase), participants encounter

the instructed stimuli in RED color, where they are requested to simply advance the screen

using a constant NEXT response (either left or right, counterbalanced between participants;

see Fig 1, upper panel). Advancing the NEXT targets using a response that is part of the

instructed S-R set creates compatibility relations. For example, if a participant was instructed

to press “left” in response to a target “Y” (as seen in the upper panel of Fig 1), and was also

instructed to use the right key for NEXT responses, then responding “right” in response to a

RED “Y” is considered incompatible with the RITL instructions. Concomitantly, responding

“right” in response to a RED “X” is considered compatible with the RITL instructions. Indeed,

results from a number of studies demonstrate the NEXT compatibility effect, showing that

incompatible NEXT responses are slower and less accurate relative to compatible NEXT

responses [5,18,22]. Importantly, during the NEXT phase, the novel instructions are not yet

implemented, and are thus thought to be stored in a pending state in WM.

Given that the instructions are assumed to be held in WM during the NEXT phase towards

execution in the GO phase, it is reasonable to predict that the automatic effect of instructions

Rapid instructed task learning is influenced by working memory load
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(seen in NEXT phase performance) might also be influenced by WM load. This prediction has

already been tested by Cohen-Kdoshay and Meiran [23,24] who focused on another index for

the automatic effects of instructions: the first-trial flanker compatibility effect.

In their study, Cohen-Kdoshay and Meiran administered a modified flanker paradigm [25]

in which participants learned a novel category-response rule (e.g., beginning of the alpha-

bet!right; end of the alphabet!left). In each trial, a target stimulus appeared in the middle of

the screen (e.g., “A”) accompanied by flankers, which were visually different, but belonged

either to the same response category (e.g., “BAB”, all belonging to the beginning of the alpha-

bet) or to the alternative response category (e.g., “ZAZ”, target belonging to the beginning of

the alphabet and flankers belonging to the end of the alphabet). Unlike in standard flanker

tasks, where the first trials after the instructions are discarded, Cohen-Kdoshay and Meiran

focused on these trials, and found that participants were slower when the flankers were incom-

patible than when they were compatible. Since this “first-trial flanker effect” was found imme-

diately following the instructions, without prior practice, it was considered to reflect an

automatic effect of instructions. Cohen-Kdoshay and Meiran [23] and Meiran & Cohen-

Kdoshay [26] further tested the involvement of WM in this effect, by using a WM load manip-

ulation involving a secondary go-no-go task that changed in every block. Their results showed

that the first-trial flanker effect was eliminated under WM load. These authors additionally

showed that the elimination of the effects was not due to the multitasking requirement of the

load task, since the first-trial flanker effect was not eliminated when the secondary task was

pre-trained and, hence, based on information already stored in LTM.

Nonetheless, Cohen-Kdoshay and Meiran’s conclusions are open to alternative explana-

tions, since it is possible that the effect actually reflects semantic priming (see Neely [27] for a

review) of the target stimulus by its flankers. For example, in the target stimulus “BAB”, the

flankers prime the semantic category "beginning of the alphabet" and thus facilitate the encod-

ing of “A”. Importantly, the elimination of the first-trial flanker effect by WM load could also

be explained in terms of semantic priming, since it has been shown that WM load may reduce

semantic priming effects [28]. Accordingly, the lack of instructions-based automaticity under

WM load in Meiran and Cohen-Kdoshay’s [26] study could reflect the WM load-related atten-

uation of (LTM-based) semantic priming, rather than of (WM-based) automatic effects of

instructions.

If the first-trial flanker compatibility effect studied by Meiran and Cohen-Kdoshay

[23,24,26] truly reflects an automatic effect of instructions, then it follows that the NEXT com-

patibility effect described above would also reduce, or even be eliminated, under WM-load.

An opposite prediction can be made on the basis of the individual differences study by Meiran

et al. [18], who found reversed effects concerning the instructions-based automaticity: While

WM capacity was not directly correlated with the NEXT compatibility effect, it was found that

better performance in choice tasks was correlated with small NEXT compatibility effects.

Assuming that loading WM is analogous to having poor WM, these results lead to the predic-

tion that WM load should enhance, rather than reduce, the NEXT compatibility effect.

A third option comes from recent results regarding the influence of (procedural) WM

training on RITL [29], that show a dissociation between the GO and NEXT phases. Specifi-

cally, it was found that participants who went through a rather extensive WM training were

relatively efficient in their GO phase performance (i.e., RITL), whereas their NEXT compati-

bility effect was comparable to the control groups who were trained in tasks with little WM

involvement or were not trained at all. Theoretically, such a dissociation could be supported

by a recent model [8], as will be further elaborated on in the General Discussion.

To sum up, contrary to RITL, where relatively clear predictions could be made, the evidence

regarding automatic effects of instructions lead to far less clear predictions. The results from
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the current study thus have the potential to shed light on this issue, especially due to the fact

that this is the first study that employs an experimental WM load manipulation in a task that

assesses both RITL and automatic effects of instructions.

The current study

In three experiments, we aimed to test the involvement of WM in RITL and in the automatic

effects of instructions, using the NEXT paradigm [5]. We followed Cole et al. [8], who propose

that the limits of RITL might be tested by overflowing WM capacity (e.g., manipulating WM

load). Our means to overload WM was by adding novel task-rules to the task. Based on Shahar

et al. [16], who showed that WM in choice-tasks was influenced by the number of novel task-

rules (but not familiar ones), manipulating WM load was done by increasing the number of

novel task-rules. Experiment 1 tested whether this WM load manipulation influenced RITL

and instructions-based automaticity; and Experiments 2 and 3 tested the influence of increased

number of task-rules that either tap WM (novel arbitrary rules) or not (familiar non-arbitrary

rules).

Importantly, both theoretically and empirically, the first implementation in RITL is consid-

ered to be the most important one [5,8]. In addition, the first-trial compatibility effect (mea-

suring automatic effects of instructions) was found to be larger relative to more advanced trials

[5,24]. Therefore, we chose to analyze the results in such a way that would allow us to reach

conclusions regarding the influence of WM load on specific trials (see the Data analyses sec-

tion for an elaboration).

The predictions regarding the influence of WM on RITL were quite clear: We hypothesized

that RITL (GO phase performance) should be impaired under conditions characterized by a

high WM load (i.e., increased number of novel task-rules), relative to when WM load is lower

(i.e., a low number of novel task-rules, and increased number of familiar task-rules). However,

given the mixed evidence regarding WM and automatic effects of instructions, the related pre-

dictions were less clear cut and patterns of increase, decrease, and no-change due to WM load

all seemed plausible.

