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Abstract

Plasmodium falciparum is the most lethal of the human malaria parasites. The

virulence is associated with the capacity of the infected red blood cell (iRBC) to

sequester inside the deep microvasculature where it may cause obstruction of the

blood-flow when binding is excessive. Rosetting, the adherence of the iRBC to

uninfected erythrocytes, has been found associated with severe malaria and found

to be mediated by the NTS-DBL1a-domain of Plasmodium falciparum Erythrocyte

Membrane Protein 1 (PfEMP1). Here we show that the reactivity of plasma of

Cameroonian children with the surface of the FCR3S1.2-iRBC correlated with the

capacity to disrupt rosettes and with the antibody reactivity with a recombinant

PfEMP1 (NTS-DBL1a of IT4var60) expressed by parasite FCR3S1.2. The plasma-

reactivity in a microarray, consisting of 96 overlapping 15-mer long peptides

covering the NTS-DBL1a domain from IT4var60 sequence, was compared with

their capacity to disrupt rosettes and we identified five peptides where the reactivity

were correlated. Three of the peptides were localized in subdomain-1 and 2. The

other two peptide-sequences were localized in the NTS-domain and in subdomain-

3. Further, principal component analysis and orthogonal partial least square

analysis generated a model that supported these findings. In conclusion, human

antibody reactivity with short linear-peptides of NTS-DBL1a of PfEMP1 suggests

subdomains 1 and 2 to hold anti-rosetting epitopes recognized by anti-rosetting

antibodies. The data suggest rosetting to be mediated by the variable areas of

PfEMP1 but also to involve structurally relatively conserved areas of the molecule

that may induce biologically active antibodies.
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Introduction

Malaria is the most important of all parasitic diseases. About 200 million people

are affected by malaria infections and 1.44 billion people worldwide are at risk of

Plasmodium falciparum malaria. Malaria particularly affects children under the

age of 5 and women in their first pregnancy in endemic areas [1].

It is known that repeated exposure to P. falciparum parasites induces immunity

to severe disease. This protective immunity is partly dependent on antibodies

towards variable surface proteins expressed by the parasite blood stages, where

Plasmodium falciparum Erythrocyte Membrane Protein 1 – PfEMP1 is one of the

major antigens [2]. PfEMP1 also plays a central role in the ability of the parasite to

sequester in the microvasculature of the infected patient. It mediates binding to a

variety of different host-cell receptors enabling the iRBC to sequester in the deep

microvasculature in order to avoid clearance in the spleen. PfEMP1 contributes

substantially to the manifestations of severe malaria as sequestration becomes

excessive and blocks the blood flow.

A central feature of P. falciparum is the ability to cytoadhere to various host

receptors on different cell types and serum proteins. One important adhesive

phenotype, associated with disease severity, is the formation of rosettes, where an

infected erythrocyte (iRBC) adheres to two or more non-infected red cells, RBC

[3, 4, 5, 6, 7]. The ability to form rosettes varies in-between P. falciparum strains

and a range of host cell receptors on the surface of RBC as well as serum-proteins

are involved in the binding phenomena. These include heparan sulfate,

complement receptor CD35, blood group A and B trisaccharides and maybe CD36

as well as immunoglobulins M and G, fibrinogen and albumin [8, 9]. PfEMP1

mediates the binding and antibodies towards this protein can disrupt rosettes

[10, 11, 12, 13, 14]. For laboratory parasites of a rosetting phenotype such as

FCR3S1.2, varO and R29, the N-terminal Duffy-binding like domain (DBL1a) has

been shown to be the key domain of the PfEMP1 molecule binding to host

receptors on RBC [15, 16, 17, 18]. This domain has the highest degree of sequence

conservation among all PfEMP1 domains [19] and is therefore likely to hold a

central role in parasite sequestration in the microvasculature [17, 20, 21].

