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Background. Collagen type V alpha 1 chain (COL5AL1) is a hypoxia-related gene (a collagen family protein) and participates in the
formation of the extracellular matrix. Although some evidence supports a significant role for COL5A1 in the progression of
several cancers, a pan-cancer analysis of COL5AL1 is not currently available. Herein, we aimed to assess the prognostic value of
COL5A1 in 33 human cancers and to investigate its underlying immunological function. Methods. Through multiple
bioinformatics methods, we analyzed the data from Oncomine, TCGA, CCLE, HPA, DNMIVD, and cBioPortal database to
explore the potential underlying carcinogenic effect of COL5A1, including the relevance of COL5A1 to the outcome, DNA
methylation, tumor microenvironment, immune cells infiltration, and drug sensitivity in 33 human cancers. The effects of
COL5A1 on glioma cell proliferation, migration, and invasion were verified in cellular experiments. Results. Our findings
indicated that COL5A1 was expressed at high levels in 13 cancers and was negatively related to the prognosis of 11 cancers.
Additionally, COL5A1 was coexpressed with genes encoding the major histocompatibility complex, immune activators,
immune suppressors, chemokines, chemokine receptors, mismatch repair genes, and immune checkpoints. We also identified
different roles for COL5A1 in the immunocyte infiltration in different cancers. The correlation between COL5A1 and drug
sensitivity was found in several cancers. COL5A1 potentially influenced the tumor progression through immune-related
pathways, negative regulation of immune system processes, chemokine signaling pathways, JAK-STAT pathways, T cell
receptor pathways, lymphocyte migration, and antigen processing and presentation, among other processes. Conclusions. Based
on our study, COL5A1 may be employed as a prognostic marker in different malignancies because of its impact on
tumorigenesis and immune cell infiltration and have implications for cancer immune checkpoint inhibitors and chemotherapy.

gence and refinement of gene expression databases have
enabled explorations of new immunotherapeutic targets

Malignant tumor is a leading cause of death and a main cause
of poor quality of life of patients in many countries worldwide,
but no absolute cure is currently available for malignant
tumors [1], such as central nervous tumors with neurorestora-
tive treatment [2, 3]. Immunotherapy for tumors has recently
emerged as a new approach to oncology treatment, specifically
immune checkpoint blockade (ICB) therapy [4]. The emer-

through pan-cancer analysis of the expression of particular
gene and assessments of its relevance to patients’ prognoses
and potential mechanisms [5, 6].

Collagen type V alpha 1 chain (COL5A1), a collagen
family protein (the most abundant matrix protein polymer
in vertebrates), participates in the formation of extracellular
matrix [7]. Additionally, COL5A1 was also reported to be a
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FiGure 1: Differential COL5A1 expression in normal and tumor tissues. (a) COL5A1 mRNA expression was elevated in most tumors than
normal tissues. (b) Different levels of COL5A1 expression in various human tumors and normal tissues. (c) The alteration frequency of
COL5AL1 in different cancers. (d) Expression of the COL5A1 mRNA in various cell lines. *p < 0.05, **p < 0.01, and ***p < 0.001.

hypoxia-related gene [8]. Hypoxia is known to trigger the
production of reactive oxygen species [9], which play an
important role in cancer biology. Collagen deposition is
often regarded as a pathological characteristic in tumor
microenvironment [10]. In addition, chemotherapy resis-
tance is associated with increased tissue stiffness mediated
by specific collagen cross-linking. Collagen V is one of the
components of fibril-forming collagen and has a critical role
in extracellular matrix organization by forming copolymers
with collagen I or II to regulate the length and abundance
of heterotypic collagenous protofibrils [11]. al(V), a2(V),
and a3(V) polypeptide chains, encoded by COL5AI,
COL5A2, and COL5A3, respectively, comprise the protein
of collagen V [12]. As previously reported, COL5A1 is asso-
ciated with head and neck squamous cell carcinoma
(HNSC), oral squamous cell carcinoma [13], breast cancer
[14], and gastric cancer [15]. Furthermore, COL5A1 has
recently been reported to be a key gene correlated with mac-
rophage infiltration and M2 polarization and is related to the
proportion of infiltrating immunocyte in ovarian cancer
(OV), indicating that COL5A1 may be an immunotherapeu-
tic target in OV [16]. However, the role of COL5A1 in other
human cancers is still unidentified. The prognostic predic-
tive value of COL5A1 across cancers has not been
adequately studied. Therefore, more work is urgently needed
to investigate the role of COL5A1 in human tumors.
Tumor-infiltrating immune cells (TIIC) are important
components of the tumor microenvironment (TME) and
monitor tumor cells during their life cycle, and cancer only
develops when immune cells cannot destroy precancerous
cells [17]. The infiltration levels of TIIC in TME also impact
on the prognoses of cancers. For example, high levels of B,
CD4+, and dendritic cells infiltration are associated with a
better outcome in thymomas, which may be partially regu-
lated by ASF1B [6]. Lower grade glioma (LGG) patients with

high TUBA1C expression may have a better response to ICB
[18]. More and more versatile immunotherapeutic targets
for human tumors need to be discovered. Herein, we mainly
used numerous silico analyses to discover the role of
COL5AL in the prognosis, TIIC infiltration, and drug sensi-
tivity in 33 human cancers.

2. Methods

2.1. Data Collection and Different Expression Analysis.
Oncomine (https://www.oncomine.org/), an online cancer
microarray database [19], was employed to analyze the
COL5A1 expression in 33 human tumors as we used to do
[20]. We downloaded mRNA expression data and clinical
information from the UCSC Xena website (https://xena
.ucsc.edu/). Next, we extracted and integrated COL5A1
expression data in TCGA (https://tcga.xenahubs.net)
through the Perl software to perform pan-cancer analysis.
The “Wilcoxon test” was employed to evaluate the differ-
ences in COL5A1 mRNA expression levels in 33 cancer
types. Then, mRNA sequencing data from different cancer
cell lines were assessed using CCLE (https://portals
.broadinstitute.org/ccle). The R package “ggpubr” was
employed for the box diagram. Mutation in COL5A1 in 33
cancers was investigated through cBioPortal (https://www
.cbioportal.org).