Experiment 1

Following Shahar et al. [16], we loaded WM by manipulating novel-rules load. To do so, we

increased the number of novel arbitrary task-rules from two task-rules (as in the original

NEXT paradigm [5]), to four task-rules. We directly compared low and high WM-load condi-

tions (i.e., 2 vs. 4 novel task-rules) in a within-subjects design.

Method

Participants. All experiments in this study were approved by the Psychology department’s

ethical committee. Twenty-two Ben-Gurion University of the Negev undergraduate students

(19 women, Mage = 22.86, SD = 1.01) participated in the experiment for course credit. The

sample size was originally determined based on a power analysis using G-Power 3.1.9.2 [30]

that was set to obtain an effect size equivalent to η2
p = 0.09 with a power of 80%. All of the par-

ticipants signed an informed consent form, reported having normal or corrected-to-normal

vision, including intact color vision, and not having been diagnosed for attention deficits.

Materials and procedure. We adapted the NEXT paradigm used in Meiran et al. [5],

Experiment 1. We defined two conditions: the first including two novel task-rules was hypoth-

esized to involve low WM load; and the second including four novel task-rules was hypothe-

sized to involve high WM load. The experiment consisted of 72 mini-blocks: 36 with a low

Rapid instructed task learning is influenced by working memory load
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WM load (2 novel task-rules; Fig 1, upper and middle panels) and 36 with a high WM load (4

novel task-rules).

In each mini-block, 2 or 4 stimuli were mapped to 2 or 4 key-press responses, respectively,

towards a short execution during a GO phase (in which the target stimuli appeared in GREEN

color). Participants were requested to press the spacebar once they were ready to perform the

task, but only after at least 3 seconds had elapsed (this feature was added to ensure that partici-

pants do not mistakenly skip the instructions). Just prior to execution, participants encoun-

tered the stimuli in RED color during a NEXT phase, in which they were requested to simply

advance the screen using either their right (or left) index finger (i.e., the K or S keys, respec-

tively, counterbalanced between participants). The number of NEXT trials was pseudo-expo-

nentially adjusted to be between 0–5 trials, in order to discourage expectation of the timing of

the upcoming GO phase. Approximately 10% of the mini-blocks did not include a NEXT

phase (i.e., 0 NEXT trials), with the intention to promote high readiness towards the GO task’s

performance immediately after the instructions. (For further details regarding the experimen-

tal procedure, refer to Meiran et al., [5], Experiment 1).

The four response keys were "A", "S", "K", and "L" which were covered with stickers on a

QWERTY keyboard, and the fingers participants’ used to press them were the Left/Right Mid-

dle/Index fingers—Lm, Li, Ri, and Rm, respectively (in the few novel-task-rules condition, the

S-R association included only the index fingers).

Only stimuli mapped to the index fingers could appear during the NEXT phase. Thus,

NEXT responses were either compatible or incompatible with the GO instructions. The fol-

lowing GO phase was indicated by the GREEN color of the stimuli. This GO phase consisted

of two trials, in which two randomly chosen stimuli from those presented in the instructions

appeared, thus requiring participants to be ready for all possible rules. At the end of each mini-

block, a feedback regarding mean response times (RT) and number of errors in the GO phase

appeared on the screen for 2 seconds. Each trial began with a 500 ms fixation point, followed

by the target stimulus that appeared until participants responded, and ended with the presen-

tation of a blank screen for 800 ms. Stimuli were (3x3 cm) Hebrew and English letters, digits,

symbols, and pictures. Each mini-block included 2/4 stimuli from the same category (e.g., two

pictures, four Hebrew letters).

Data analysis. The “prepdat” R package [31] was used for preprocessing. GO trials with

an error were omitted from all RT analyses. Trials with a RT shorter than 100 ms (anticipation

errors) or longer than 4,000 ms (outliers) were also omitted, as well as trials above three stan-

dard deviations for each participant, per condition. The analyses of the results included both

Null-Hypothesis Testing (NHT) and Bayesian results (using JASP 0.8.1.2 [32] to estimate the

relative odds of H1 and H0 given the data (assuming equal priors)). We report BF10, the rela-

tive odds of H1 compared to H0, which allows accepting H0 (if BF10 < 0.33). Thus, our statisti-

cal inference is based on the Bayesian results.

Next, we elaborate on the approach we took in analyzing the data. The order of analyses

does not reflect the ordering of the mini-block (instructions!NEXT!GO). Instead, it follows

the theoretical focus. We thus analyze GO performance first, because this is where we had the

clearest predictions. We then continue with the NEXT phase, and then end with the analyses

of instructions’ study times.

First, theoretically, first-trial performance is considered the purest measure of RITL, as it

cannot rely on any previous task implementation [8]. In addition, empirical evidence shows

that performance on the first GO trial is worse (slower and less accurate) than on the second

GO trial; and that this difference was influenced by the degree of preparation towards the GO

phase (see [5] Experiment 4). Therefore, in the following experiments, we first observe that

this difference (termed “GO Trial effect”) is replicated. Only afterwards, we continue with the

Rapid instructed task learning is influenced by working memory load
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core analyses which examine whether performance in the first GO trial was influenced by the

WM load manipulation.

Second, we similarly examined whether the NEXT compatibility effect was influenced by

the WM load manipulation in the first and more advanced trials, separately. Specifically, there

are indications that the NEXT effect observed in the first NEXT trial differs from that seen in

subsequent trials. The indications include (a) the NEXT effect observed in the first NEXT trial

tends to be numerically larger than in subsequent trials [5,24] although the related statistical

interaction rarely reaches significance (see [5] Experiment 3, for an exception). This tendency

is in line with other theories suggesting that participants learn to ignore irrelevant information

with practice [33]; (b) the first NEXT trial is also characterized by general slowing relative to

subsequent NEXT trials [34,35]. These considerations suggest that the NEXT effect in the first

trial might serve as an optimal condition for NEXT effects to be seen (see S1 Appendix).

Therefore, in the following experiments, we examined whether the NEXT compatibility effect

is influenced by the load manipulation, and did so separately for the first NEXT trial and for

the more advanced NEXT trials.

Results and discussion

GO phase. RT and error rates were analyzed in a two-way ANOVA/BANOVA with the

within-subjects independent variables Number of Task-Rules (2 vs. 4 novel task-rules) and

GO Trial (Trial 1 vs. Trial 2). The results are pooled across mini-blocks involving at least one

NEXT trial (i.e., 90% of the mini-blocks; since GO performance after zero NEXT trials was

found to be weakly related to later GO performance [18]). Finally and very importantly, the

results are reported for GO trials involving responses with the index fingers. This precaution

was taken to strictly equate the conditions in terms of stimulus familiarity (only index-finger-

related stimuli were presented in the NEXT phase which preceded the GO phase that is being

analyzed) and in terms of responding fingers (only index fingers were used in the few novel-

task-rules condition).

