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Abstract: PET (Positron Emission Tomography) allows imaging of the in vivo distribution 

of biochemical compounds labeled with a radioactive tracer, mainly 18F-FDG  

(2-deoxy-2-[18F] fluoro-D-glucose). 18F only allows a relatively poor spatial resolution (2-

3 mm) which does not allow imaging of small tumors or specific small size tissues, 

e.g. vasculature. Unfortunately, angiogenesis is a key process in various physiologic and 

pathologic processes and is, for instance, involved in modern anticancer approaches. Thus 

ability to visualize angiogenesis could allow early diagnosis and help to monitor the 

response of cancer to specific chemotherapies. Therefore, indirect analytical techniques are 

required to assess the localization of fluorinated compounds at a micrometric scale. 

Multimodality imaging approaches could provide accurate information on the metabolic 

activity of the target tissue.  

In this article, PIGE method (Particle Induced Gamma-ray Emission) was used to 

determine fluorinated tracers by the nuclear reaction of 19F(p,p′γ)19F in tissues. The 

feasibility of this approach was assessed on polyfluorinated model glucose compounds and 

novel peptide-based tracer designed for angiogenesis imaging. Our results describe the first 

mapping of the biodistribution of fluorinated compounds in both vascularized normal tissue 

and tumor tissue.  
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1. Introduction  

Angiogenesis is a process by which new capillaries sprout from pre-existing blood vessels [1]. It is 

involved both in physiological and pathological processes. Physiological angiogenesis occurs in the 

female reproductive system [2] as during wound healing [3]. In contrast, pathological neo-angiogenesis 

occurs in a number of diseases, such as cancer or rheumatoid arthritis [4]. Imaging of angiogenesis is 

of great interest not only for tumors but other angiogenesis-related diseases, such as cerebral infarct, 

both allowing earlier diagnosis and therapeutic follow-up. Current technology does not allow both 

resolutive and sensitive molecular imaging due to lack of specific targeting to vessels. 

Molecular imaging is the noninvasive visualization of physiological as well as pathological cellular 

processes at a molecular level. It is used to provide characterization and in vivo measurement of 

biological processes in living animals and humans. Positron emission tomography (PET), which uses 

labeled molecular probes is currently considered to be the leading technology for imaging [5]. It is a 

non-invasive and highly sensitive technique which offers three-dimensional imaging of radiolabeled 

tracers in tissues. A PET-tracer emits a positron which, shortly after emission, combines with an 

electron, where after an annihilation takes place and two 511 keV photons are emitted in opposite 

directions. The resulting photons are then detected by a PET scanner. This technique has two main 

advantages. It is highly sensitive and, as it is based on biochemical behavior of tracer, it allows 

functional follow-up of tumors, as well as the effect of therapies. However, its main pitfall is its poor 

spatial resolution typically of 2–3 mm [6-8] which is not sufficient to allow the detection of small 

tumors or metastases.  

In an attempt to validate molecular PET targets at the cell scale level, and afterwards to transfer 

previously obtained information when performing PET scan at the millimetric level, we inferred that 

the use of a multiscale imaging method, beginning with imaging stable fluorine-19 tracers at a cell 

scale, could be used for further interpretation of PET results at a millimetric level. Among methods 

allowing elemental detection with high sensitivity and high spatial resolution, ion beam analysis and 

associated imaging appeared to be a suitable method. Ion beam analyses are based on interactions, at 

both the atomic and the nuclear level, between accelerated charged particles and the bombarded 

material. These interactions lead to the emission of particles and multiple radiations. Energies 

generated by the latter are characteristic of the elements of the sample material. Ion beam analysis also 

allows the quantitative imaging of the distributions of chemical elements at a micrometric scale. 

Spatial resolutions are compatible with the analysis of molecular interactions between specific tracers 

and their targets. 

We have very recently described for the first time that the detection of fluorine-19 within diluted 

organic samples could be performed by PIGE analysis (Particle Induced Gamma-ray Emission) using 

the nuclear reaction 19F(p,p′γ)19F [9]. To date, PIGE is mainly used on geological [10], environmental 
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[11] and mineralized biological materials [12]. As for the latter, most studies have been conducted on 

teeth, but none was performed in biological tissues. 

We were able, for the first time, to determine and quantify the localization of fluorinated tracers in 

vascularized tissues. We first performed a study using highly concentrated solutions of two analogs of 

glucose (FDG and a polyfluorinated derivative) to assess the feasibility of this approach. In a second 

step, we developed a new and specific angiogenesis fluorinated tracer, called F13-CBO-P11  

(F13-cVEGI), to study its biodistribution at a micrometric scale. 

2. Experimental Section 

2.1. General methods 

All chemicals were purchased from Sigma-Aldrich and Alfa-Aesar. Preloaded resin and amino acids 

were purchased from Novabiochem. 

Reactions were followed by thin layer chromatography (TLC) using precoated Baker silica gel 

plates 60F254 (Merck) using various eluent gradients and spots were visualized by dipping the plate in a 

1% KMnO4 aqueous solution followed by heating.  

Peptide synthesis was performed on an Applied Biosystems 433A automated peptide synthesizer by 

Fmoc/t-Bu batch solid-phase synthesis (Applied Biosystems).  

One-dimensional 1H, 13C NMR, two-dimensional gradient selected heteronuclear multiple bond 

correlation (HMBC) and gradient selected heteronuclear single quantum correlation (HSQC) spectra 

were recorded on a Bruker Avance 300 spectrometer (300 MHz for 1H and 75 MHz for 13C). Chemical 

shifts are reported in δ values (ppm), by reference to the hydrogenated residues of deuterated solvent as 

internal standard. Signals are described as s, d, t and m for singlet, doublet, triplet and multiplet 

respectively. 

Infrared (IR) analysis was performed on a Spotlight 300 FT-IR spectral imaging system equipped 

with a Spectrum One spectrometer (Perkin-Elmer, France). 

Mass spectra were run using a matrix-assisted laser desorption ionization-time of flight (MALDI-

TOF) Reflex III (Bruker). 