2.2. Immunohistochemical (IHC) Staining. Images of immu-
nohistochemical staining for the COL5A1 protein were used
for expression analyses, and the differences in the COL5A1
protein level were assessed in normal and eight tumor
tissues, including bladder urothelial carcinoma (BLCA),
colon adenocarcinoma (COAD), glioblastoma multiforme
(GBM), liver hepatocellular carcinoma (LIHC), ovarian can-
cer (OV), prostate adenocarcinoma (PRAD), stomach
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FIGURE 2: Representative photographs of immunohistochemical staining and western blots of different normal tissues (left panels) and
tumor tissues (right panels). The level of the COL5A1 protein was increased in bladder urothelial carcinoma (BLCA), colon
adenocarcinoma (COAD), glioblastoma multiforme (GBM), liver hepatocellular carcinoma (LIHC), ovarian cancer (OV), prostate
adenocarcinoma (PRAD), and testicular germ cell tumors (TGCTs). (a) Urinary bladder. (b) Colon. (c) Cerebral cortex. (d) Liver. (e)
Ovary. (f) Prostate. (g) Stomach. (i) Testis. (j) Quantitative analysis of immunohistochemical staining from the HPA database. n=3
samples per normal group, n=>5 samples per tumor group. (i, k) Western blot results showing the expression of COL5A1, n=5, **p <

0.01 and ***p < 0.001.

adenocarcinoma (STAD), and testicular germ cell tumors
(TGCTs) from the HPA (http://www.proteinatlas.org/).
Three normal tissue and five tumor tissue samples were ran-
domly chosen for quantitative analysis.

2.3. Western Blot Analysis. U251 cells, tumor, and paracan-
cerous tissues were collected (representative clinicopatholo-
gical data are presented in Figure S1), homogenized, and
then lysed on ice in cold RIPA buffer. Next, the samples
were separated on gels and then transferred onto
polyvinylidene difluoride membranes. Membranes were
blocked by blocking buffer for 1 hour and then incubated
with anti-COL5A1 (Sigma-Aldrich; Merck KGaA) and anti-
B-tubulin (Cell Signaling Technology, Boston, USA) primary
antibodies at 4°C overnight. Membranes were then incubated
with secondary antibody (diluted 1:10000; Li-Cor
Bioscience, USA) for 1 hour. Membranes were assessed with
the Odyssey software (LI-COR, Lincoln, NE, USA).

2.4. Identification of the Correlation between COL5AI
Expression and the Clinicopathological Characteristics or
Survival of Patients with Various Cancers. Survival informa-
tion for each sample in TCGA was used to elucidate the rela-
tionship between COLS5A1 expression and prognosis of
patients with different cancers. Overall survival (OS),
disease-specific survival (DSS), disease-free interval (DFI),
and progression-free interval (PFI) were analyzed. The
Kaplan-Meier (KM) survival curves and log-rank test were
employed to analyze the survival of patients (p <0.05)
through R packages “survminer” and “survival.” Subse-
quently, “survival” and “forestplot” R packages were applied
for the Cox analysis to verify the correlation of COL5A1

expression with survival. High or low expressions are
defined by median. R packages “ggpubr” and “limma” were
employed for the clinicopathological correlation analysis.
The DNMIVD dataset (http://www.unimd.org/dnmivd/)
was applied to assess the DNA methylation levels of
COL5A1 and the association between COL5A1 methylation
and prognosis.

2.5. Correlation Analysis of COL5A1 with Tumor Mutation
Burden (TMB) or Microsatellite Instability (MSI). The corre-
lation of COL5A1 with TMB or MSI was analyzed as previ-
ously described [6, 20]. We also applied cBioPortal to
investigate the correlation between COL5A1 mutations and
prognosis.

2.6. Exploration of Association between COL5A1 and TME or
Infiltration of TIIC. We employed the ESTIMATE algorithm
and the R packages “estimate” and “limma” to evaluate
immune and stromal scores [21] as we used to [6, 20, 22].
For more reliable immune score evaluation, we then employed
the “immuneeconv” R package that integrated the six algo-
rithms, including TIMER, xCell, MCP-counter, CIBERSORT,
EPIC, and quanTIseq. We next analyzed the correlation of
COL5A1 expression with the TME or TIIC infiltration by R
packages “ggplot2,” “ggpubr,” and “ggExtra.”

2.7. Pathway Enrichment Analysis and Coexpression of
COL5A1 with Immune-Related, Mismatch Repair (MMR)
Genes, and Immune Checkpoint-Related Genes in Tumors.
Gene Ontology (GO) and Kyoto Encyclopedia of Genes
analyses and Genomes (KEGG) and the coexpression of
COL5A1 with immune checkpoint genes and immune-
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FiGure 3: Correlations of COL5A1 with OS. (a) Forest plots and KM analyses (b-1) of the correlations of COL5A1 with OS in various
human cancers.

related genes were conducted as we described previously  with OS based on the Genomics of Drug Sensitivity in Cancer
[6, 20]. (GDSC) (https://www.cancerrxgene.org/). The prediction was

implemented by the R package “pRRophetic.” All parameters
2.8. Predicting the Correlation of COL5A1 with Drug  were set by the default values with removal of the batch effect
Sensitivity. We predicted the chemotherapeutic response  of “combat” and tissue type of “allSoldTumours,” and we gen-
for samples of cancers which had a correlation of COL5A1  eralized duplicate gene expression to mean value [23].
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2.9. qRT-PCR, Wound Healing, and Transwell Migration to
Confirm the Role of COL5A1 in U251 Cells. U251 cell line
was obtained from Genochem (Shanghai, China). Cells were
cultured in DMEM with 10% FBS and 100 U/mL penicillin-
streptomycin in an incubator at 37°C with 5% CO2. The
sequence of siRNA to knock down COL5A1 was 5’ -AAGG
AGAGGGUGAGACCUAUUA-3', and the sequence for
control siRNA was 5'-CAGAGGGAGUGGGAGCCAAUA
AUUA-3' [24]. Lipofectamine 3000 was employed for cell
transfection with siRNA-COL5A1 or siRNA-control. 48
hours after the transfection process, transfected cells were
collected, and then the transfection efficiency was verified
by western blotting and qRT-PCR assays. Then, the cells
were plated in six-well plates until fused to 80%. The cells
were scratched using a pipette tip and washed, then incu-
bated at 37°C and 5% CO2. The viability of U251 cells was
assessed by CCK-8 assay. After 24h, the picture of the
wound was taken under a microscope.

qRT-PCR was carried out as a previous study [25]. The
primer sequences were as follows: COL5A1, F: GCCCGG
ATGTCGCTTACAG, R: AAATGCAGACGCAGGGTAC
AG; GAPDH, F: GCACCGTCAAGGCTGAGAAC, R:
TGGTGAAGACGCCAGTGGA. The mRNA expression
was quantified by normalizing it with the internal reference
GAPDH expression.

Cell invasion assay was performed as we previously per-
formed [26]. The cells were photographed at 200X magnifi-
cation, and the number cells crossing membrane was
counted in five random fields by Image] (version 1.61,
NIH, Bethesda, MD, USA).