In RT, both main effects were robust. The Number of Task-Rules main effect [F(1, 21) =

134.70, p< .001, η2
p = .86, BF10 = 4.059e+12] shows significantly longer RT in the 4 novel task-

rules condition relative to the 2 novel task-rules condition (738 ms vs. 474 ms, respectively).

As in previous experiments, the results also indicated a robust main effect for GO Trial, sup-

porting slower performance in the first relative to the second GO trial [F(1, 21) = 60.92, p<

.001, η2
p = .74, BF10 = 82.82]. Finally, the interaction between Number of Task-Rules and GO

Trial was robust, as well [F(1, 21) = 32.36, p< .001, η2
p = .61, BF10 = 126.16] (Fig 2, upper

panel), showing a larger RT GO Trial effect in the 4 novel-task-rules condition. In error rates,

only the main effect for GO Trial was robust [F(1, 21) = 14.53, p = .001, η2
p = .41, BF10 =

227.78]. Both the main effect for Number of Task-Rules and the interaction between Number

of Task-Rules and GO Trial showed a null effect (Fs < 1, BF10 < 0.30), suggesting that WM

load significantly influenced only RT. Nonetheless, numerically, the mean error rate was

9.85% in the 2 novel-task-rules condition and 11.2% in the 4 novel-task-rules condition, sug-

gesting that the results cannot be explained by speed-accuracy tradeoff.

NEXT phase. Since the NEXT phase did not involve a choice, NEXT errors were not

monitored in this experiment, and thus only RTs were analyzed. Due to the special status of

the first NEXT trial discussed earlier, the following analyses examine the first NEXT trial and

more advanced NEXT trials separately.

In the first NEXT trial, we examined whether the NEXT compatibility effect was influenced

by the load manipulation using ANOVA and BANOVA. This analysis demonstrated a robust

main effect for Number of Task-Rules [F(1,21) = 21.96, p< .001, η2
p = .51, BF10 = 12,084.91],
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a significant (by NHT) yet indecisive (by Bayesian inference) main Compatibility effect [F
(1,21) = 2.80, p = .11, η2

p = .12, BF10 = 0.46]. Most importantly, the results showed an indeci-

sive interaction between Compatibility and Number of Task-Rules [F(1, 21) = 2.33, p = .14, η2
p

= .10, BF10 = 0.61], considered anecdotal evidence towards H0 (numerically, the NEXT com-

patibility effect was reduced from 33 ms in the 2 novel-task-rules condition, to 3 ms in the 4

novel-task-rules condition; see Fig 3).

In the more advanced NEXT trials (pooled), the results were similar, with a robust Number

of Task-Rules main effect [F(1,21) = 22.17, p< .001, η2
p = .51, BF10 = 200,395.73], but a robust

lack of Compatibility main effect [F(1,21) = 1.11, p = .30, η2
p = .05, BF10 = 0.28], and lack-of

interaction between Number of Task-Rules and Compatibility, that supported H0 [F(1,21) =

0.12, p = .73, η2
p < .01, BF10 = 0.31, meaning that BF01 = 1.00/0.31 = 3.23]. Numerically, the

NEXT compatibility effect was reduced from 9 ms to 5 ms by the WM load manipulation.

Study times. We recorded study times of the instructions screen towards the GO phase.

These times include the 3s delay we forced on this screen. This analysis serves as a sanity

check, assuming that it would take longer to study 4 novel task-rules, relative to 2 novel task-

rules. As expected, participants took longer on average to encode the instructions in the high

WM load condition involving 4 novel-task-rules (19 seconds) relative to the low WM load

condition involving 2 novel-task-rules (6 seconds); a difference that was found to be significant

Fig 2. A two-way interaction between number of task-rules and GO trial in Experiment 1. The interaction

demonstrates an increased RT GO Trial effect under high WM load (4 novel task-rules condition) (RT upper panel

and error rates lower panel). Error bars represent Bayesian 95% Credible Intervals.

https://doi.org/10.1371/journal.pone.0217681.g002
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(in NHT) in a one-sided t-test [t(21) = 6.10, p< .001, Cohen’s d = 1.30] and as providing very

strong evidence supporting H1 (according to Jeffreys [36]), BF10 = 8,632.00.

To summarize, adding novel S-R mapping rules increased GO RT (but not errors), but did

not substantially influence the NEXT compatibility effect (although it did influence NEXT

general RT). However, the WM load manipulation we used was confounded with the probabil-

ity that a prepared rule would be used in the GO phase (higher with 2 than with 4 task-rules).

Importantly, the likelihood of future usage has previously been shown to influence automatic

effects of instructions [37]. Thus, it is conceivable that the numeric reduction in the NEXT

compatibility effect in the 4 novel task-rules condition (assumed to involve high WM load)

reflects the reduction in expected future usage and not load. Therefore, in Experiment 2, we

wanted to test whether an increase in the number of task-rules (with associated reduction in

expectancy of future usage) would influence the NEXT compatibility effect, even if the increase

in number of rules comes with minimal, if any, involvement of WM.

Experiment 2

Experiment 2 involved two groups of participants. In each group, we employed a within-sub-

jects manipulation of Number of Task-Rules, and the groups differed in whether an increase

in Number of Task-Rules was associated with an increase in WM load. In one group, (novel-

rules-load group) we replicated Experiment 1. This group accordingly involved two condi-

tions–low WM-load with 2 novel task-rules (lWM2R), and high WM load with 4 novel task-

rules (hWM4R). In the second group of participants (familiar-rules-load group), the 2 novel

task-rules condition was the same as in the novel-rules-load group, but the 4-task-rules condi-

tion was different. It involved 2 novel task-rules + 2 familiar task-rules that are thus not

assumed to rely on WM (lWM4R, meaning low-WM with 4 task-rules). Our prediction was

that, if the critical variable is the number of Task-Rules and not WM load, the effects seen in

Experiment 1 would replicate in both groups. If, however, the critical variable is WM load,

then the effects of Experiment 1 would replicate only in the novel-rules-load group and would

be absent or substantially reduced in the familiar-rules-load group.

Fig 3. First NEXT trial RTs in Experiment 1. The two-way interaction between Number of Task-Rules and

Compatibility showed anecdotal support for H0. Error bars represent Bayesian 95% Credible Intervals.

https://doi.org/10.1371/journal.pone.0217681.g003
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Method

Participants. Given that in Experiment 1 we did not observe a significant influence of the

WM load manipulation on the NEXT compatibility effect, we sought to increase the statistical

power and determined a sample size that would be sufficient to detect a smaller effect size of

η2
p = 0.045 (Power = .80) in a mixed between-within design. Accordingly, a new sample com-

prising seventy-one Ben-Gurion University of the Negev undergraduate students (59 women,

Mage = 23.06, SD = 1.24), with similar attributes to participants from Experiment 1, took part

in the experiment in return for course credit. Participants were randomly assigned to one of

the two groups.