As described in our previous methodologic publication [9], ion beam experiments were carried out 

by using 3.4 MeV proton beam (focused to 5 µm) delivered by the HVEE in-line 3.5 MeV Singletron 

accelerator at the Centre d’Etudes Nucléaires de Bordeaux Gradignan (CENBG) on AIFIRA 

(Applications Interdisciplinaires des Faisceaux d’Ions en Région Aquitaine) platform. Data treatments, 

chemical map reconstruction and definition of region of interest were made using Supavisio software. 

Local concentrations of chemical elements and depth profiles of RBS spectra were performed by 

SimNRA program [13]. PyMCA software was used to fit the peaks of fluorine on PIGE spectra [14]. 

 

2.2. Synthesis of probes and precursors 

 

3-allyl-1,2:5,6-di-O-isopropylidene-α-D-glucofuranose (2). Sodium hydride (350 mg, 11.5 mmol) was 

added portion-wise to a solution of 1,2:5,6-di-O-isopropylidene-α-D-glucofuranose (1) (2 g, 7.7 mmol) 

in toluene. The reaction was heated at 110 °C for 2 h. Allyl bromide (1.35 mL, 15.4 mmol) was added 



Pharmaceutics 2011, 3                   

 

 

91

and the reaction was stirred at 110 °C for 18 h. 10 mL water was added and the aqueous phase was 

extracted with diethyl ether (2 × 25 mL). The combined organic layers were dried over MgSO4 and 

solvent was removed under vacuum to yield yellowish oil that was purified by chromatography (75:25 

n-hexane/ethyl acetate). Compound 2 (2.16 g, 94%) was obtained as a colorless oil. Rf 

(hexane:ethylacetate 3:1) = 0.65. MS (m/z): calcd for C15H24O6 300.35 found 300.16. 1H NMR 

(CDCl3) δ ppm: 1.27–1.46 (s, 12H, CH3), 3.79–3.86 (m, 2H, H-6a, H-6b), 3.94 (m, 1H, H-3), 4.14–

4.21 (m, 4H, H-4, H-5 and CH2CH=CH2), 4.51 (m, 1H, H-2), 5.14–5.28 (m, 2H, CH2CH=CH2); 5.84–

5.91 (m, 2H, H-1 and CH2CH=CH2). 
13C NMR (CDCl3) δ ppm: 25.8–27.5 (4C, CH3), 65.0 (C-3), 67.9 

(C-6), 70.1 (CH2CH=CH2), 72.6 (C-4), 77.9 (C-5), 80.5 (C-2), 105.6 (C-1), 108.9 and 111.7 (2C, 

C(CH3)2), 116.6 (CH2CH=CH2); 134.3 (CH2CH=CH2). 

 

3-(4,4,5,5,6,6,7,7,8,8,9,9,9-tridecafluoro-2-iodo-nonyloxy)-1,2:5,6-di-O-isopropylidene-α-D-

glucofuranose (3). To a cooled (0 °C) and stirred solution of 1.33 mmol of the compound 2 in 6 mL 

acetonitrile and 3 mL water, 360 mg (4.28 mmol) of sodium bicarbonate were added under argon. Then 

765 µL of 1-iodoperfluorohexane (3.3 mmol) and 420 mg of sodium dithionite (2.4 mmol) were added 

and the mixture was allowed to warm slowly to room temperature. After 1.5 h, 100 mL of diethyl ether 

were poured into the reaction mixture. The resulting solution was washed with brine and water (50 mL 

of each), before drying over MgSO4. After filtration the solution was evaporated to dryness under 

reduced pressure. The resulting crude product was used without further purification for the 

hydrodeiodination step. Rf (hexane:ethylacetate 3:1) = 0.63. MS (m/z): calcd for C21H24F13IO6 746.30 

found 746.04. 1H NMR (CDCl3) δ ppm: 1.27–1.46 (s, 12H, CH3), 2.54–2.74 (m, 2H, CHICH2CF2), 

3.03–3.09 (m, 1H, CHI), 3.79–3.86 (m, 2H, H-6a, H-6b), 3.90 (m, 2H, OCH2CHI), 3.94 (m, 1H, H-3), 

4.14–4.21 (m, 2H, H-4, H-5), 4.51 (m, 1H, H-2), 5.84 (d, 1H, H-1). 13C NMR (CDCl3) δ ppm: 15.6 

(CHI), 25.8–27.5 (4C, CH3), 37.6 (CHICH2CF2), 46.2 (OCH2CHI), 65.0 (C-3), 67.9 (C-6), 72.6 (C-4), 

77.9 (C-5), 80.5 (C-2), 105.6 (C-1), 108.9 and 111.7 (2C, C(CH2), 106.7–120.3 (CF2 and CF3). 

 

3-(4,4,5,5,6,6,7,7,8,8,9,9,9-tridecafluoro-nonyloxy)-1,2:5,6-di-O-isopropylidene-α-D-glucofuranose 

(4). Compound 3 (2.4 g, 3.2 mmol) was dissolved in a mixture of 30 mL ethanol and 30 mL ethyl 

acetate. After addition of 1 mL of triethylamine and 150 mg palladium on charcoal (10%), the iodine 

was cleaved off in a hydrogen atmosphere (1 atm) overnight. After removal of the charcoal by 

filtration, the solution was concentrated and the resulting product purified via column chromatography 

(75:25 n-hexane/ethyl acetate). Compound 4 (1.26 g, 63%) was obtained as a yellow oil. Rf 

(dichloromethane) = 0.36. MS (m/z): calcd for C21H25F13O6 620.40 found 620.14. 1H NMR (CDCl3) δ 

ppm: 1.27–1.46 (s, 12H, CH3), 1.84–1.87 (m, 2H, OCH2CH2), 2.11–2.26 (m, 2H, CH2CH2CF2), 3.55–

3.70 (m, 2H, OCH2CH2), 3.79–3.86 (m, 2H, H-6a, H-6b), 3.94 (m, 1H, H-3), 4.14–4.21 (m, 2H, H-4, 

H-5), 4.51 (m, 1H, H-2), 5.84 (d, 1H, H-1). 13C NMR (CDCl3) δ ppm: 21.0 (OCH2CH2), 25.8–27.5 

(4C, CH3), 28.1 (CH2CH2CF2), 66.1 (C-6), 69.1 (OCH2CH2), 70.0 (C-3), 72.6 (C-4), 77.9 (C-5), 80.5 

(C-2), 105.6 (C-1), 108.9 and 111.7 (2C, C(CH3)2), 106.7-120.3 (CF2 and CF3). 