2.10. Statistical Analysis. All gene expression data were nor-
malized by log2 transformation. Experimental data were

presented as mean + SD, and Student’s t-test was employed
for two-group comparison. KM analysis, Cox proportional
hazards model, and log-rank test were performed for all sur-
vival analyses. Correlation between two variables was evalu-
ated by Pearson’s or Spearman’s test. Statistical analyses
were carried out using GraphPad Prism 8.0 (GraphPad Soft-
ware Inc.) and R software (version 4.0.2). p<0.05 was
defined as a significant difference.

3. Results

3.1. Differential Expression of COL5AI1 in Normal and
Tumor Tissues. Firstly, Oncomine was used to assess the
COL5AL expression in normal and tumor tissues. We found
that COL5A1 was highly expressed in most human cancers,
including the brain and central nervous system (CNS),
breast, colorectal, esophageal, gastric, head and neck, kidney,
leukemia, liver, lung, lymphoma, ovarian, pancreatic, sar-
coma, and other cancers. It was interesting to note that lower
expression of COL5A1 was also detected in bladder, colorec-
tal, kidney, leukemia, melanoma, ovarian, sarcoma, and
prostate cancer datasets (Figure 1(a)). Different data collec-
tion methods may be partially responsible for these contra-
dictory results.

We analyzed the RNA sequencing data from TCGA
through using the R software to further evaluate the expres-
sion of COL5A1 in different cancers. The results illustrated
that COL5A1 was upregulated in 13 cancers, including
breast invasive carcinoma (BRCA), cholangiocarcinoma
(CHOL), COAD, esophageal carcinoma (ESCA), GBM,
HNSC, kidney renal clear cell carcinoma (KIRC), LIHC,
lung squamous cell carcinoma (LUSC), lung adenocarci-
noma (LUAD), rectal adenocarcinoma (READ), STAD,
and thyroid carcinoma (THCA). Meanwhile, lower COL5A1
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FiGURE 6: Correlation between COL5A1 and PFI. (a) Forest plots and KM analyses (b-i) of the relationships of COL5A1 with PFI.

expression was detected in 3 cancers compared to normal
tissues, including cervical squamous cell carcinoma (CESC),
uterine corpus endometrial carcinoma (UCEC), and kidney
renal papillary cell carcinoma (KIRP). No significant differ-
ence was observed in some cancers with a few normal sam-
ples (e.g., only one normal tissue sample from patients with
skin cutaneous melanoma (SKCM)); this may be because of
the small sample size (Figure 1(b)). Then, we evaluated the
changes in COL5A1 based on the cBioPortal database.
COL5AL1 expression was altered in 531 of 10,953 patients
(~5%) included in TCGA. The highest alteration ratio was
related to mutation, followed by amplifications and deep
deletions. SKCM presented the highest alteration frequency
among all cancers. Meanwhile, we assessed the mRNA
sequence of COL5A1 in 33 cancers in the CCLE database.
The five cancer cell lines with the highest mRNA expression
of COL5A1 were chondrosarcoma, giant cell tumor, osteo-
sarcoma, glioma, and mesothelioma (Figure 1(d)).

Subsequently, the IHC photographs in HPA dataset were
analyzed to investigate the expression of the COL5A1 pro-
tein. The results from HPA and TCGA were consistent with
each other. COL5A1 THC staining was weak in the normal
ovary, cerebral cortex, liver, prostate, and testis, while
GBM, LIHC, PRAD, and TGCTs showed low COL5A1
IHC staining and OV exhibited moderate COL5A1 IHC
staining. COL5A1 IHC staining was weak in the normal uri-
nary bladder, colon, and stomach, while BLCA and COAD
displayed strong COL5A1 THC staining and STAD pre-
sented weak COL5A1 IHC staining (Figures 2(a)-2(h) and
2(j)). We further collected tissues for western blots, and the
results verified the IHC staining from the HPA database
(Figures 2(i) and 2(k)).

3.2. Prognostic Value of COL5A1 in Various Cancers. Sur-
vival analyses, including OS, DSS, DFI, and PFI, were carried
out for patients with 33 cancers to investigate the correlation

between COL5A1 expression and prognosis. The Cox analy-
sis illustrated that COL5A1 expression was closely correlated
with the OS of patients with adrenocortical carcinoma
(ACC), GBM, kidney chromophobe (KICH), KIRC, KIRP,
LGG, LUAD, mesothelioma (MESO, pancreatic adenocarci-
noma (PAAD), SKCM, STAD, THCA, and uveal melanoma
(UVM) (Figure 3(a)). Furthermore, COL5A1 was a high-risk
gene in these cancers, particularly UVM (hazard ratio =
2.426). In addition, KM plotter survival curves demon-
strated that among the patients with ACC (Figure 3(b),
p=001), BLCA (Figure 3(c), p=0.013), CESC
(Figure 3(d), p = 0.045), GBM (Figure 3(e), p = 0.037), KIRC
(Figure 3(f), p =0.002), KIRP (Figure 3(g), p =0.012), acute
myeloid leukemia (LAML) (Figure 3(h), p=0.025), LGG
(Figure 3(i), p<0.001), MESO (Figure 3(j), p<0.001),
SKCM (Figure 3(k), p=0.005), and UVM (Figure 3(1), p=
0.023), those with high COL5A1 expression experienced a
shorter survival.

Moreover, in the patients with ACC, BLCA, GBM,
KICH, KIRC, KIRP, LGG, MESO, PAAD, SKCM, STAD,
and UVM, DSS survival analyses verified a correlation
between high COL5A1 expression and poor prognosis
(Figure 4(a)). KM analyses also revealed a correlation
between high COL5A1 expression levels and adverse out-
come of patients with ACC (Figure 4(b), p =0.029), BLCA
(Figure 4(c), p = 0.024), GBM (Figure 4(d), p = 0.027), KIRC
(Figure 4(e), p <0.001), KIRP (Figure 4(f), p < 0.001), LGG
(Figure 4(g), p=0.002), MESO (Figure 4(h), p=10.002),
SKCM (Figure 4(i), p=0.003), and UVM (Figure 4(b), p =
0.008). Correlations of high COL5A1 expression with a poor
DFI were revealed in patients with ACC, CESC, KIRP, LUA,
and PAAD (Figure 5(a)). Additionally, the KM analysis
revealed significant correlations between COL5A1 with
DFI in CESC (Figure 5(b), p=0.027), KICH (Figure 5(c),
p=0.045), KIRP (Figure 5(d), p=0.029), and PAAD
(Figure 5(e), p=0.015). In addition, forest plots
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FI1GURE 7: Relationships between COL5A1 and age in patients with (a) BLCA, (b) CESC, (c) KIRC, (d) KIRP, (e) LGG, (f) LIHC, (g) PRAD,

(h) READ, (i) SARC, (j) THYM, and (k) UCEC.

demonstrated the relationship between high COL5A1
expression and a poor PFI in patients with ACC, BLCA,
CESC, GBM, KICH, KIRC, KIRP, LGG, LUAD, MESO,
PAAD, PRAD, and UVM (Figure 6). KM analyses illustrated
that patients with ACC (Figure 6(b), p=0.034), GBM
(Figure 6(c), p = 0.009), KIRC (Figure 6(d), p < 0.001), KIRP
(Figure 6(e), p < 0.001), LGG (Figure 6(f), p = 0.006), MESO
(Figure 6(g), p =0.006), PRAD (Figure 6(h), p=0.024), and
UVM (Figure 6(i), p = 0.002) who exhibited low expression
of COL5A1 had longer survival time.