(Technical note: One participant from the novel-rules-load group was removed from the

analyses after leaving mid-experiment, since she failed to finish the experiment within the esti-

mated time, due to extremely long times to study the rules. Whereas other participants in that

group took between 4 to 14 seconds in the 2 novel task-rules condition, and between 4 to 32

seconds in the 4 novel task-rules condition, this participant took 15 and 52 seconds to study

the instructions in the two conditions, respectively).

Materials and procedure. The procedure in the novel-rules-load group was identical to

Experiment 1. The novel-rules-load group received identical conditions to those of Experi-

ment 1, except for the marking of eligible response alternatives (described below). In the famil-

iar-rules-load group, the 2 novel task-rules condition (lWM2R) was identical to that of the

novel-rules-load group. The 2 novel + 2 familiar task-rules condition (lWM4R) included two

novel task-rules (related to the index fingers) and two familiar task-rules (arrows, related to

the middle fingers). In each group, there were 35 mini-blocks with four task-rules, and 35

mini-blocks with two task-rules. The rules associated with the left and right index fingers were

always novel. In the 4 task-rules conditions, the added rules (associated with the left and right

middle fingers) were novel rules in the novel-rules-load group, and familiar rules in the famil-

iar-rules-load group. The two familiar stimuli were left/right pointing arrows, which were

mapped to the corresponding left/right middle finger.

The rules associated with the middle fingers served as a load task and (especially when

arrows were used), participants could have conceived of the middle-fingers rules as belonging

to another task. This could have confounded the critical manipulation—which is whether the

additional alternatives add WM load; and could instead be perceived as—whether the four

task-rules belong to one task or two tasks. To prevent this confound, we induced the 2-task

strategy in both groups, making them similar in this respect. Specifically, we followed Shahar

et al. (see [16], Experiment 3) and added four squares below the target-stimulus, representing

the four response keys (2 on each side of the screen, see Fig 1 lower panel). In each trial, two

asterisks appeared in either the two inner squares or the two outer squares, pointing to

whether the current target stimulus belongs to the "inner" or "outer" task set, respectively. It

was further explained that during the NEXT phase, the asterisks would always point at the

inner keys, and that the use of these cues is encouraged. We nonetheless note that most of the

participants reported ignoring the asterisks in the post-experimental debriefing.

Due to a technical error, eight of the participants in the familiar-rules-load group received

five less mini-blocks in each of the two conditions, but preliminary analyses indicated that

their results did not differ from the rest of their group.

Results and discussion

GO phase. We performed two 3-way ANOVAs and BANOVAs, with the between-sub-

jects independent variable Group, and the within-subjects independent variables GO Trial

(Trial 1 vs. Trial 2) and Number of Task-Rules (2 vs. 4), on RT and error rates. The results
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were again pooled across mini-blocks involving 1–5 NEXT trials, and only included those tri-

als that required responding with the index fingers. In RT, the results indicated a main effect

for GO Trial [F(1, 68) = 105.78, p< .001, η2
p = .61, BF10 = 2.79e+8], showing slower RT in the

first vs. second GO Trial. In addition, there were main effects for Number of Task-Rules [F(1,

68) = 197.82, p< .001, η2
p = .74, BF10 = 10.4e+17], indicating slower RT in the 4- vs. 2-task-

rules conditions; and Group [F(1, 68) = 9.85, p< .01, η2
p = .13, BF10 = 9.02], indicting slower

RT in the novel-rules-load group relative to the familiar-rules-load group. Most importantly,

the prediction of a three-way interaction between Group, Number of Task-Rules, and GO

Trial was supported [F(1, 68) = 8.54, p< .01, η2
p = .11, BF10 = 4.55; Fig 4]. This triple interac-

tion shows that the GO trial effect was only increased by novel mapping rules (lWM2R vs.

hWM4R in the novel-rules-load group; F(1, 34) = 9.42, p< .01, η2
p = .22, BF10 = 4.51), but not

by familiar mapping rules (lWM2R vs. lWM4R in the familiar-rules-load group; F(1, 34) =

0.55, p = .46, η2
p = .02, BF10 = .32). In error rates, there were main effects for GO Trial [F(1,

68) = 20.11, p< .001, η2
p = .23, BF10 = 397.39] and Number of Task-Rules [F(1, 68) = 8.10, p<

.01, η2
p = .11, BF10 = 10.21], as in RT; but there was no main effect for Group [F(1, 68) = 0.62,

p = .43, η2
p < .01, BF10 = 0.26], suggesting that errors rates were not generally increased in the

Fig 4. A three-way interaction between Group, Number of Task-Rules, and GO Trial in Experiment 2. The

interaction demonstrates an increased RT GO trial effect under the 4 novel task-rules condition in the novel-rules-load

group, but not in the 2 novel + 2 familiar task-rules condition in the familiar-rules-load group (RT upper panel and

error rates lower panel). Error bars represent Bayesian 95% Credible Intervals.

https://doi.org/10.1371/journal.pone.0217681.g004
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novel-rules-load group. In addition, none of the interactions involving Number of Task-Rules

and Group was robust (all Fs< 3.5, BFs10 < 1.2). Importantly, there was no indication for

speed-accuracy tradeoff (see Fig 4).

NEXT phase. As in Experiment 1, we tested the NEXT compatibility effect for the first

and more advanced trials, separately; and in addition we did so for each group separately, as

well.

We first performed two ANOVAs and BANOVAs (on the first and advanced, 2–5, NEXT

trials, pooled), with the within-subjects variables Number of Task-Rules (2 vs. 4) and Compati-

bility (compatible vs. incompatible) in the novel-rules-load group. The results showed that

participants were slower to respond in the 4 novel task-rules condition (hWM4R), in both the

first and advanced NEXT trials [i.e., there was a robust main effect for Number of Task-Rules

for both the first NEXT trial: F(1, 34) = 68.38, p< .001, η2
p = .67, BF10 = 9.120e+7; and

advanced NEXT trials: F(1, 34) = 14.99, p< .01, η2
p = .31, BF10 = 8,593.68]. The results again

indicate a significant (by NHT) yet indecisive (Bayesian) main effect for Compatibility in the

first NEXT trial [F(1, 34) = 7.64, p< .01, η2
p = .18, BF10 = 2.37], but a robust effect in the

advanced NEXT trials [F(1, 34) = 9.12, p< .01, η2
p = .21, BF10 = 3.56]. However, no modula-

tion of the NEXT compatibility effect was supported by the results, which allowed us to accept

the null hypothesis [for first NEXT trial, Number of Task-Rules �Compatibility interaction: F
(1, 34) = 0.7, p = .41, η2

p = .02, BF10 = .33; for advanced NEXT trials, Number of Task-Rules
�Compatibility interaction: F(1, 34) = 1.86, p = .18, η2

p = .05, BF10 = .29].