 

3-(4,4,5,5,6,6,7,7,8,8,9,9,9-tridecafluoro-nonyloxy)-α-D-glucose (5). Compound 4 (800 mg,  

1.29 mmol) was added at room temperature in 35 mL of trifluoroacetic acid and 35 mL of distilled 
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water. The reaction was stirred for 3 h. The solvent was then evaporated off and remaining residues 

were codistilled with ethanol and toluene (3 times each). The resulting crude product was recrystallized 

from ethyl acetate. Compound 5 (596 mg, 86%) was obtained as a white powder. Rf 

(hexane:ethylacetate 1:1) = 0.13. MS (m/z): calcd for C15H17F13O6 540.27 found 540.08. 1H NMR 

(CDCl3) δ ppm: 1.63–1.68 (m, 2H, OCH2CH2), 2.08–2.13 (m, 2H, CH2CH2CF2), 3.11 (m, 1H, H-3), 

3.35–3.46 (m, 2H, OCH2CH2), 3.59–3.66 (m, 2H, H-6a, H-6b), 3.73–3.76 (m, 2H, H-4, H-5), 3.81 (m, 

1H, H-2), 4.26 (d, 1H, H-1). 13C NMR (CDCl3) δ ppm: 22.5 (OCH2CH2), 29.1 (CH2CH2CF2), 62.9 (C-

6), 71.5 (C-4), 72.6 (OCH2CH2), 75.4 (C-5), 78.1 (C-3), 86.7 (C-2), 98.4 (C-1), 106.7–120.3 (CF2 and 

CF3). 

 

1-Allyloxy-8-Hydroxy-3,6-Dioxaoctane (7). Sodium hydride (3 g, 0.08 mol) was added portion-wise to 

a solution of triethyleneglycol (20 mL, 0.15 mol) in dry THF (50 mL). The solution was stirred at room 

temperature for 15 min. Then allyl bromide (4.3 mL, 0.05 mol) was added and stirring was maintained 

at room temperature for 1 h. Then solvent was evaporated under reduced pressure and the residue was 

dissolved in dichloromethane. The solution was filtrated and washed with brine (40 mL). The aqueous 

phase was extracted with dichloromethane (2 × 100 mL). The organic phase was dried over MgSO4 

and solvent were evaporated under reduced pressure. The resulting yellowish oil was purified by 

chromatography (n-hexane/ethyl acetate 70:30 and then 50:50). Compound 7 (6.93 g, 73%) was 

obtained as a colorless oil. Rf (hexane:ethylacetate 1:1) = 0.15. MS (m/z): calcd for C9H18O4 190.24 

found 190.12. 1H NMR (CDCl3) δ ppm: 3.53–3.76 (m, 12H); 3.99 (d, 2H, CH2CH=CH2, 
3JH-H = 5.61 

Hz); 5.23–5.24 (m, 2H, CH=CH2); 5.84–5.94 (m, 1H, CH=CH2). 
13C NMR (CDCl3) δ ppm: 61.6 

(CH2OH); 70.2–70.5 (CH2O); 72.2 (CH2CH=CH2); 72.5 (CH2CH2OH); 117.1 (CH=CH2); 134.6 

(CH=CH2). 

 

1-[(p-toluenesulphonyl)oxy]-9-Allyl-3,6,9-Trioxaoctane (8). A solution of compound 7 (2.14 g,  

11.3 mmol) in distilled triethylamine (30 mL) was cooled to 0 °C. Then tosyl chloride was added  

(3.22 g, 16.9 mmol) to the medium and was stirred at room temperature for 24 h. Then the reaction 

mixture was poured into ice and ethyl acetate was added (100 mL). The aqueous phase was extracted 

with ethyl acetate (2 × 100 mL). The combined organic layers were washed with a 2% (v/v) acetic acid 

aqueous solution and H2O (50 mL each), and then dried over MgSO4. Solvent was removed under 

vacuum to yield yellowish oil that was purified by chromatography (75:25 n-hexane/ethyl acetate). 

Compound 8 (3.1 g, 80%) was obtained as a colorless oil. Rf (hexane:ethylacetate 1:1) = 0.64. MS 

(m/z): calcd for C16H24O6S 344.42 found 344.13. 1H NMR (CDCl3) δ ppm: 2.44 (s, 3H, CH3);  

3.52–3.66 (m, 10H, CH2CH2O); 4.01 (d, 2H, CH2CH=CH2, 
3JH-H = 5.61 Hz); 4.14 (t, 2H, CH2OTs,  

3JH-H = 4.7 Hz); 5.14–5.28 (m, 2H, CH=CH2); 5.84–5.94 (m, 1H, CH=CH2); 7.33 (d, 2H, CHAr,  
3JH-H = 8.1 Hz); 7.77 (d, 2H, CHAr, 

3JH-H = 8.1 Hz). 13C NMR (CDCl3) δ ppm: 21.2 (CH3); 68.2–68.9 

(CH2CH2O); 70.1–70.2 (CH2CH=CH2, CH2CH2OTs); 71.7 (CH2OTs); 116.6 (CH=CH2); 127.5–129.5 

(CHAr); 132.5 (CArSO2); 134.3 (CH=CH2); 144.5 (CArCH3).  