3.3.  Correlations between COL5A1 Expression and
Clinicopathology in Human Tumors. Subsequently, we inves-
tigated the differences in COL5A1 expression levels in
patients with different tumors stratified based on age and
revealed that patients aged>65years with CESC
(Figure 7(b), p = 0.046), KIRC (Figure 7(c), p=0.017), KIRP
(Figure 7(d), p=0.049), LIHC (Figure 7(f), p=0.016),
READ (Figure 7(h), p=0.036), and UCEC (Figure 7(k),
P <0.001) had lower expression of COL5A1, while patients
aged >65 with BLCA (Figure 7(a), p=0.028), LGG
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FIGURE 8: Associations between COL5A1 expression and the tumor stage in (a) ACC, (b) BLCA, (c) CHOL, (d) COAD, (e) ESCA, (f)

HNSC, (g) KICH, (h) KIRC, (i) KIRP, and (j) STAD and THCA.

(Figure 7(e), p=0.0052), PRAD (Figure 7(g), p=0.031),
SARC (Figure 7(i), p <0.001), and THYM (Figure 7(j), p =
0.048) displayed higher expression of COL5A1 than patients
aged <65 years. However, no obvious correlation was
observed between age and COL5A1 expression in other can-
cers (Figure S2).

We analyzed the correlation between COL5A1 and
tumor stage and found that COL5A1 expression was signif-
icantly correlated to the tumor stage in 13 human tumors,
including ACC, BLCA, CHOL, COAD, ESCA, HNSC,
THCA, KICH, KIRC, KIRP, STAD, PAAD, and UVM

(Figure 8; Figure S3). Notably, in patients with CHOL
(Figure 8(c), p=0.039), KICH (Figure 8(g), p=0.018),
KIRP (Figure 8(i), p=10.0026), and THCA (Figure 8(k), p
=0.0049), COL5A1 expression was significantly increased
in stage IV tumors than stage I tumors. In addition,
COL5A1 was also expressed at higher levels in stage III
tumors than in stage I tumors in COAD (Figure 8(d), p =
0.01), ESCA (Figure 8(e), p <0.001), KIRC (Figure 8(h), p
=0.036), KIRP (Figure 8(i), p <0.001), STAD (Figure 8(j),
p=0.0071), and THCA (Figure 8(k), p=0.021). COL5A1
was overexpressed in stage IV tumors than in stage II
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TaBLE 1: Correlation between COL5A1 expression and TMB and MSI. *p < 0.05, **p < 0.01, and ***p < 0.001.

TMB MSI

Cancer type Cor p value Cancer type Cor p value

ACC 0.43733147 ***/5.58e-05 COAD 0.14783620 **/0.002193

BRCA -0.07340527 */0.02196037 HNSC -0.15164437 ***/0.000703

CESC -0.12802692 */0.03042103 KIRC -0.14245300 **/0.00903

HNSC -0.21248963 ***/0.00000198 SKCM -0.13520964 **/0.003382

KIRP -0.25583301 ***/0.00001571 STAD -0.10750443 *10.0377

LAML 0.34680128 **/0.00536082 TGCT 0.17807180 *10.029247

LGG 0.25972873 ***13.62e — 09

LIHC -0.31014868 ***/1.91692e — 09

LUSC -0.13299831 **10.00324439

SKCM -0.11416702 */0.01376592

STAD -0.12401527 */0.01730668

THYM 0.51906320 ***/2.03e - 09

UCEC -0.13110071 **10.00261476

tumors in patients with ACC (Figure 8(a), p=0.0015),
BLCA (Figure 8(b), p<0.001), HNSC (Figure 8(f), p=
0.041), KICH (Figure 8(g), p = 0.028), KIRC (Figure 8(h), p
=0.013), KIRP (Figure 8(i), p=0.016), and THCA
(Figure 8(k), p=10.0012). Therefore, we hypothesized that
high COL5A1 expression may lead to shorter survival time
in these patients with advanced cancer. Although the
differences were remarkable between stages I and IV, stages
I and III, and stages II and IV, the differences between
stages in other cancers were comparatively small (Figure 8,
Figure S3), and a statistically significant difference was not
observed in other human tumors (Figure S3).

3.4. Associations of COL5A1 Expression with TMB, MSI,
Mismatch Repair Genes, and the Mutation-Related
Prognosis in Various Human Tumors. We investigated the
associations between COL5A1 expression and the TMB
and MSI, both of which are involved in the sensitivity to
ICB. Therefore, an investigation of the relationships between
the TMB and COL5A1 across cancers is necessary. COL5A1
expression was related to the TMB in 13 cancer types. In
particular, COL5A1 expression positively linked to the
TMB in 4 tumors, including ACC, LAML, LGG, and THYM,
while it negatively related to the TMB in BRCA, CESC,
HNSC, KIRP, LIHC, LUSC, SKCM, STAD, and UCEC
(Table 1; Figure 9(a)). Furthermore, COL5A1 expression
was positively related to MSI in COAD and TGCTs but neg-
atively associated with MSI in HNSC, KIRC, SKCM, and
STAD (Table 1; Figure 9(b)). Then, we assessed the correla-
tion of COL5A1 expression with MMR genes, including
MLH1, MSH2, MSH6, PMS2, and EPCAM. Figure 9(c¢) illus-
trates the correlations between COL5A1 expression and the
expression of individual MMR genes. COL5A1 expression
correlated with the expression of MMR genes in most
tumors, except for UCES and UVM. In addition, we used
cBioPortal to investigate the correlation between COL5A1
mutations and prognosis. Patients with UCEC in the
unaltered COL5A1 group experienced a shorter OS

(Figure 9(d)), DSS (Figure 9(e)), and PFI (Figure 9(f)) than
those in the altered group. However, patients with ESCA
presenting altered COL5A1 expression experienced a shorter
OS (Figure 9(g)) and PFI (Figure 9(h)).