We repeated the same analyses in the familiar-rules-load group. Unlike in the novel-rules-

load group, the Number of Task-Rules main effect was indecisive [for first NEXT trial: F(1, 34) =

17.42, p< .001, η2
p = .34, BF10 = 1.64; for advanced NEXT trials: F(1, 34) = 4.24, p< .05, η2

p =

.11, BF10 = .91]; and the NEXT Compatibility effect was robust in all NEXT trials [for first NEXT

trial: F(1, 34) = 33.95, p< .001, η2
p = .50, BF10 = 3.402e+8; for advanced NEXT trials: F(1, 34) =

17.03, p< .001, η2
p = .33, BF10 = 1,951.66]. Most importantly, the NEXT compatibility effect

was, again, uninfluenced by the increased number of task-rules [for first NEXT trial: F(1, 34) =

1.02, p = .32, η2
p = .03, BF10 = .33; for advanced NEXT trials: F(1, 34) = 0.87, p = .36, η2

p = .02,

BF10 = .31], allowing us to accept H0. The results thus far suggest that while the NEXT compati-

bility effect was uninfluenced by an increase in the number of task-rules (whether WM demand-

ing or not), the NEXT general RT was only influenced by the Number of Task-Rules when it was

also associated with a WM load increase.

Finally, in order to directly compare the groups (see Fig 5), we entered both groups into a

single ANOVA and BANOVA, with the within-subjects independent variables Number of

Task-Rules and Compatibility, and the between-subjects independent variable Group. These

analyses were conducted on the first and advanced NEXT trials, separately.

For the first NEXT trial, the results showed a robust two-way interaction between Number

of Alternatives and Group [F(1, 68) = 20.61, p< .001, η2
p = .23, BF10 = 20.73], demonstrating

that only participants in the novel-rules-load group were slowed in their first NEXT RT by the

increase in the number of task-rules. However, the three-way interaction between Group,

Number of Task-Rules, and Compatibility was indecisive [F(1, 68) = 1.65, p = .20, η2
p = .02,

BF10 = .49], with size considered as anecdotal evidence towards H0. In the advanced NEXT tri-

als, a similar pattern was observed, only that the three-way interaction allowed the acceptance

of H0 [two-way Number of Task-Rules �Group interaction: F(1, 68) = 5.63, p = .02, η2
p = .08,

BF10 = 4.97; three-way Number of Task-Rules �Group�Compatibility interaction: F(1, 68)<

0.1, p = .99, η2
p < .01, BF10 = .32].

Study times. Similar to Experiment 1, we wanted to make sure that participants took lon-

ger to learn 4 task-rules relative to 2 task-rules, especially when the rules were novel (novel-

rules-load group). The results support the expected pattern, showing a relatively small increase
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in study times with increasing number of task-rules from 5.8 to 6.5 sec in the familiar-rules-

load group. In contrast, in the novel-rules-load group, the effect was considerably larger, as it

took 5.2 vs. 10.5 sec on average to encode the instructions in the 2 vs. 4 novel task-rules condi-

tions, respectively. We analyzed these results in an ANOVA and BANOVA with Number of

Task-Rules (2 vs. 4) as the within-subjects independent variable, and Group as the between-

subjects independent variable, and the results indeed supported a robust interaction [F(1, 68)

= 32.82, p< .001, η2
p = .33, BF10 = 44,999.99].

Experiment 2 was run in order to test an alternative account that the critical variable is

Number of Task-Rules and not WM load. The results clearly rule out this account since the

results of Experiment 1 were replicated only when the increase in the number of task-rules was

associated with a WM load increase (i.e., in the novel-rules-load group). As in Experiment 1,

the NEXT compatibility effect was not influenced by these manipulations, but NEXT general

RT was influenced in a similar manner to GO RT.

Fig 5. NEXT RT in Experiment 2 for the first NEXT trial (upper panel) and advanced NEXT trials (lower panel).

The results did not show a robust influence of Number of Task-Rules on the NEXT compatibility effect. Error bars

represent Bayesian 95% Credible Intervals.

https://doi.org/10.1371/journal.pone.0217681.g005
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Nonetheless, another alternative account remains. In both the 2 novel task-rules condition

and in the 2 novel + 2 familiar task-rules condition in the familiar-rules-load group, the

response options could be easily categorized as “left” and “right”. This is obvious when there

were 2 task-rules, but also when there were four task-rules: the two novel rules could be labeled

as “right” and “left” and the other two (familiar) rules were associated with arrows, which were

also easily labeled as “right” and “left”. In contrast, a similar categorization was less possible

when there were 4 novel task-rules in the novel-rules-load group, as these rules could not be

easily categorized to two group. This analysis suggests that the results might actually reflect dif-

ferences in response coding rather than load proper.

To address this issue, in the third experiment, we used a procedure in which the two non-

load responses (associated with the index fingers) could be categorized as left/right, whereas

the additional (load) rules were not associated with right/left responses, but instead involved a

simultaneous key press by the two equivalent fingers of both hands (e.g., simultaneous pressing

of the two middle fingers).

Another modification introduced in Experiment 3 involved enhancement of the load

manipulation. Following Ellenbogen and Meiran [38], who demonstrated that loading WM

with 4 novel rules was insufficiently powerful, we increased the load from 4 to 6 task-rules. We

reasoned that such a high load might result in a modulation of not only GO performance, but

also the NEXT compatibility effect. That is, it is possible that the NEXT and GO phases have

differential sensitivity to WM manipulations, suggesting that an extreme load condition has

the potential to reveal WM load sensitivity, even differentially for NEXT phase compatibility

responses conditions.

Experiment 3

The 2 novel task-rules conditions in both groups were similar to that used in the previous

experiments, except that the left and right response keys were placed closer to each other. The

6 task-rules conditions included 4 additional rules involving responses that had to be simulta-

neously performed with both hands, such that they could not be represented as right/left (see

Method for an elaboration). In the novel-rules-load group, these 4 additional rules were all

novel and arbitrary, as in the previous experiments. In the familiar-rules-load group, these

additional rules comprised of S-R mappings that were non-arbitrary. Specifically, the stimuli

were designed in such a way that they would clearly remind what the response should be.

Method

Participants. A new sample of forty-six Ben-Gurion University of the Negev undergradu-

ate students (41 women, Mage = 23.06, SD = 0.99), with similar attributes to participants from

the previous experiments, took part in the experiment in return for course credit. Participants

were randomly assigned to the novel- and familiar-rules-load groups. The sample size was

determined as double the size of Experiment 1 (since it involves a between-subjects factor).