 

N-2-(2-[2-(2-allyloxy-ethoxy)-ethoxy]-ethyl)-phtalimide (9). To a solution of compound 8 (3.1 g,  

9 mmol) in distilled DMF (100 mL) was added potassium phthalimidate (1.83 g, 9.9 mmol). The 
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solution was heated at 120 °C for 12 h and subsequently cooled to room temperature. Solvent was 

evaporated under reduced pressure and the resulting residue was dissolved in CH2Cl2 (100 mL). H2O 

(100 mL) was added. The organic phase was extracted with CH2Cl2 (3 × 100 mL) and dried over 

MgSO4. Filtration and evaporation of the solvent yielded to compound 9 (2.73 g, 94%). Rf 

(hexane:ethylacetate 3:1) = 0.58. MS (m/z): calcd for C17H21NO5 319.35 found 319.14. 1H NMR 

(CDCl3) δ ppm: 3.34–3.47 (m, 10H, CH2CH2O); 3.52 (t, 2H, CH2NPht, 3JH-H = 5.76 Hz); 3.67 (t, 2H, 

CH2CH2NPht, 3JH-H = 5.85 Hz); 3.77 (d, 2H, CH2CH=CH2, 
3JH-H = 5.61 Hz); 4.91–5.09 (m, 1H, 

CH=CH2); 5.57–5.76 (m, 2H, CH=CH2); 7.48–7.55 (m, 2H, CHAr); 7.57–7.63 (m, 2H, CHAr). 
13C 

NMR (CDCl3) δ ppm: 37.1 (CH2NPht); 67.8 (CH2CH2NPht); 69.3–72.0 (CH2CH2O); 116.9 

(CH=CH2); 123.1 (CHAr); 132.0 (CAr); 133.8 (CHAr); 134.6 (CH=CH2); 168.1 (C=O). IR (cm−1): 2906; 

2867; 1774; 1713; 1615; 1107; 1006; 928. 

 

N-2-(2-(2-[2-(4,4,5,5,6,6,7,7,8,8,9,9,9-tridecafluoro-nonyloxy)-ethoxy]-ethoxy)-ethyl)-phtalimide (10). 
5.6 g of compound 9 (17.5 mmol) and sodium bicarbonate (4.7 g, 56 mmol) were added under argon in 

100 mL of a cooled solution (0 °C) 2:1 acetonitrile/water. Then 1-iodoperfluoroalkane (6 mL,  

24.8 mmol) and sodium dithionite (5.5 g, 31.6 mmol) were added to the medium. The reaction was 

stirred at room temperature for 3 h. After completion of the reaction (tlc control) 300 mL of diethyl 

ether were poured onto the reaction mixture. The resulting solution was washed with brine and water 

(150 mL of each), before drying over MgSO4. After filtration the solution was evaporated to dryness 

under reduced pressure. The resulting crude product (9.6 g) was used without further purification for 

the hydrodeiodination step. 

This latter was dissolved in ethanol (100 mL), 2 mL of triethylamine and 300 mg palladium on 

charcoal (10%) were added under a hydrogen atmosphere (1 atm) overnight. After filtration, the 

solvent was evaporated under reduced pressure and the resulting residue was dissolved in CH2Cl2  

(100 mL). Organic layer was washed with H2O (2 × 50 mL) and then dried over MgSO4. Filtration and 

evaporation of the solvent yielded to compound 10 (6.9 g, 56%). Rf (hexane:ethylacetate 1:1) = 0.63. 

MS (m/z): calcd for C23H22F13NO5 639.40 found 639.13. 1H NMR (CDCl3) δ ppm: 1.46 (m, 2H, 

OCH2CH2CH2CF2); 1.61 (m, 2H, OCH2CH2CH2CF2); 3.32 (t, 2H, OCH2CH2CH2CF2); 3.34–3.47 (m, 

10H, CH2CH2O); 3.52 (t, 2H, CH2NPht, 3JH-H = 5.76 Hz); 3.67 (t, 2H, CH2CH2NPht, 3JH-H = 5.85 Hz); 

7.48–7.55 (m, 2H, CHAr); 7.57–7.63 (m, 2H, CHAr). 
13C NMR (CDCl3) δ ppm: 16.5 

(OCH2CH2CH2CF2); 28.8 (OCH2CH2CH2CF2); 37.1 (CH2NPht); 67.8 (CH2CH2NPht); 69.3–72.0 

(CH2CH2O); 72.4 (OCH2CH2CH2CF2); 108.1-126.3 (CF2); 118.5 (CF3); 123.1 (CHAr); 132.0 (CAr); 

133.8 (CHAr); 168.1 (C=O).  

 

N-2-(2-[2-(4,4,5,5,6,6,7,7,8,8,9,9,9-tridecafluoro-nonyloxy)-ethoxy]-ethoxy)-ethylamine (11). To a 

solution of compound 10 (6.9 g, 10.8 mmol) in absolute ethanol (120 mL) was added hydrazine 

hydrate (4 mL, 43.2 mmol). The solution was heated at 80 °C for 16 h. The solvent was evaporated 

under reduced pressure and the resulting residue was dissolved in CH2Cl2 (50 mL). After filtration the 

solvent was evaporated and then 5.18 g of compound was purified by chromatography (100% CH2Cl2 

then 90:10 and 80:20 CH2Cl2/MeOH). Then 1.7 g of compound 11 (89%) were obtained as a colorless 

oil. Rf (dichloromethane:methanol 19:1) = 0.25. MS (m/z): calcd for C15H20F13NO3 509.30 found 
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509.12. 1H NMR (CDCl3) δ ppm: 1.46 (m, 2H, OCH2CH2CH2CF2); 1.61 (m, 2H, OCH2CH2CH2CF2); 

2.82 (t, 2H, CH2NH2); 3.37 (t, 2H, OCH2CH2CH2CF2); 3.34–3.47 (m, 10H, CH2CH2O); 3.63 (t, 2H, 

CH2CH2NH2). 
13C NMR (CDCl3) δ ppm: 16.5 (OCH2CH2CH2CF2); 28.8 (OCH2CH2CH2CF2); 41.8 

(CH2NH2); 69.3–72.0 (CH2CH2O); 72.4 (OCH2CH2CH2CF2); 73.2 (CH2CH2NH2); 108.1–126.3 (CF2); 

118.5 (CF3). 