3.5. Correlations of COL5A1 Methylation with Prognosis. We
further investigated the DNA methylation levels of COL5A1
in 33 cancer types. The DNA methylation of COL5A1 was
increased in BLCA (p=7.57e —05), BRCA (p =2.60e - 10),
CHOL (p=0.014), COAD (p=3.92e-53), ESCA
(p=0.046), KIRC (p=1.03¢—16), KIRP (p=9.10e - 03),
LIHC (p=3.63e—05), LUAD (p=3.33e—10), LUSC
(p=1.07e-05), PAAD (p=9.36e - 06), PRAD
(p=1.17e—05), and READ (p =2.24e — 07) compared with
normal tissues (Figure 10(a)). The DNA methylation of
COL5ALI in other cancers was not significantly different
from that in normal tissues. Additionally, the correlation
between COL5A1 methylation and the prognosis was evalu-
ated. Patients with HNSC presenting low COL5A1 methyla-
tion levels experienced a shorter OS than those with high
COL5A1 methylation levels (p = 0.015) (Figure 10(b)). Nev-
ertheless, in patients with KIRP (p =1.62e — 03) and PAAD
(p=0.041), high COL5A1 methylation levels were related
to a shorter OS (Figure 10(b)). High COL5A1 methylation
levels were correlated to a better PFI in BLCA patients
(p=0.013) but linked to a poor PFI in KIRC patients
(p=0.031), KIRP (p=0.026), and THCA (p=4.13e—-03)
(Figure 10(c)).

3.6. Correlations of COL5A1 Expression with TME across
Cancers. It has been demonstrated that TME has an influen-
tial action in tumorigenesis [27], multidrug resistance, and
metastasis of cancer cells [28]. Therefore, an investigation
of the associations of COL5A1 expression with the TME is
necessary. The ESTIMATE algorithm was employed to
assess the correlations of COL5A1 expression with stromal
and immune scores. The results elucidated that COL5A1
expression positively related to immune scores in 19 cancers
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F1GURE 9: Correlations of COL5A1 expression with the TMB, MSI, MMR genes, and mutation-related prognosis in various human cancers.
(a) Radar plot showing the relationship between COL5A1 expression and TMB in human cancers. (b) Radar plot showing the relationship
between COL5A1 expression and MSI across human cancers. (c) Coexpression of COL5A1 with MMR genes. Correlations of COL5A1 gene
mutations with (d) OS, (e) DSS, and (f) PFI of patients with UCEC. Correlations of COL5A1 gene mutations with (g) OS and (h) PFI of

patients with ESCA.

but negatively associated with immune scores in TGCTSs
(Figure 11(a); Figure S4). Additionally, COL5A1 expression
was positively linked to stromal scores in 30 human
cancers (Figure 11(a); Figure S4). The five cancers with the
highest correlation coefficients between the TME and
COL5A1 expression are shown in Figure 11; data for other
tumors are presented in Figure S4.

3.7. Association of COL5A1 Expression with the TIIC
Infiltration in Human Tumors. The relationship of COL5A1
expression with the infiltration levels of 22 immunocyte sub-
types was investigated. The levels of TIIC infiltration were
correlated significantly with COL5A1 expression in most
human tumors (Table S1). Six cancer types, including
PRAD (n=15), BRCA (n=13), THCA (n=12), BLCA
(n=11), KIRC (n=11), GBM (n=10), and KIRP (n = 10),
showed the highest correlation between COL5Al
expression and levels of infiltrating TIIC, and the results
are presented in Table 2. COL5A1 expression correlated
positively with the infiltration of naive B cells in PRAD,
THCA, BLCA, KIRC, and KIRP and negatively with the
infiltration of memory B cells in PRAD, BRCA, BLCA,
KIRC, and KIRP. Additionally, COL5A1 expression was
positively correlated with the infiltration of monocytes in
PRAD, BRCA, THCA, and BLCA but had a negative
association with KIRC.

Furthermore, different correlations were observed
between COL5A1 expression and different subtypes of infil-
trating macrophages and T cells. For example, the expres-
sion levels of COL5A1 were negatively linked to the
infiltration of CD8 T cells in PRAD, BRCA, THCA, and
BLCA but showed a positive relationship with the infiltrat-
ing degrees of activated memory CD4 T cells in THCA,
KIRC, GBM, and KIRP (Table 2). In addition, COL5A1
expression was positively correlated with the infiltration of
MO macrophages in BRCA, BLCA, KIRC, and GBM but

negatively linked to the infiltration of M2 macrophages in
THCA, GBM, and KIRP. The infiltrated immune cells with
the highest correlation between COL5A1 expressions in 31
cancer types are presented in Figure 12; data for other can-
cers are shown in Table S1. In addition, we subsequently
used five algorithms, including TIMER, xCell, MCP-
counter, EPIC, and quanTIseq, to confirm the correlation
of COL5A1 expression with TIIC. As shown in
Figures 13(a)-13(e), COL5A1 expression was correlated
with TIIC in almost all cancer types.

3.8. Coexpression of COL5A1 with Immune-Related Genes
and Pathway Enrichment Analyses in Human Tumors. Gene
coexpression analyses were carried out to assess the correla-
tions of COL5A1 expression with immune-associated genes
in human tumors. The genes encoding MHC, immune acti-
vators, immune suppressors, chemokines, and chemokine
receptors were investigated. The heat map demonstrated
that most immune-related genes were coexpressed with
COL5A1, and major immune activation, chemokine, and
chemokine receptor genes exhibited a positive correlation
with COL5A1 expression in major cancers (Figure 14).
Afterward, we carried out GO functional annotations
and KEGG pathways related to COL5A1 in human tumors.
As shown in Figure 15 and Figure S5, the data illustrated
that COL5A1 regulated some immune-related functions in
18 cancer types (Figure 15, Figure S5). In GBM, COL5A1
expression positively regulated the acute inflammatory
response, B cell receptor signaling pathway, chemokine
signaling pathway, cytokine cytokine-receptor interaction,
JAK-STAT pathway, and NOD-like receptor pathway,
which are all immune-related signaling pathways. GO
functional annotations revealed that COL5A1 positively
regulated the immune response regulating cell surface
receptor signaling in KIRC and LGG, and KEGG pathway
analyses also showed that COL5A1 positively regulated
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TaBLE 2: Relationship between COL5A1 expression and immune cell infiltration in different cancers. *p < 0.05, **p < 0.01, and ***p < 0.001.