Materials and procedure. The 2 novel task-rules condition in both groups was similar to

that of Experiments 1 and 2 and included two novel rules. The only difference to the previous

experiments was that the two response keys were “F” and “H” on a QWERTY keyboard. Since

these keys are fairly close to each other, the stimuli on the instructions screen were presented

closer together, as well (see Fig 6). The 6 task-rules conditions included six S-R mapping rules

in total. In addition to two novel rules (associated with “right” and “left” responses), four addi-

tional rules were added. These rules associated stimuli with responses that had to be executed

simultaneously using both hands, with corresponding left and right fingers. They were associ-

ated with the simultaneous pressing of left + right middle fingers (“D+J”), left + right ring
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fingers (“S+K”), left + right pinky fingers (“A+L”), and left + right thumbs (on the spacebar).

Given that these simultaneous responses were relatively difficult to execute, we gave partici-

pants a relatively long practice involving 20 trials that was meant to make sure that they were

able to execute these responses correctly. For these responses, the program was set to accept

only responses in which the participant used both hands, as required. For example, if the

required response was “S+K”, but the participant pressed “S”, this was considered an error. At

the end of each mini-block, participants received feedback regarding their performance during

the GO phase, and they were encouraged to try to continuously improve their performance

(be as quick and as accurate as possible) throughout the experiment. Additionally, in this ver-

sion of the task, we collected NEXT errors (see [22]), though participants still had to (eventu-

ally) press the NEXT response in order to advance to the GO phase. Finally, since participants

tended to ignore the asterisks in Experiment 2, we dropped these cues in the current

experiment.

The stimuli in the novel-rules-load group were the same as in Experiments 1 and 2. In the

familiar-rules-load group, the additional stimuli were designed to induce the appropriate

response (i.e., to be non-arbitrary). They were first presented during the general instruction

phase and were also explained orally to the participants. The stimuli requiring responses by

the middle fingers, ring fingers, and pinky fingers were constructed as a number of parentheses

corresponding to the responding finger (for example, “((()))” to signal the middle finger; see

Fig 6). For the thumbs, the stimulus was a long horizontal bar, similar to the spacebar. During

the instructions of the 6 task-rules conditions (in both groups), the stimuli which required

simultaneous responses with both hands appeared twice on the screen, in locations mirroring

their appropriate responses (Fig 6, middle and lower panels), in order to facilitate the simulta-

neous nature of the responses.

Results

GO phase. As in Experiment 2, RT and errors (only for trials requiring responses with the

index fingers) were analyzed in a three-way ANOVA and BANOVA with the between-subjects

variable Group, and the within-subjects variables Number of Task-Rules (2 vs. 6) and GO

Trial (1 vs. 2). To our surprise, the results indicated an unusual finding: The main effect for

GO Trial was absent in both RT and in errors [RT: F(1, 46) = 2.38, p = .13, η2
p = .05, BF10 =

0.18; error rates: F(1, 46) = 0.79, p = .38, η2
p = .02, BF10 = .22]. In addition, GO Trial interacted

with Number of Task-Rules in RT [F(1, 46) = 37.80, p< .001, η2
p = .45, BF10 = 63.44], albeit

not in errors [F(1, 46) = 4.26, p< .05, η2
p = .08, BF10 = 1.37]. This interaction in RT shows a

general reversal of the GO trial effect in the 6 task-rules condition with a similar non-signifi-

cant trend in errors, and without a difference between the groups [F(1, 46) = 0.38, p = .54,

η2
p < .01, BF10 = 0.32]. Given that this pattern was seen in both groups (Fig 7), it suggests that

either motor complexity or the high number of task-rules, and not the WM-related aspects of

the hWM6R condition, caused this reversal. As noted in the Introduction, this suggests that

the GO trial effect no longer has its original implication in this experiment, and in the follow-

ing analyses, we focus on the first GO trial, which, as was previously noted, is the clearest indi-

cation of RITL.

Therefore, we entered the between-subjects independent variable Group and the within-

subjects independent variable Number of Task-Rules to an ANOVA and BANOVA. In RT,

the results indicated a robust interaction between Number of Task-Rules and Group [F(1, 46)

= 26.32, p< .001, η2
p = .36, BF10 = 13,284.50], demonstrating greater slowing with Number of

Task-Rules increase in the novel-rules-load group (from 565 ms to 999 ms), relative to the

familiar-rules-load group (from 610 ms to 620 ms). Probing this interaction showed a robust
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Fig 6. Mini-block structure in Experiment 3. Upper panel: both groups’ lWM2R condition involving 2 novel task-rules; middle panel: novel-rules-

load group hWM6R condition involving 6 novel task-rules; lower panel: familiar-rules-load group lWM6R condition involving 2 novel task-rules + 4

familiar task-rules. Notice that in the 6 task-rules conditions, the additional rules which required simultaneous responses with both hands appeared

twice on the instruction screen to demonstrate that both hands are required.

https://doi.org/10.1371/journal.pone.0217681.g006
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effect in the novel-rules-load group [F(1, 23) = 28.76, p< .001, η2
p = .56, BF10 = 18,881.62],

but a null effect in the familiar-rules-load group [F(1, 23) = 0.29, p = .59, η2
p = .01, BF10 =

0.32]. In errors, the interaction between Group and Number of Task-Rules was indecisive [F
(1, 46) = 1.73, p = .19, η2

p = .04, BF10 = 0.71], but the descriptive pattern was in the same direc-

tion as RT (error rates increased with load from 7.1% to 11.6% in the novel-rules-load group;

and from 8.5% to 8.6% in the familiar-rules-load group).

Although the results focused on the first GO trial, they are similar to those of previous

experiments, showing that GO RT were robustly influenced by a novel-rules-load and not by

familiar-rules-load.

NEXT phase. NEXT RT and error rates were analyzed for the first and more advanced tri-

als, separately, as in the previous experiments. The results were generally similar to those of

Experiment 2. We first examined the novel-rules-load group. We performed two ANOVAs

and BANOVAs (for the first and advanced trials, separately), with the within-subjects inde-

pendent variables Number of Task-Rules and Compatibility. The results show a robust effect

for Compatibility [for the first NEXT trial: F(1, 23) = 18.84, p< .001, η2
p = .45, BF10 = 9.91; for

the advanced NEXT trials: F(1, 23) = 17.97, p< .001, η2
p = .44, BF10 = 6.84]. In addition, there

was a robust effect for Number of Task-Rules [for the first NEXT trial: F(1, 23) = 41.79, p<

Fig 7. A three-way interaction between Group, Number of Task-Rules, and GO Trial in Experiment 3. The

interaction demonstrates that Number of Task-Rules influenced RT in both groups (upper panel), but only in the

novel-rules-load group it also influenced error rates (lower panel). Error bars represent Bayesian 95% Credible

Intervals.

https://doi.org/10.1371/journal.pone.0217681.g007
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.001, η2
p = .64, BF10 = 1.34e+7; for the advanced NEXT trials: F(1, 23) = 60.98, p< .001, η2

p =

.73, BF10 = 2.59e+9]. However, the NEXT compatibility effect was not robustly influenced by

this general increase in RT [for the first NEXT trial, considered anecdotal evidence towards

H0: F(1, 23) = 2.21, p = .15, η2
p = .09, BF10 = 0.46; for the advanced NEXT trials, considered

strong evidence for H0: F(1, 23) = 0.63, p = .43, η2
p = .03, BF10 = 0.28].