A large fraction of immunity towards severe disease is conferred by antibody

responses to PfEMP1 [22], as a consequence of the central role it holds in

Figure 1. Individuals living in malaria endemic areas carry antibodies able to disrupt rosettes. A) 75
plasma samples derived from patients living in endemic areas were tested for their capacity to disrupt rosettes
of FCR3S1.2 iRBC. B) The plasma ability to bind to the surface of FCR3S1.2 iRBC was measured by flow
cytometry. Uncomplicated and severe indicate malaria patients from Cameroon while Adults indicate
individuals living in an area of lower endemicity (Yunnan province, China). C) Correlation between rosette
disruption and surface reactivity on FCR3S1.2 iRBC for all patients samples. In red are indicated samples that
are further analyzed for peptide recognition in the peptide array.

doi:10.1371/journal.pone.0113248.g001
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Figure 2. Naturally acquired antibodies to NTS-DBL1a. A) IgG levels in 134 human plasma samples against the recombinant NTS-DBL1aIt4var60 as
detected by ELISA. Non immune indicates 20 non immune Swedish donors. Uncomplicated and severe indicate patients from Cameroon. B) Correlation
between patient age and presence of antibodies in the plasma towards the recombinant NTS-DBL1aIt4var60 as measured by ELISA. C) Correlation between
ability of the plasma sample to disrupt FCR3S1.2 iRBC rosettes and presence of antibodies towards to NTS-DBL1aIt4var60 as measured by ELISA. D)
Correlation between ability of the sample to disrupt FCR3S1.2 iRBC rosettes and patient age. E) Correlation between ability of the plasma sample to
recognize FCR3S1.2 iRBC surface as detected by FACS and presence of antibodies towards to NTS-DBL1aIt4var60 as measured by ELISA. F) Correlation
between ability of the plasma sample to recognize FCR3S1.2 iRBC surface as detected by FACS and patient age.

doi:10.1371/journal.pone.0113248.g002
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sequestration, but it is not understood how immunity to this highly variable

antigen develops. Clinical data suggest that patients rapidly acquire immunity that

protects against severe disease [23, 24, 25, 26]. One possible scenario is that

protection is achieved after acquiring cross-reactive, strain-transcending anti-

bodies to a few conserved epitopes shared among several PfEMP1 variants. On the

other hand, immunity could also rely on a large pool of strain-specific antibodies

acquired over time. Indeed, varying degrees of serological cross reactivity have

been demonstrated by studying sera from malaria infected individuals or sera

from PfEMP1-immunized animals on heterologous PfEMP1 proteins

[27, 28, 29, 30, 31]. Epitopes recognized by cross-reactive antibodies are largely

unknown. Recently one such epitope was identified when immunization with a

PfEMP1 motif associated with severe malaria generated strain transcending

antibodies, however the function of the generated antibodies remains unknown

[32]. There is still a lack of information about antibodies acquired during natural

malaria infections, their potential cross-reactivity and their role in immunity

against severe malaria. Here, we show that the ability of antibodies to disrupt

rosettes is correlated with the presence of particular antibody-specificities. When

the binding pattern of naturally acquired antibodies was mapped on a peptide

array, the reactivity towards five peptides of the NTS-DBL1a-domain correlated

with the capacity of the same plasma samples to disrupt rosettes of the

homologous parasite (FCR3S1.2). The reactive peptides were localized within all

three subdomains of the NTS-DBL1a-domain. Further, global analysis of the

plasma reactivity in the array suggested that presence of rosette disruptive

antibodies correlated with recognition of the semi-conserved region at the

C-terminus of subdomain 2 and N-terminus of subdomain 3. The results suggest

that, in spite of PfEMP1 variability, some of the antibodies directed towards this

molecule are likely to react with conserved epitopes.

Results

Rosette disruption activity and surface reactivity

In order to identify antibodies that are able to target adhesive events, such as the

formation of rosettes, we analyzed a set of plasma, derived from patients living in

a malaria endemic area, for the presence of antibodies that are able to disrupt

rosettes formed by the laboratory clone FCR3S1.2. This strain is considered as a

model parasite since it displays a phenotype typical for parasites causing severe

disease, with a high rosetting rate and the ability to bind non-immune IgM to its

surface [33]. Seventy-five plasma samples of children between 6 months and 14

years of age, infected with P. falciparum from Buea, an endemic region of

Cameroon, were investigated [34], (Table S1). Eighteen samples were from

children with severe malaria and 57 from uncomplicated malaria. In this set of

samples, the average age was 55.4 months; whereas the mean in the severe malaria

group was 28.9 months in the uncomplicated group was 49.5 months (p50.0671).