 

2.2.1. Protected CBO-P11 synthesis 

 

Briefly, protected CBO-P11: (cyclo(D-FPQ(Trt)IMR(Pbf)IK(Boc)PH(Trt)Q(Trt)GQ(Trt)H(Trt)IGE) 

was synthesized using non commercial loaded Fmoc-Glu(2-ClTrt resin)-OAll for the linear chain 

assembly. Subsequent Fmoc amino acids were coupled using a fourfold excess of amino acids 

activated as HOBt ester by means of a 0.45 M HBTU/HOBt solution. Removal of the allyl protecting 

group was performed before N-terminal Fmoc deprotection with Pd(PPh3)4 in a solution of 

CHCl3/AcOH/NMM (37:2:1). Fmoc removal was achieved with a solution of 20% piperidine in NMP 

(N-methyl-2-pyrrolidone). Coupling reaction was performed with PyBOP, HOBt and DIEA in NMP. 

Final cleavage of the peptide from the resin without loss of any side-chain protecting group was 

performed with a solution of 1% TFA in CH2Cl2. Precipitation of the product was done in cold water 

and filtration yielded 580 mg (65%) of protected CBO-P11 as a white solid.  

 

F13-CBO-P11 (12). Protected CBO-P11 (311 mg, 93 µmol) was added to a solution of compound 11 

(100 mg, 196 µmol), PyBOP (242 mg, 465 µmol), HOBt (94 mg, 698 µmol), and DIEA (152 µL,  

930 µmol) in 20 mL of THF. The reaction was stirred at room temperature for 48 h. Solvent was 

evaporated under reduced pressure; the product was precipitated in cold water and filtered. The product 

was then treated with 0.75 g of phenol in a TIS/thioanisole/H2O/TFA solution (1:2:2:40) for 3 h at 

room temperature. Final compound was precipitated from cold diethyl ether and filtered. The product 

was purified by reverse-phase HPLC under the following conditions: eluant A, 0.05% TFA in water; 

eluant B, 0.05% TFA in CH3CN/H2O (70/30); flow rate, 1 mL/min; detector 214 nm. MALDI mass 

spectrometry analysis (theoretical value: 2489.48 Da; experimental value: 2489.16 Da).  

 

2.3. Injectable solutions 

In preparation for the intravascular injection, 274 mg of FDG is dissolved in 1 mL sterile PBS. For 

the polyfluorinated glucose solution, 10 mg of the probe was added to 1 mL of polypropylene glycol 

(MW = 400 g/mol). F13-CBO-P11 solutions were prepared in sterile PBS. For the latter, solutions were 

obtained by the addition of 20 mg and 35 mg of peptide in 1 mL sterile PBS.  

 

2.4. Cell culture 

U87 human glioma cells (ATCC) were selected for the study as an established model for malignant 

gliomas that form highly vascularized tumors. Cells were maintained in culture using Dulbecco’s 

modified Eagle’s medium (DMEM) with 10% FBS, L-glutamine (2 mmol L−1), and antibiotics 

(penicillin 50 UI mL−1, streptomycin 50 µg mL−1). Cell culture was performed in a 37 °C incubator 
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with humidified atmosphere and 5% CO2. Cells were grown to confluence, harvested after 

trypsinization, and re-suspended in serum-free DMEM for implantation. 

2.5. In vivo injection in the chicken chorioallantoic membrane (CAM) and sample preparation 

Fertilized chicken eggs were incubated at 37 °C in a humidified atmosphere. On day 4 of 

incubation, a window was made in the shell in order to visualize the chorio allantoïc membrane 

(CAM). On embryonic day 10, in the tumor group, a ring was put on the CAM and U87 glioma cells (5 

million cells per egg suspended in 20 µL of medium) were deposited on the CAM within the ring after 

gentle laceration of the surface. In the other group, a nylon grid was put on the CAM to allow normal 

tissue to grow on the grid. After 7 days of implantation (embryonic day 17), FDG, polyfluorinated 

glucose and F13-CBO-P11 solutions were then injected in a blood vessel of the CAM of each egg 

(100 µL per embryo). Embryos were sacrificed 6 hours after injection. All samples were removed and 

snap-frozen in liquid nitrogen-chilled isopentane at −160 °C. CAM samples and normal tissue (S1, 

Scheme 1) coming from nylon grid were then put on targets (2 mm-thick and 20 mm-diameter 

aluminium target with a 5 mm-hole in the centre) and freeze-dried during 3 days at −30 °C in a cryostat 

(CM3050S, Leica Microsystems). Tumors were conserved at −80 °C until sectioning. For tumor tissue, 

successive serial sections (at 100, 200 and 300 µm) were obtained from the CAM to the tumor (S2 to 

S4, Scheme 1) using the cryostat, put on targets and freeze-dried. After sample preparation, 

microphotographs were taken to monitor the experiment. 

Scheme 1. Successive sections obtained from tumor implanted on CAM. 

 
 

2.6. Ion beam microanalysis  

Particle Induced γ-ray Emission (PIGE) and Rutherford Backscattering Spectrometry (RBS) were 

performed simultaneously to determine trace elements quantitative distribution, such as F and Fe, and 

major element as C, N, and O determination, respectively (Figure1). Analyses were performed with 

proton beam energy at 3.4 MeV in order to benefit from a high cross section for the nuclear reaction for 

fluorine [15]. Analyses were realized on zones of typically 850 × 850 µm in a scanning mode of the 

proton beam. The beam was focused onto the sample surface to a spot of 5 µm in diameter, resulting in 

a proton beam current of 500 pA as measured with a Faraday cup below the sample. Characteristics 

gamma rays emitted from elements of the target were detected with an ultralow energy planar 

germanium detector (surface of the Ge crystal is 100 mm², thickness 10 mm) placed at 45° from 
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incident beam. The γ-ray detector was covered by a 100 µm thick carbon filter (hole 0.2% of the total 

filter surface), to protect the γ-ray detector from backscattered particles. The RBS measurements were 

performed using a PIPS detector (passivated implanted planar silicon) placed at 135° from the incident 

beam direction.  

Figure 1. Mean PIXE/PIGE spectrum obtained on biological sample. The counts and 

respective energies can be sorted according to beam position in order to produce element 

maps showing gamma or x-ray intensity vs. beam position. Analytical conditions: 3.4 MeV 

proton beam; intensity 500 pA, beam diameter: 5 µm.  