Cancer type PRAD BRCA THCA BLCA KIRC GBM KIRP
p value/Cor  p value/Cor  p value/Cor  p value/Cor  p value/Cor  p value/Cor  p value/Cor

B cells naive ***10.24 */0.10 *10.14 ***70.23 ***10.46

B cells memory **1-0.17 **/-0.09 ***1-0.23 **/-0.14 ***1-0.31

Plasma cells **7-0.22 ***10.27

T cells CD8 ***/-0.28 ***/-0.19 ***[-0.23 **/-0.17

T cells CD4 naive

T cells CD4 memory resting **0.32 ***10.26 **/0.16

T cells CD4 memory activated */-0.10 ***1-0.19 */0.10 ***10.16 **10.29 ***70.28

T cells follicular helper ***7-0.23 **/-0.20 */0.10 **1-0.28 ***/-0.21 ***7-0.28 **/0.19

T cells regulatory (Tregs) **0.18 */0.07 ***10.18 **1-0.09 *10.15

T cells gamma delta **/-0.09 **/-0.13

NK cells resting **/-0.16 *10.27

NK cells activated */-0.10 ***1-0.18 **/-0.21

Monocytes **10.16 *10.07 ***10.18 */0.13 **/-0.13

Macrophages M0 ***7-0.21 */0.07 ***1-0.18 **70.22 **0.23 **10.38

Macrophages M1 */-0.11 ***/-0.13 */0.11 */-0.19 ***10.35

Macrophages M2 **10.14 ***[-0.25 **10.27 *10.09 */-0.19 ***[-0.32

Dendritic cells resting **0.23 ***10.11 ***10.40 ***10.24

Dendritic cells activated **0.23 ***10.18 ***1-0.23 ***1-0.23

Mast cells resting ***70.23 *0.14 **/-0.20 */-0.13

Mast cells activated */0.15

Eosinophils

Neutrophils **/0.09 **10.17 **10.27

cytokine cytokine-receptor interactions and the MAPK
pathway. In addition, COL5A1 positively regulated
cytokine production, negative regulation of immune system
process, cytokine cytokine-receptor interaction, JAK-STAT
pathway, T cell receptor pathway in LGG; positively
regulated lymphocyte migration, NOD-like receptor
pathway, and the WNT pathway in SKCM; positively
regulated antigen processing and presentation, chemokine
pathway, JAK-STAT pathway, and cytokine cytokine-
receptor interaction in THCA; positively regulated cell
growth, chemokine pathway, MAPK pathway, and
cytokine cytokine-receptor interaction in UVM; positively
regulated adaptive immune response based on somatic
recombination of immune receptors built from
immunoglobulin superfamily domains in KIRP and PRAD;
positively regulated antigen receptor mediated pathway in
KIRP; and positively regulated B cell activation in PRAD.
Furthermore, the chemokine pathway and cytokine
cytokine-receptor interaction were positively regulated in
READ, while antigen processing and presentation and the
RIG I-like receptor pathway were negatively regulated by
COL5A1 in MESO. Data for other cancers are shown in
Figure S5.

3.9. Correlation of COL5A1 with Immune Checkpoint-
Related Genes and Drug Sensitivity. Immunotherapy or tar-
geted therapy is now more and more used for a variety of
tumor patients, particularly ICB therapy for patients with
unsatisfactory radiotherapy and chemotherapy [20]. There-

fore, it is necessary to preliminarily reveal the value of
COL5AL in predicting drug sensitivity and immunotherapy
sensitivity of tumor cells through biological methods. Hence,
we investigated the correlation of COL5A1 and immune
checkpoints, including PDCD1, LAG3, CD274, SIGLECI15,
CTLA4, TIGIT, HAVCR2, and PDCD1LG2, which were
associated with response to ICB [29, 30]. The relationship
between COL5A1 and immune checkpoints may be a pre-
dictor for ICB. In the cancers which had a correlation of
COL5A1 with OS, including SKCM, ACC, GBM, BLCA,
CESC, KIRC, LAML, KIRP, LGG, MESO, and UVM
(Figure 3), the expression of COL5A1 had a correlation with
immune checkpoints, especially in LGG and KIRP
(Figure 16(a)). We further assessed the relationship between
COL5AL1 and the IC50 of chemotherapeutic drug usually
used in these cancer types. We found that in BLCA,
COL5AL expression had a negative correlation between the
IC50 of cisplatin, while having a positive relationship with
the IC50 of gemcitabine (Figures 16(b) and 16(c)). In KIRC,
the IC50 of pazopanib and sunitinib was negatively related
to the expression of COL5A1 (Figures 16(d) and 16(e)).
Additionally, COL5A1 expression was also negative corre-
lated with the IC50 of sorafenib and sunitinib in KIRP
(Figures 16(f) and 16(g)). In LAML, the IC50 of doxorubicin
and etoposide had a positive correlation with COL5A1
expression (Figures 16(h) and 16(i)). However, the expres-
sion of COL5A1 negatively related to the IC50 of cisplatin
and paclitaxel in MESO (Figures 16(j) and 16(k)). These
results may have implications for cancer ICB and
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FIGURE 13: Heat map showing the correlations of COL5A1 expression with TIIC based on EPIC (a), MCP-counter (b), quanTIseq (c),

TIMER (d), and xCell (e) algorithm.

chemotherapy, for example, BLCA patients with high
COL5AL expression may have a more sensitive response to
cisplatin treatment, which may provide accurate treatment
protocols for chemotherapy.

3.10. Primary Validation of the Role of COL5AI in Glioma
Cells. We found that COL5A1 was related to the prognosis
of GBM and LGG patients (Figures 3(e) and 3(i)). The
human glioblastoma cell line U251 was used to confirm
whether COL5A1 knockdown could impact the growth of
glioma cells. The results elucidated that COL5A1 knock-
down decreased the proliferation of U251 cells
(Figures 17(a)-17(c)). Wound healing was remarkedly
inhibited by COL5A1 knockdown in U251 cells
(Figures 17(d) and 17(e)). The Transwell assay demon-
strated that the migration and invasion of U251 cells were
significantly inhibited by COL5A1 knockdown (Figures 17(f)
and 17(g)).

4. Discussion

As shown in the present study, COL5A1 was expressed at
high levels in 13 human tumors, and IHC and western blot
results confirmed this trend at the protein level. Further-
more, our findings for BRCA, ESCA, HNSC, LUAD, and
STAD were similar to the results reported in previous stud-
ies [12, 31-35]. We found for the first time that COL5A1
was overexpressed in CHOL, READ, COAD, GBM, KIRC,
LUSC, LIHC, and THCA. Interestingly, COL5A1 was
expressed at low levels in CESC, KIRP, and UCEC compared

to normal tissues. Additionally, we detected high COL5A1
expression in MESO and UCS, but insufficient expression
data were available for normal tissues in TCGA. We also
found that COL5A1 genetic variants existed in multiple can-
cer types. Additionally, DNA methylation of COL5A1 was
increased in several cancers and affected the survival of
patients.