Out of 75 tested samples 29.3% (22 samples) were able to disrupt rosettes of
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FCR3S1.2. The cut off to be considered as positive in rosette disruption assays was

defined as .15% disruption compared to the control [3]. Three samples or 13.6%

of the 22 samples tested positive were from patients with severe malaria, which

represents 16.7% of severe samples (3/18). The remaining 19 samples were from

uncomplicated cases, representing 33.3% of uncomplicated tested samples (19/57)

(Figure 1A). Further, plasma samples from uncomplicated malaria cases were able

to disrupt rosettes by 16.3% in average, while samples from severe malaria

patients resulted in an average reduction of 9.4%. Fifty-three samples did not have

ability to disrupt rosettes, which represents 70.7% of analyzed samples, whereas

71.7% were from uncomplicated cases and the remaining 28.3% (15 samples)

were from severe ones. However, there was no statistical difference between severe

and uncomplicated groups (p value 50.6047). As comparison, two out of six

samples from adults living in a low endemic area tested positive for rosette

disruption and the average of rosette disruption was 14.2%.

The surface reactivity on FCR3S1.2 iRBC with the same plasma samples was

tested in parallel. The cut-off level for positivity was set to 83.6 AU, based on non-

immune plasma reactivity. Surface reactive antibodies were detected in 63.3% of

the samples. In details, 83.6% of the samples from the uncomplicated group and

37.5% from the severe group gave a positive surface staining (p value ,0.0001). In

addition, the average staining intensity of the samples belonging to the

uncomplicated malaria group was three times higher as compared to samples

belonging to the severe malaria group (p value 50.0002; Figure 1B). There was no

difference between the group with severe malaria and a group of adults residing in

low endemic area (mean of 50.2 and 30.5 respectively). Interestingly, a positive

correlation was found between surface reactivity and ability to disrupt rosettes of

the plasma (Figure 1C), suggesting that the same subset of molecules might be

targeted in the two assays. The same dataset was also analyzed as a contingency

table (262 table), where samples were considered positive or negative for surface

recognition and rosetting disruption. Fischer’s exact test was applied and a p value

,0.0001 supports the data described above.

Seroprevalence of human anti-NTS-DBL1a antibodies

The parasite strain FCR3S1.2 displays a PfEMP1 that is encoded by the IT4var60

gene on the surface of which the NTS-DBL1a domain has been demonstrated to

mediate the binding to other RBCs [13]. As the plasma samples from

Cameroonian children tested positive for rosette disruption and surface reactivity

with the FCR3S1.2 strain, we investigated, as a next step, the presence of

antibodies towards NTS-DBL1a-IT4var60 using ELISA assays.

The 75 samples used for the rosette disruption and surface reactivity assays plus

other 59 samples were used for ELISA. A total of 134 samples of children of 6

months to 14 years of age were analyzed; 101 were from children with

uncomplicated and 33 from children with severe malaria, including severe

anemia, cerebral malaria and respiratory distress. Antibodies towards NTS-

DBL1a-IT4var60 were detected in 44 plasma samples (32.8%), with the majority of
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positive samples belonging to the uncomplicated malaria group. In the

uncomplicated malaria group 36 samples had specific antibodies to NTS-DBL1a

IT4var60 (35.6%) while in the severe malaria group 8 samples (24.2%) had

antibodies towards NTS-DBL1a-IT4var60 (Figure 2A). No statistical difference was

observed between those groups (p50.1578). The presence of antibodies was

positively correlated with age of the children (Spearman r50.2178, p value

50.0135; Figure 2B). A positive correlation was also found between the presence

of naturally acquired antibodies to NTS-DBL1a-IT4var60 and the ability to disrupt

rosettes (Spearman r50.2295, p50.0492; Figure 2C). Further, the ability to

disrupt rosettes of the FCR3S1.2 strain correlated with age (r50.2692 and

p50.0213) (Figure 2D). However, there was no correlation between the surface

reactivity and presence of antibodies towards to IT4var60 (Figure 2E) or age

(Figure 2F).

Analysis of clinical and immunological data

The clinical features as well as the immunological data of the Cameroonian

population were studied also analyzed using Principal Component Analysis –

PCA. This approach is an unsupervised method that gives an overall trend about

the data and inspection about outliers. The parameter used for this analysis is the

R2, which explains the variation of the data and gives the predictability of the

model. The program generated a proposed model that can explain 23% of the

data.