 
 

CaF2 micromatter standard (certified material from NIST) and a PVDF film (polyvinylidene 

difluoride, 25 µm thick) were used as external standard in order to verify the quantification process [9]. 

γ-ray emission data were analyzed with the Supavisio software to create mask of interesting areas of 

selected chemical elements. RBS data were analyzed with SIMNRA code [13].  

The quantification of fluorine was performed by comparative analysis with reference standard. 

PVDF films were analyzed in order to simulate the composition and thickness of biological samples. 

PyMCA software was used to fit the 110 keV γ peak on PIGE spectra on a PVDF film and biological 

samples. The intensity of the peak in the PVDF was used to normalize yield in samples [14,16]. 

The combination of PIGE and RBS quantitative data were used for mass normalization of γ-ray 

emission, leading to element concentrations expressed in terms of µg of element per g of dry 

mass sample. 

Equation of quantification can be written as follow: 

 

Where: [F]i = fluorine concentration of sample i, [F]Sref = fluorine surfacic mass of the reference 

(PVDF, CaF2), Yi, Yref = intensity of 110 keV γ peak in reference and sample i, Qi, Qref = deposited 

charge during analysis in reference and sample i, Mi = local mass of sample i. 
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Detection limit of fluorine with these references was around 3 µg/g [9]. 

3. Results and Discussion 

3.1. Synthesis of probes and precursors 

The synthesis of the polyfluorinated glucose (Scheme 2) has been described by Schwabisch from  

3-allyl-1,2:5,6-di-O-isopropylidene-α-D-glucofuranose (2) [17]. Briefly, the latter was generated by 

treatment of the dioxolane glucose (1) with allyl bromide in THF in the presence of sodium hydride. 

Then compound (2) was perfluoroalkylated by dithionite-mediated addition of the  

1-iodoperfluorohexane in a solution of acetronitrile and water. After hydrodeiodination with palladium 

on charcoal in hydrogen atmosphere, the target product (5) was obtained by deprotection of the 

compound (4) with aqueous trifluoroacetic acid with a 41% overall yield. 

Scheme 2. Synthesis of the polyfluorinated glucose. 
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F13-CBO-P11 (Scheme 3) was obtained by amide bond formation between polyfluorinated linker 

(11) and protected antiangiogenic peptide CBO-P11 [18], followed by a final deprotection step. 

Protected CBO-P11 was synthesized from 2-chlorotrityl chloride resin as previously described [18]. 

Polyfluorinated linker (11) was synthesized from triethylene glycol (6). After the obtention of 

monoallyl derivative (7) (73% yield), phtalimido-allyl compound (9) was synthesized in two steps by 

treatment with tosyl chloride in triethylamine followed by potassium phtalimidate with 80% and 94% 

yield respectively. Polyfluorinated moiety was then introduced by dithionite-mediated addition of  

1-iodoperfluorohexane followed by hydroiodation yielded compound (10), which was deprotected by 

hydrazine treatment to give amino-polyfluorinated linker (11) in 27% yield. 
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Scheme 3. Synthesis of the polyfluorinated peptide (F13-CBO-P11). 
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3.2. Samples from FDG injected CAMs  

During this experiment, two types of analyses were performed. On one hand, short analyses (2–4 h) 

were realized on tumor sections in order to quantify fluorine concentration. These sections were poorly 

vascularized and no specific accumulation of fluorine was observed. The aim of this first type of 

analysis was to quantify the fluorine content locally more than to image it. On the other hand, highly 

vascularized CAM samples were analyzed for periods of up to 22 h in order to make a map of the 

distribution of fluorine. The mapping of iron was also realized to confirm the presence of blood in the 

capillaries and help the determination of fluorine distribution. The first analysis we performed was an 

analysis on a CAM sample from an egg where no fluorinated tracer had been injected. This blank 

sample allowed us to verify that our samples did not possess naturally organic fluorine and no external 

contamination could distort the quantification. In addition, this test has shown that no other photon was 

emitted by a side reaction at 110 and 197 keV.  

Highly concentrated solutions of FDG (0.77 and 1.53 M) corresponding to 1.46 and 2.9 mg of 

fluorine respectively per embryo were injected. The distribution of trace elements was first determined, 

and iron and fluorine maps for normal and tumor tissues were obtained (Figure 2). In the normal 

chorioallantoic membrane (CAM) tissue, microscopy and iron mapping allowed us to visualize well 

defined capillaries (Figure 2-A). Fluorine concentration was then determined from normalized samples 

(Table 1, samples 1 and 3), showing no significant differences in ratio between capillaries and 

surrounding tissues (sample 3) (1460 ± 170 µg/g dry mass of fluorine for capillaries and  

1820 ± 210 µg/g dry mass of fluorine for surrounding tissue). 

In tumor tissue (Figure 2-B), iron mapping indicates possibly bleeding; we then determined an 

average fluorine concentration in the tumor. There were no differential accumulations of fluorine 

between normal and pathological tissues (1820 ± 210 µg/g and 1640 ± 170 µg/g dry mass of fluorine 

respectively). Even at a twofold lower injected amount, the same range of fluorine distribution was 

obtained for sample 2 as in sample 3 (Table 1). 
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Table 1. Fluorine concentration in normal and tumor tissues exposed to FDG solutions 

(0.77 and 1.53 M).  

Sample 
Average fluorine concentration (µg/g) 

Physiological tissue 
Pathological 

tissue 
Tissue 

(injected solution 
concentration) 

Successive 
sections 

CAM Capillaries  Tumor 

Sample 1 (1.53 M) S1 1560 ± 180 960 ± 100 
_ 

 

Sample 2 (0.77 M) S1 − − 1570 ± 180 

Sample 3 (1.53 M) 

S1 1820 ± 210 1460 ± 170                  − 

S2 − − 1640 ± 170 

S3 − − 1950 ± 240 

S4  −   −  1470 ± 140 

Sample 1 (S1): CAM sample (no tumor); Sample 2 (S1): tumor section (no normal tissue);  
Sample 3 (S1): CAM sample (no tumor); Sample 3 (S2 to S4): serial tumor sections (no normal 
tissue). Refer to Scheme 1 and the text for more details.  
 