KM survival analyses indicated that high COL5A1
expression was linked to a poor prognosis for patients with
ACC and BLCA. Moreover, patients with BLCA presenting
COL5A1 alterations showed lower disease-free survival rates
[36]. Similarly, high COL5A1 expression was reported to be
related to tumorigenesis, TIIC, and paclitaxel resistance in
OV [16]. Chemotherapy resistance may be associated with
increased tissue stiffness mediated by specific collagen
cross-linking. In addition, COL5A1 was dramatically ele-
vated in metastatic KIRC tumors compared to primary
tumors [37]. In this work, high COL5A1 expression was
linked to poor prognosis in patients with ACC, BLCA,
GBM, KIRC, KIRP, LGG, MESO, SKCM, and UVM. Addi-
tionally, the role of COL5A1 in glioma cells was verified
in vitro experiments.

Additionally, COL5A1 expression was related to age in
patients with some tumors. COL5A1 was expressed at lower
levels in older patients with CESC, KIRC, KIRP, LIHC,
READ, and UCEC but at higher levels in older patients with
BLCA, LGG, PRAD, SARC, and THYM. These results may
be instructive in the selection of immunotherapy regimens
for patients of different ages. Our study also revealed that
COL5A1 expression was related to tumor stage in most
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FIGURE 14: Coexpression of COL5A1 with immune-associated genes. *p < 0.05, **p < 0.01, and ***p < 0.001.

cancers and was particularly different between stages I and
IV, stages II and IV, and stages I and III. For example, in
patients with CHOL, KICH, KIRP, and THCA, COL5A1
was overexpressed in stage IV tumors than in stage I tumors.
A previous study revealed that COL5A1 may serve as a bio-
marker of the early stage of systemic sclerosis based on its
autoimmune function [38]. These results suggest that
COL5A1 can be served as a biomarker to determine the
prognosis of a variety of cancers.

TMB has a role in providing guidance for the precise
treatment of immunotherapy [39]. TMB is a biomarker
linked to ICB efficacy, and higher TMB is linked to better
response to ICB and prolonged OS [40]. MSI is also a bio-
marker linked to the ICB response [41, 42], and high-
frequency MSI in COAD is a predictor for prognosis [43].
The present study illustrated that COL5A1 expression was
related to the TMB in 13 tumors and MSI in 6 tumors. Thus,
the expression level of COL5A1 may impact the TMB and
MSI, thus affecting the patient’s response to ICB. These
results have a novel guiding value for immunotherapy in
patients with different cancers. We assumed that among
tumors showing a positive correlation between COL5A1
expression and TMB, patients with tumors presenting high
COL5A1 expression and high TMB and MSI may experience
a better sensitivity to ICB. We further investigated the correla-
tion of COL5A1 with the immune checkpoints which were
strongly associated with response to ICB. These results also

indicated that the expression of COL5A1 may also be a predic-
tor for the response of ICB. Additionally, the correlation of
COL5A1 with the sensitivity of chemotherapeutic drugs may
have implications for chemotherapy, for example, BLCA
patients with high COL5A1 expression may have a more sen-
sitive response of cisplatin treatment (Figure 16(b)).

TME can serve as predictors to assess tumor cell
responses to immunotherapy [44]. In our study, COL5A1
played a critical role in the cancer immunity. This study
demonstrated that COL5A1 expression was significantly
and positively related to the immune component of the
TME in 19 tumors and positively linked to the stromal com-
ponent of the TME in 30 tumors. COL5A1 was reported as a
potential target necessary for ICB in HNSC [33]. Addition-
ally, COL5A1 expression correlated with several tumor-
infiltrating cells in OV [16]. In addition, COL5A1 was
reported to be negatively related to tumor purity but posi-
tively linked to immune cell infiltration, and the COL5A1-
mediated cell proliferation of STAD may be mediated by
effects on the TME [35]. Our study further illuminates that
COL5A1 has broader oncological applicability in other
tumors, and COL5A1 expression was linked to the biological
progression of various TIICs. Additionally, COL5A1 is coex-
pressed with genes that encode MHC, immune activators,
immune suppressors, chemokines, chemokine receptors,
and proteins involved in the MMR. These results suggest
that COL5A1 expression is related to TIIC infiltration in