The same set of analyses was performed on NEXT error rates in this group (novel-rules-

load). The ANOVA and BANOVA on the first NEXT trial showed a robust main effect for

Compatibility [F(1, 23) = 19.43, p< .001, η2
p = .46, BF10 = 102.53]. A robust main effect was

found for Number of Task-Rules as well [F(1, 23) = 4.68, p = .04, η2
p = .17, BF10 = 3.50], but

again there was no modulation of the NEXT compatibility effect by Number of Task-Rules [F
(1, 23) = 1.62, p = .22, η2

p = .07, BF10 = 0.56], with an indecisive result considered as anecdotal

evidence towards H0 (increase from a compatibility effect of 3% to 5.6% errors). On advanced

NEXT trials, the main effect for Number of Task-Rules was indecisive and showed anecdotal

evidence towards H0 [F(1,23) = 2.61, p = .12, η2
p = .10, BF10 = 0.56]. The main Compatibility

effect was indecisive [F(1, 23) = 2.86, p = .10, η2
p = .11, BF10 = 1.21], and a similar result was

obtained for the interaction between Number of Task-Rules and Compatibility [F(1,23) = 0.61,

p = .44, η2
p = .03, BF10 = 0.38].

In the familiar-rules-load group, unlike in the novel-rules-load group, there was no main

effect for Number of Task-Rules on NEXT RT [first NEXT trial: F(1, 23) = 1.07, p = .31, η2
p =

.04, BF10 = 0.25; advanced NEXT trials: F(1, 23) = 0.91, p = .35, η2
p = .04, BF10 = 0.27]. While

the main Compatibility effect was robust [first NEXT trial: F(1, 23) = 14.23, p< .001, η2
p = .38,

BF10 = 23,165.08; advanced NEXT trials: F(1, 23) = 19.49, p< .001, η2
p = .46, BF10 =

23,280.79], it was not robustly influenced by the Number of Task-Rules [first trial: F(1, 23) =

1.05, p = .32, η2
p = .04, BF10 = 0.28; advanced trials: F(1, 23) = 1.39, p = .25, η2

p = .06, BF10 =

0.40].

The same pattern was seen in NEXT error rates, as well. There was a main effect for Com-

patibility [first trial: F(1, 23) = 19.08, p< .001, η2
p = .45, BF10 = 448,390.00; advanced trials: F

(1, 23) = 12.43, p< .01, η2
p = .35, BF10 = 2,128.11], but no main effect for Number of Task-

Rules [Fs < 1, BFs10< .22], and the NEXT effect was not modulated by the Number of Task-

Rules manipulation [Fs < 1, BFs10 < .33].

Finally, for the sake of completeness, we performed a set of ANOVAs and BANOVAs to

directly test the differences between the groups. Like in Experiment 2, these analyses included

the between-subjects variable Group and the within-subjects variables Number of Task-Rules

and Compatibility. First, in RT for the first NEXT trial, the results showed a robust Group�

Number of Task-Rules interaction [F(1, 46) = 27.76, p< .001, η2
p = .38, BF10 = 1,450.41], and

supported the lack of a three-way interaction between Group, Number of Task-Rules, and

Compatibility [F(1, 46) = 0.18, p = .67, η2
p < .01, BF10 = 0.30]. The same pattern was observed

for the advanced NEXT trials [Group� Number of Task-Rules interaction: F(1, 46) = 41.08,

p< .001, η2
p = .47, BF10 = 1.36e+6; three-way interaction: F(1, 46) = 1.86, p = .18, η2

p = .04,

BF10 = 0.48].

In NEXT error rates, the results were similar, though without the indication of a robust

two-way interaction between Number of Task-Rules and Group [first trial: F(1, 46) = 3.46, p =

.07, η2
p = .07, BF10 = 1.07; advanced trials: F(1, 46) = 1.04, p = .31, η2

p = .02, BF10 = 0.29]. Simi-

lar to RT, the results concerning the three-way interaction between Group, Number of Task-

Rules, and Compatibility indicated anecdotal evidence towards accepting H0 [first trial: F(1,

46) = 1.37, p = .25, η2
p = .03, BF10 = 0.44; advanced trials: F(1, 46) = 1.37, p = .25, η2

p = .03,

BF10 = 0.60]. Taken together, similar to Experiment 2 the results suggest that, while only the

novel-rules-load group was generally influenced by the Number of Task-Rules manipulation
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during the NEXT phase (and only in RT), Number of Task-Rules did not affect the difference

between the compatible and incompatible conditions (Fig 8).

Study times. The average study time in the novel-rules-load group was 5.3 seconds in the

lWM2R condition and 25.0 seconds in the hWM6R condition; whereas in the familiar-rules-

load group, the average study time was 6.0 seconds in the lWM2R condition and 6.8 seconds

in the lWM6R condition. The study times were entered into an ANOVA and BANOVA with

the within-subjects variable Number of Task-Rules (2 vs. 6) and the between-subjects variable

Group. The results resembled those of Experiment 2: They showed a very strong interaction

between Number of Task-Rules and Group [F(1, 46) = 100.10, p< .001, η2
p = .68, BF10 =

9.56e+11]. This finding is interesting on its own, as it suggests that the manipulation worked,

and participants did not need the extra time to encode the elaborate additional rules in the

familiar-rules-load group.

In summary, the results generally replicated those of the previous experiments, demonstrat-

ing that first GO trial performance was influenced by novel-rules-load, but that the NEXT

compatibility effect was uninfluenced by the manipulation (although a non-specific influence

on NEXT RT was observed under novel-rules-load). The contribution of the present experi-

ment was in ruling out the account that the Number of Task-Rules manipulation influenced

response coding.