This analysis suggests that the presence of antibodies towards to NTS-DBL1a-

IT4var60 was inversely linked with parasitemia in the peripheral blood, which is

Figure 3. Principal Component Analysis of clinical and immunological data. Data analysis from Cameroonian samples where clinical parameters and
immunological data were analyzed using Principal Component Analysis. The principal component analysis generated a model that explains 23% of the data
segregation (R2X 50.234545). Clinical parameters: temperature (Temp), breath rate (breath), pulse rate (pulse), glucose level (glucose), haemoglobin (Hb),
parasitemia, age, rosetting rates (RR, after collection from patients). Immunological parameters: plasma sample recognition of NTS-DBL1a It4var60 domain
(ELISA), ability to disrupt FCR3S1.2 rosettes (RD) and ability to recognize FCR3S1.2 iRBC surface by flow cytometry (Surface reactivity).

doi:10.1371/journal.pone.0113248.g003
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reinforced when correlation by Spearman test was analyzed (r520.4943,

p,0.0001). Further, the presence of rosettes in the peripheral blood was inversely

correlated with the presence of specific antibodies to NTS-DBL1a-IT4var60

(Figure 3). The capacity to disrupt rosettes in the Cameroonian samples was

positively correlated both to the presence of antibodies to IT4var60 and the age of

the children, which suggests that older children have higher levels of antibodies

compared to the younger ones, with an augmented capacity to disrupt rosettes.

Although the model explains 23% of the data, some other parameters that are not

included in this analysis could be involved in the ability to disrupt rosettes, such as

the presence of antibodies to other surface antigens.

Table 1. Peptide array sample groups.

Surface reactivity to FCR3S1.2 (MFI) ELISA reactivity to NTS-DBL1a (It4var60) (OD) Rosette Disruption in FCR3S1.2 (%)

NR_CBS08 88.125 0.96 0.00

NR_CBM20 30.6 1.47 4.42

NR_CBM31 109.725 1.25 8.99

NR_CBS35 111.45 1.20 7.78

NR_CBS47 6.5 0.75 7.8

NR_CBS60 12.7 0.76 7.59

NR_CBS89 4.4 0.95 4.2

NR_CBS91 5.5 0.44 8.45

NR_CBM75 185.385 1.22 10.57

NR_CBM77 87.06 1.03 0.62

NR_CBS88 119.08 0.48 11.63

NR_CBM46 189.515 0.77 9.26

NR_CBS162 85.62 1.24 5.94

NR_BUR04 4.07 0.00 8.37

NR_BUR10 125.45 0.18 0.00

NR_BUR11 14.70 0.00 6.26

NR_BUR03 27.71 0.00 13.61

RD_CBM36 306.13 1.73 93.08

RD_CBM41 352.39 1.30 51.97

RD_CBM43 283.81 1.07 20.35

RD_CBM54 222 1.09 16.79

RD_CBM68 336.45 1.45 66.44

RD_CBS155 5.495 1.07 25.83

RD_CBS168 8.895 1.08 19.02

RD_BUR07 5.47 0.42 35.66

RD_BUR08 5.84 1.08 21.38

Summary of the subset of samples further analyzed on the peptide array (shown as red dots in Figure 1C). The table summarizes the sample name (NR:
non rosette disruptive; RD: rosette disruptive), surface reactivity towards FCR3S1.2 iRBC (MFI), the ELISA reactivity towards the NTS-DBL1a domain and
ability to disrupt the FCR3S1.2 iRBCs rosettes.

doi:10.1371/journal.pone.0113248.t001
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Identification of B- cell epitopes important for rosetting

The identification of epitopes associated with disruption of rosettes is of

importance for the development of a vaccine that prevents rosetting and protects

against severe disease. To discover potential B-cell epitopes targeted by rosette

disruptive antibodies, the reactivity of a subset of 26 plasma samples was

investigated in a peptide array (Table 1). Plasma samples were divided in two

groups according to their ability to disrupt rosettes (rosette disruptive, RD, n59;

and non-rosettes disruptive samples, Non-RD, n517) and their reactivity on the

peptide array was compared. The array comprises overlapping peptides covering

the entire NTS-DBL1a-IT4var60 (Figure 4). The reactivity of the sera with five out

of the 96 peptides, here named PEP_009, PEP_097, PEP_105, PEP_125, PEP_293,

correlated with the ability to disrupt rosettes formed by FCR3S1.2 iRBCs

(Figure 5A). One peptide was found at the N-terminus of the NTS domain

(PEP_009; Spearman r50.4470, p value 50.0221) while peptides PEP_097,

PEP_105 and PEP_125 were spanning a sequence located at the N-terminal on the

DBL1a domain (PEP_097, Spearman r50.5155, p value 50.0070; PEP_105,

Spearman r50.4870 and p value 50.0116, PEP_125; Spearman r50.4497, p value

50.0212). The peptide PEP_293 was found in subdomain 3 in the boundary to

subdomain 2 (PEP_293, Spearman r50.3902, p value 50.0225). The reactivity of

the non-immune plasma with these five peptides was negative or at background

level (Figure 5B).