Oxidative Medicine and Cellular Longevity

35

05 06 08
06 & 04 2 z
§ 3 H g os
E os A i i
H ] H
: I £ Zo
: E Y H]
E 02 Soa g % 02
] £ o0 H H
i H KIRC Fo § o 5
04 1 |
Wi (I 'y e W | UH' Vil \” W ‘1 l mm|
N ’HIIH\ l\\H! | LU M| [ ‘ HI‘ !
'“ (! u |u‘ ol M) 0 [ Ui LR Ml H[', ’”‘"“”" u ||u 1o :
o IR | Tua : | “ N
g 10 - E g
ios ‘ g 0 g H
) g 0 z 0 z 0
E iIs ER 3
ER i ) 50
= T T T T T T T T T T T T T T T
1000 2000 3000 4000 5000 1000 2000 - a0 000 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
Rank in ordered dataset Rank in ordered dataset Rank in ordered dataset Rank in ordered dataset
— GO_EPIDERMIS DEVELOPMENT
~ GO_ACTUTE_IFLAMMATORY_REPONSE — GO_DMA_BINDING_ TRANSCRIPTION_ACTIVATOR_ACTIVITY GO IMMUNE_RESPONSE_REGULATING_CELL_SURFACE. — GO_AMINOGLYCAN_BIOSYNTHETIC_PROCESS
— GO_EPIDERMIS_DEVELOPMENT — GO_CORNIFICATION
~ GO_B_CFLL_RECEPTOR SIGNALING_PATHWAY PO TE MIGRATION
“ GO_NEGATIVE_REGULATION_OF_EPITHELIAL_CELL_MIGRATION — GOIMMUNE RESPONSE_REGULATING_CELL_ }0_MUCOPOLYSACCHARIDE_METABOLIC_PROCESS
SURFACE_RECEPTOR_SIGNALINGS
— GO_NEUTROPHIL_MIGRATION O LEUROCYTE MIGRATION ~ GO_REGULATION_OF LEUKOCYTE_CHEMOTAXIS
~ GO_REGULATION_OF._SPROUTING_ANGIOGENESIS -
—GO_MUSCLE_SYSTEM_PROCESS
" g S
B f;,\.\
H f § i
] § H H
Y z H z
H £ £ )
] H £ oo
Z w0 3 2 LR I £ 2 T I
RN o e N |\ ‘ thu h i HL] il
'HWU’ LR R TR AR A Nhrw R 1 e
L | T | il
0 . T
g0 H g
F s £ £
ER Ea o ER)
E 3 s s ER
2 -w T T T T T ;'“‘ T T T T T 2 2 -1
1000 2000 3000 00 s000 1000 2000 3000 1000 3000 1000 2000 3000 000 s000 1000 2000 3000 4000 s000
Rank in ordered dataset Rank in ordered dataset Rank in ordered dataset Rank in ordered dataset
— GO_ANTIGEN_PROCESSING_AND_PPRESENTATION — GO_CELLGROWTIT GO_ADAPTIVE_IMMUNE_RESPONSE_BASED_ON_SOMATRIC_ — GO_ADAPTIVE_IMMUNE_RESPONSE_BASED_ON_SOMATRIC_
— GO_MULTICELLULAR_ORGANISMAL_HOMEOSTASIS - oo $ .
— GO_MUSCLE_TISSUE_DEVELOPMENT O MUSCLE SYSTEAL PROGESS RECOMBINATION_OF IMMUNE_RECEPTORS_BUILTS_FROM RECOMBINATION_OF_IMMUNE_RECEPTORS_BUILTS_FROM
By X — GO_B_CELL_ACTIVATION
LL_ACTIVATION — GO_PASSIVE_TRANSMEMBRANE TRANSPORTER_ACTIVITY — GO_ANTIGEN_RECEPTOR_MEDIATED_SIGNALING_PATHWAY
1L ADHESION e oTORTER - = GOLEXTERNAL SIDE OF PLASMA_MEMBRANE
= OR . -  SILENCING
— GO_POSITIVE_REGULATION_OF RESPONSE_TO_BIOTIC_STIMULUS
— GO_GENE_SILENCINE_BY_RNA
B T i
E £ H
oo £ 05 Zos »
H s [
[ Zo2
z ERET } 200
Y = o044
el ol iy o I8 N 0 n JOU A0, e ] rrlumm e VAR ! RN RRIT)
J\'f”b"“‘ “I”!”‘IW“" ‘\‘ i N UCUROUCT A LA k i w U]\mu u“ T i J il M \J\U” I il " il s i \I T T
e o i | ‘ 1 b T R A ml i Vo Y ik JRUETE LV T
10 s m_ I H, | ] \\H | II\ \Illl\ﬁhi‘l ‘\“ﬂ L} o 10 10
: i 5 Es :
o = o Ea 0
. ] e B
10 . . . . . -0 20 o T T T T T
T T T T T
1000 2000 3000 4000 5000 1000 2000 3000 1000 000 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
Rank in ordered dataset Rank in ordered dataset Rank in ordered dataset Rank in ordered dataset
~ KEGG_CHEMOKINE_SIGNALING_PATHWAY ~  KEGG_CALCIUM_SIGNALING_PATHWAY ~ KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION. = KEGG_BASAL_CELL_CARCINOMA
‘G ; — KEGG_HEMATOPOIETIC_CELL LINEAGE — KEGG_HEDGEHOG_SIGNALING_PATHWAY
— KEGG_CYTOKINE_CYTOKINE_RECEPTOR INTERACTION — | . CELLI : . ]
/GG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTIO! KEGG_FOCAL ADHESION . KEGGJAK_STAT_SIGNALING_ PATHWAY — KEGG_NEUROACTIVE, LIGAND_RECEPTOR_INTERACTION
— KEGG_NEUROATIVE_LIGNAND_RECEPTOR_INTERACTION (CTORY. TRANSDUCTION KRGO PATHWAY 1N, CANCER
— KEGG_OLPACTORY_TRANSDUCTION LL_RECEPTOR_SIGNALING_PATHWAY — KEGG_WNT_SIGNALING_PATHWAY
— KEGG_WNT_SIGNALING_PATHWAY
06
06
B o E 0a
20 ] Z
H g o4 H
H H |
e Y
£ HeA : s Miso
ERTS £ £
H 5 ool H
NIRRT T H‘I‘\l y M '] M A, WP o8 i wHJh | - ) LRL LR
L [ i e ; | e (1] 1" b ¥ 1 b uv Rl " " h
\‘I#I“N‘\i HII I Mty i A AT B ” ) 1 M||ml ||\n T
" L LA L] ll fie | L s ] g il mlu ]
H £ Rt I
: s H ] 5
£ £ s E s E
I ) z o, 3 °
E e 3 i s
k| £ N 2
ERN g &0 " - : : . .
1000 2000 3000 1000 5000 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
Rank in ordered dataset Rank in ordered dataset Rank in ordered dataset Rankin ordered dataset

— KEGG_CALCIUM_SIGNALING_PATHWAY
. KEGG_CELL_ADHESION_MOLECULES_CAMS

— KEGG_CYTOKINE_CYTOKINE_RECEPTOR_INTERACTION
— KEGG_T_CELL_SIGNALING_PATHWAY

— KEGG_TIGHT_JUNCTION

— KEGG_CALCIUM_SIGNALING_PATHWAY

(b

— KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION
— KEGG_ECE_RECEPTOR_INTERACTION

— KEGG_FOCAL_ADHESION

— KEGG_RIG_I_LIKE_RECEPTOR_SIGNALING_PATHWAY
— KEGG_RNA_DEGRADATION

)

— KEGG_REGUL ATION OF_ACTIN_CYTOSKELETON

F1GURrE 15: Pathway analyses of COL5A1 in different cancers. (a) GO functional annotations of COL5A1 and (b) KEGG pathway analyses of

COL5AL in various cancers.

the tumor, affects the prognosis, and provides a novel target
for improving the efficacy of immunotherapy for patients
with various human tumors.

Presently, very few works have assessed the immunolog-
ical action of COL5A1 in cancers, and COL5A1 is com-
monly presumed to be a collagen family protein (the most

abundant matrix protein polymer in vertebrates) that is
involved in the formation of ECM [7]. It is regarded as a
key gene participating in endurance running performance
[45]. COL5A1 also has a critical role in tumor development
and was reported to promote the proliferation and metasta-
sis of BRCA [46] and LUAD [47]. Notably, high COL5A1
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expression is related to CD8T cell, CD4T cell, dendritic, ~ determines sensitivity to ICB therapies in melanoma [48].
macrophage, and neutrophil infiltration in STAD [35]. In  In various cancers, our enrichment analysis revealed that
addition, COL5AL1 is regarded as a novel biomarker that =~ COL5AL1 potentially influences the etiology or pathogenesis
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of cancer through immune-related pathways, chemokine
pathways, negative regulation of immune system processes,
JAK-STAT pathways, T cell receptor pathways, lymphocyte
migration, NOD-like receptor pathways, antigen processing
and presentation, MAPK pathways, and adaptive immune
responses based on the somatic recombination of immune
receptors built from immunoglobulin superfamily domains.

5. Conclusions

This first pan-cancer analysis of COL5A1 showed high
COL5A1 expression in most tumors compared with normal
tissues and revealed a correlation between COL5A1 expres-
sion and the prognosis. Based on these findings, COL5A1
may represent an independent prognostic factor for several
tumors and that high COL5A1 expression levels in most
tumors are linked to poor prognosis. In addition, COL5A1
expression is related to the TMB, MSI, and TIIC infiltration
in some human tumors. COL5A1 may serve as a predictor
for chemotherapy and immune-based ICB.
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