Fig 8. NEXT RT (upper panels) and error rates (lower panels) in Experiment 3 for the first NEXT trial (left panels) and advanced NEXT trials

(right panels). The results did not show a robust influence of WM load on the NEXT compatibility effect. Error bars represent Bayesian 95% Credible

Intervals.

https://doi.org/10.1371/journal.pone.0217681.g008
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General discussion

The results from three experiments show that increasing the number of novel arbitrary rules

held in working memory influences instructions-based performance (RITL). Importantly,

increasing the number of familiar rules that hypothetically should not (or minimally) rely on

WM resources, did not influence RITL thus pointing to the unique contribution of WM. In

contrast, increasing WM load did not differentially influence the automaticity of instructions

(manifested in the NEXT compatibility effect), suggesting a dissociation between RITL perfor-

mance and its associated automaticity effect. The results regarding RITL and automaticity are

further discussed separately, followed by broader theoretical implications.

Rapid instructed task learning is uniquely influenced by working memory

load

The current findings concerning RITL support previous hypotheses suggesting that the ability

to perform actions immediately following instructions depends on available WM resources

[8,20]. One such resource may be the “bridge” described by Oberauer [12], since novel S-R

rules are hypothesized to be held in it. This finding also fits Ruge et al.’s [19] results regarding

the influence of WM load on instructions-based performance using a different WM

manipulation.

A broader issue, although not specifically tested in this study, concerns individual differ-

ences in WM capacity and RITL. The results demonstrate that conclusions drawn from indi-

vidual differences studies do not hold in this experimental study. While the current results

seem to be discrepant with the individual differences results found by Meiran et al. [18] and

Ruge et al. [19], who showed that WM capacity was not significantly correlated with RITL;

they are in-line with Ruge et al.’s findings regarding the influence of WM load on instructions-

based learning. Therefore, future research focusing on this issue could perhaps both manipu-

late set-size and incorporate simple and complex WM spans in order to try and clear the pic-

ture regarding the complex relations between RITL, WM, and their individual differences.

Automatic effects of instructions are not differentially influenced by

working memory load

The predictions regarding automatic effects of instructions were not as clear as they were for

RITL. Accordingly perhaps, the results were not as straightforward as one might hope for. We

found a non-specific influence of WM load on the NEXT phase, showing a general increase in

NEXT RT, that did not significantly modulate the NEXT compatibility effect. The fact that the

NEXT effect was not modulated by WM load suggests a dissociation with respect to RITL, but

the main effect of load on NEXT RT suggests some sensitivity to WM load. Importantly, while

the NEXT effect is related to the novel rules which were instructed at the beginning of the

mini-block, NEXT RT is not related to these rules. It reflects the operation of a repetitive rule

that is relevant for the entire experiment: if the stimulus appears in red color! press NEXT.

Thus, the slowing of NEXT responses may be irrelevant to the automaticity of the newly

instructed rules–which is relatively insensitive to WM-load.

On the one hand, these results contradict those of Cohen-Kdoshay and Meiran [23] and

Meiran and Cohen-Kdoshay [26], who showed that the first-trial flanker effect was diminished

under WM load, manipulated by adding novel rules for a secondary task (whereas we loaded

the main task directly). While the different results could be due to the different manipulation

of load, they might also reflect the fact that the first-trial flanker effect reflects semantic
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priming, an account that does not hold for the NEXT compatibility effect that we used as our

index of automaticity.

To sum up, the present results point to a dissociation between RITL and automatic effects

of instructions with respect to WM load. These results correspond to a recent training study,

showing that RITL (but not the NEXT compatibility effect) was influenced by WM training

[29]. Broader theoretical implication concerning this dissociation are discussed below.

Theoretical implications

The NEXT compatibility effect is considered to reflect a reflexive activation of instructions.
Given that the results clearly demonstrate that loading WM with novel instructions harms the

efficient implementation of the rules, it is puzzling how the NEXT compatibility effect remains

uninfluenced by WM load. This dissociation could be accounted for by a recent model [8] Spe-

cifically, Cole et al. suggested a mechanism termed “task representation buffer”, which tempo-

rarily holds the instructions towards performance in the GO phase, shielding them until the

interference caused by the NEXT phase is over. The current results could perhaps be taken as

support for this hypothesis.

According to Cole et al. [8], the buffer is hypothetically located in the anterior prefrontal

cortex, and it supports the hierarchical representation of the task which is required due to the

task structure. Specifically, to ensure efficient performance in both the NEXT and GO phases,

participants should hold a task representation stating that, “If RED color! press right(/left),

else if GREEN color! [if X! right, and if Y! left]” (and this representation should be fur-

ther elaborated for a higher number of bindings). This type of task representation is consid-

ered to involve “branching control” [39], since executing the task demands more than simply

identifying target identity, as in standard choice tasks (i.e., deciding on the “branch” depend-

ing on the target color). Therefore, Cole et al. suggested that, in the NEXT paradigm, an effec-

tive strategy to manage these control demands would be to temporarily store the GO

instructions in a buffer in the anterior prefrontal cortex, until their implementation, when

their representation is fully activated.

The task-buffer perfectly accounts for the current results, as it suggests that during the

ongoing NEXT task performance, the novel instructions are not yet held in the lateral prefron-

tal cortex (where they are connected to motor areas), regardless of the number of novel bind-

ings. Importantly, as noted by Cole et al. [8], it also explains the individual differences that

were demonstrated by Meiran et al. [18] showing a negative correlation between efficient

RITL and small compatibility effects; such that individuals with an efficient buffer both benefit

by protecting the novel instructions and show smaller reflexive activation of the instructions.

The effect of WM load on NEXT RT could be taken to reflect a detrimental influence of hold-

ing an increased number of instructions when the NEXT phase is executed. This suggestion

does not contradict the task-buffer model, since NEXT RT (as opposed to the NEXT compati-

bility effect) is unrelated to the specific content to the buffer, suggesting that the content is

indeed “buffered”.

Limitations

Probably, the most serious limitation is that the GO trial effect was reversed in Experiment 3

under the 6 task-rules conditions in both the novel- and familiar-rules-load groups. While this

effect suggests that we should not examine whether the GO trial effect was influenced by WM

load, we nonetheless do not fully understand what caused this reversal. On the one hand, it

could be the motor complexity involved in this experiment; while, on the other hand, it could

be the increased number of rules (six instead of four bindings, that even in the familiar-rules-
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load group they were not as familiar as the arrows of Experiment 2). Whereas this effect does

not undermine our main conclusion, it will still be interesting to examine in future research

how RITL is influenced by these issues.

Second, in the current study, we only increased the WM load involved with RITL, and

showed a dissociation by which RITL, but not its associated automaticity, was affected. It is

possible that loading the ongoing NEXT task would produce different results.

Conclusion

The current study demonstrates a dissociation showing that the ability to perform tasks imme-

diately following instructions specifically relies on available WM resources, but that its associ-

ated automaticity does not. These results offer support for the “task-buffer” hypothesis [8]

which suggests that novel instructions are “set-aside” until their implementation in situations

involving deferred performance.
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