Figure 2. (A) Chemical elements distribution in CAM exposed to FDG (sample 3). Optical 

microscopy view of a section analyzed by ion beam microprobe (above left) and 

corresponding chemical element distributions maps. Average fluorine concentration: 

capillaries (zone 1: 1460 ± 170 µg/g), surrounding tissues (zone 2: 1820 ± 210 µg/g). 

(B) Chemical elements distribution in tumor section exposed to FDG (sample 3). Average 

fluorine concentration in tumoral tissue (zone 1: 1640 ± 170 µg/g). Min-max range bar 

units are arbitrary. 
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3.3. Samples from polyfluorinated glucose injected CAM 

Polyfluorinated glucose, being an amphiphilic molecule, was very difficult to solubilize in PBS. 

Thus a 18.5 mM solution (0.46 mg of fluorine per injection) was prepared in polypropylene glycol. 

Surprisingly, fluorine concentration in capillaries was found to be twice lower than surrounding 

tissues in both type of samples (sample 4 and 5, Table 2). Indeed, fluorine concentrations found in 

sample 4 (Table 2) were about 1290 ± 150 µg/g dry mass of fluorine for capillaries and 

2240 ± 260 µg/g dry mass of fluorine for surrounding tissue. 

Table 2. Fluorine concentrations in normal or tumor tissues exposed to polyfluorinated 

glucose (18.5 mM). 

Sample 
Average fluorine concentration (µg/g) 

Physiological tissue Pathological tissue 
Tissue 

(injected solution 
concentration) 

Successive 
sections 

CAM Capillaries Tumor 

Sample 4 
(18.5 mM) 

S1 2240 ± 260 1290 ± 150 − 

Sample 5 
(18.5 mM) 

S1 330 ± 60 95 ± 20 − 
S2 − − 300 ± 30 
S3 − − 140 ± 30 
S4 − − 130 ± 20 

Sample 4 (S1): CAM sample (no tumor); Sample 5 (S1): CAM sample (no tumor); Sample 5 (S2 to 
S4): serial tumor sections (no normal tissue). Refer to Scheme 1 and the text for more details. 

Figure 3. (A) Chemical elements distribution in CAM tissue exposed to the 

polyfluorinated glucose (sample 4). Average fluorine concentration: surrounding tissue 

(zone 1: 2240 ± 260 µg/g), capillaries (zone 2: 1290 ± 150 µg/g). (B) Chemical elements 

distribution in tumor section S4 exposed to the polyfluorinated glucose (Table 2, sample 5). 

Average fluorine concentration in tumoral tissue (zone 1: 130 ± 20 µg/g). Min-max range 

bar units are arbitrary. 
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The same ratio was observed for sample 5. Nevertheless, fluorine distribution has been determined 

(Figure 3) in accordance with capillaries identification with iron measurements. In sample 5  

(Figure 3-B, Table 2), fluorine amount decreased from the CAM tissue (330 ± 60 µg/g) to the 

successive tumor sections (from 300 ± 30 µg/g for S2 close to CAM to 130 ± 20 µg/g for S4). The low 

accumulation in tumor tissue is most probably due to the fact that poorly vascularized tumors were 

injected (Figure 5)  

 

3.4. Samples from polyfluorinated CBO-P11 injected CAM 

Quantification and imaging of F13-CBO-P11 have also been performed at two different 

concentrations (20 and 35 mM, which represent respectively 0.49 and 0.85 mg of fluorine injected per 

egg) (Figure 4).  

Table 3. Fluorine concentrations in normal and tumor tissues exposed to fluorinated  

CBO-P11 solutions (20 and 35 mM). 

Sample 
Average fluorine concentration (µg/g) 

Normal tissue Pathological tissue 
Tissue 

(injected solution 
concentration) 

Successive 
sections 

CAM Capillaries Tumor Capillaries 

Sample 6 
(20 mM) 

S1 − − 450 ± 35 610 ± 70 
S2 − − 270 ± 20 360 ± 50 

Sample 7 
(35 mM) 

S1 − − 345 ± 30 650 ± 70 
S2 − − 215 ± 35 460 ± 45 

Sample 8 
(35 mM) 

S1 2050 ± 175 6570 ± 555 − − 

Sample 6 (S1 and S2): serial tumor sections (no normal tissue); Sample 7 (S1 and S2): serial tumor 
sections (no normal tissue); Sample 8 (S1): CAM sample (no tumor). Refer to Scheme 1 and the 
text for more details. 

Figure 4. (A) Chemical elements distribution in CAM tissue exposed to F13-CBO-P11 

(sample 8). Average fluorine concentration: surrounding tissue (zone 1: 2050 ± 175 µg/g), 

capillaries (zone 2: 6570 ± 555 µg/g). (B) Chemical elements distribution in tumor section S2 

exposed to F13-CBO-P11 (sample 6). Average fluorine concentration: tumor section (zone 1: 

270 ± 20 µg/g), capillaries (zone 2: 360 ± 50 µg/g). Min-max range bar units are arbitrary. 
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Among the studied samples, sample 6 was treated with a 20 mM solution of F13-CBO-P11 and 

samples 7 and 8 were treated with a 35 mM solution of F13-CBO-P11. First, we observed an 

incorporation of this fluorinated peptide in both normal and pathological tissues (Figure 4 and Table 3). 

For normal tissues (sample 8, Table 3 and Figure 4-A), fluorine concentration obtained are 3 times 

higher in capillaries with respect to the corresponding tissue (6570 ± 555 µg/g for capillaries and 2050 

± 175 µg/g for surrounding tissues). In the case of tumor sections (samples 6 and 7, Table 3), the 

fluorine concentrations in capillaries are 1.5 times higher than in the surrounding tissue (from  

360 ± 50 to 650 ± 70 µg/g for capillaries versus 215 ± 35 to 450 ± 35 µg/g for surrounding tissues). 

The low accumulation in tumor tissue is most probably due to the fact that poorly vascularized tumors 

were injected (Figure 5). 

Figure 5. Tumor tissue with vascularisation on ring (left), CAM on aluminium target (right). 

 

3.5. Discussion 

The aim of our study was to perform a first step in a multimodal multiscale imaging approach, and 

the second step would be an in vivo PET imaging of tumor angiogenic areas. An ion beam imaging 

analysis was designed with a higher resolution allowing the validation of biological targets at a 

micrometric scale. As the experimental model, we used the chicken chorioallantoic membrane (CAM). 

This is a highly vacularized extraembryonic tissue that has been extensively used to study vascular 

development [19,20] and tumor development, such as of glioblastoma xenografted onto the CAM  

[21-25]. We have imaged the distribution of three fluorinated compounds in the normal CAM and in 

the CAM xenografted with U87 glioma cells. 

The first two glucose derivatives were envisaged as models to explore the limits of detection while 

the third could be considered as a proof of concept and a preliminary biological tool.  
18F-FDG (2-deoxy-2-[18F]fluoro-D-glucose) is the most frequently used radiotracer for PET 

imaging. FDG is an analogue of glucose which compiles essential qualities that are required for a 

tracer. It does not perturb the measured system and follow a specific metabolic pathway. Indeed, it 

enters the glycolytic pathway in the same way as glucose does. After the initial phosphorylation step, 

the deoxy form of glucose is unable to be further metabolized and therefore is trapped within cells [6]. 

FDG is then concentrated in regions of higher metabolic activity, as it is known for tumors [26,27]. We 

therefore used FDG model as the starting point of our study.  

Ion beam analyses, and particularly PIGE analysis, is several magnitudes less sensitive than PET 

(sensitivity of 10−9 and 10−12 mole/L respectively). Much larger amounts of glucose fluorinated tracer 

had to be injected to overcome this limitation. The first experiments were performed with highly 
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concentrated FDG solutions (0.77 and 1.53 M). This concentration is much higher than physiological 

glucose concentrations in the blood (7.2 mM). As the total blood volume of a 17-day chick embryo is 

about 2 mL, injection of 100 µL of these solutions increases blood glucose from 7.2 to 45.7 mM and 

83.7 mM respectively. Our results demonstrate a homogeneous fluorine distribution within capillaries 

as well as in surrounding tissues (about 1600 µg/g average concentration) (Table 1). The 

concentrations of fluorine detected in sample 2 and 3 were close to each other. However the injected 

amount is twice less in the case of sample 2 than in sample 3. This may be due to the high FDG 

diffusion due to tissue homeostasis. These results demonstrate that fluorine can be detected using ion 

beam analysis. In any case, the ratio of fluorine concentrations between capillaries and tissues is close 

to one. 

We next synthesized polyfluorinated tracers to increase the amount of fluorine injected into embryos 

necessary for PIGE detection, the first one being a glucose derivative. Previous studies on chemical 

modifications of glucose have been carried out in order to determine which glucose substitution was 

the most suitable. Positions 2 and 3 seem not to significantly change glucose internalization and 

phosphorylation in cells [28,29]. We therefore decided to insert a polyfluorinated chain on glucose 

position 3 (Scheme 2). Even at an amount of fluorine injected per embryo about 3 times lower than that 

in samples incubated with 0.77 M FDG solution (0.46 mg of fluorine compared to 1.46 mg) and more 

than 6 times for 1.5 M FDG solution (2.9 mg of fluorine), fluorine maps (Figure 3) and local mass 

(Table 2) distribution could be obtained. In normal CAM tissue, we obtained about 2.5 times lower 

concentration in capillaries than in surrounding tissues. 

To improve vascular targeting and to have in hand a potential proof of concept for imaging of 

angiogenesis, we used CBO-P11 (cVEGI), a peptide which binds receptors involved in angiogenesis. It 

has been shown that CBO-P11 inhibits angiogenesis and tumor development in vivo in the CAM assay 

and in animal experiments using rodents [30]. CBO-P11 was first functionalized as  

F13-CBO-P11 (Scheme 3) in order to enable its detection by PIGE. As previously demonstrated [18], 

the addition of chemical groups on CBO-P11 does not change the affinity of the peptide to its binding 

site. Chicken embryos were then injected with F13-CBO-P11 (Figure 4 and Table 3) and fluorine 

concentrations/amounts measured were 3 and 1.5 times lower in surrounding tissues than in capillaries 

in normal and tumor CAM tissue respectively. The fact that similar fluorine concentrations were 

detected in sample 6 and 7 demonstrate that fluorine uptake is not dose dependant at the amounts used 

in our study.  

It is important to notice that the low absolute concentration values in tumor tissue are due to the fact 

that the injected tumors were poorly vascularized. However, in this "prevascular" state, we may 

hypothesize a high expression level for growth factors receptors. CBO-P11 exhibit a high affinity for 

these, which could explain the relative higher fluorine concentration in tumor vs. capillaries than in 

normal tissue vs. capillaries. 

4. Conclusions 

This article describes for the first time the detection of organic fluorine in biological samples with 

the use of PIGE. This technique was successfully applied to quantify fluorine in chorioallantoic 

membrane (CAM) tissue and in tumors xenografted on the CAM. It moreover allows to estimate the 
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ratio of fluorine concentration between capillaries and surrounding tissues, either normal or tumors. 

These results demonstrated that this technique, using the 19F(p,p’γ)19F reaction, is an accurate 

technique for fluorine analysis and presents good sensitivity with a LOD in the low ppm range.  

After validation of the experimental model using fluorinated glucose derivatives, CBO-P11 

(cVEGI), an antiangiogenic peptide was functionalized with a polyfluorinated linker and used for PIGE 

analysis. 

PIGE analysis is a new technique which constitutes the first step of multimodal multiscale imaging. 

It allows analyzing fluorine distribution in biological tissues with a precision enabling ex vivo 

assessment in order that tracers effectively hit biological targets for which they are designed. This will 

allow ex vivo imaging of labeled molecular probes and validation of their biological targets at a higher 

resolution than PET, i.e., cell scale. The second step will use PET imaging which will give in vivo 

information. The previously mentioned PIGE analysis will compensate the lack of precision. Both 

approaches used complementarily will increase the quality of data generation for medical 

cancer imaging. 
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