Identification of epitopes recognized by rosette inhibitory

antibodies

In order to confirm the data obtained and to better correlate the identified

antibody epitopes to the rosette disruptive capacity of the human samples, a

multivariate statistical analysis, taking into account all parameters, was performed.

Principal component analysis (PCA) was followed by orthogonal partial least

square (OPLS) analysis that is a supervised method and gives the data segregation

between classes along the predicted components. Two parameters were used to

judge the model, the R2 and the Q2, where R2 explains the variation of the data

and the Q2 is a cross validation factor that gives the predictability of the model.

Data obtained from testing reactivity of plasma on the NTS-DBL1a-ITvar60

peptide array in combination with the information about their ability to disrupt

rosettes on the FCR3S1.2 strain were analyzed. The model generated can explain

20% of the data segregation, with the ‘‘rosette disruptive group’’ being well

separated from the ‘‘non-rosette disruptive’’ and the ‘‘non-immune group’’

(Figure 6). In this analysis, the majority of peptides were not informative (68%)

since their reactivity was not different between the groups, but all five of the

previously identified peptides where the plasma reactivity was correlated to the

ability to disrupt rosettes, were among the top 30 of the 96 peptides ranked in this

segregation (Figure 6).
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Figure 4. Reactivity of human plasma to a peptide array of the NTS-DBL1aIt4var60. A subset of 26 plasma samples (red dots in figure 1C; further
described in Table 1) were tested on a peptide microarray covering the NTS-DBL1aIt4var60 domain. 9 plasma samples were able to disrupt FCR3S1.2 iRBC
rosettes while 17 were not. The mean value for the reactivity index of each sample group was compared to the mean reactivity index of 8 non-immune
control samples. Green arrows indicate peptides with differential recognition between the groups.

doi:10.1371/journal.pone.0113248.g004
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Epitopes targeted by rosette disrupting antibodies within the

NTS-DBL1a-IT4var60 domain

Since the crystal structure of the NTS-DBL1a-IT4var60 molecule is not available, a

molecular model was generated using the crystal structure of the homologous

NTS-DBL1a from PAvarO. The five sequences identified with the peptide array

were all found to be localized on the solvent accessible surface of the molecule

(Figure 7B), with the exception of PEP_293 that was only partially exposed. While

peptides PEP_097, PEP_105 and PEP125 were overlapping and found to be part

of the same linear epitope located at the N-terminus of the DBL1a domain in

SD1, peptides PEP_009 and PEP_293 were single linear epitopes. PEP_293 is in

addition in close proximity with RDSM peptide previously described as target of

strain transcending antibodies in SD2 [32]. By using an algorithm for the

prediction of B-cell epitopes trained on previously experimentally proven epitopes

called Bepipred [35], out of a total of 15 predicted B cells epitopes in the NTS-

DBL1a domain, only part of the peptides were detected in this analysis

(Figure 7A). Further, 20 out of 23 aa were suggested to be surface exposed in

peptides PEP_097 and PEP_105 while the sequences of peptides PEP_125 and

PEP_293 were predicted to be only partially exposed. The peptide PEP_293

contains part of a motif previously found to be conserved between different

DBL1a sequences (PoLV4, ref [36]).

The reactivity of the plasma with other DBL domains

The ability to disrupt rosettes of FCR3-parasites has been correlated with

protection against severe forms of malaria [3]. FCR3S1.2 is a highly rosetting, IgM

binding subclone expressing the same PfEMP1-encoding var gene (IT4var60) that

belongs to DBLa1 group A, which has been found associated with severe malaria

[37]. We therefore decided to classify our malaria samples based on the ability to

disrupt rosettes formed by FCR3S1.2 1 and study their reactivity in a broad

microarray screen harboring multiple NTS-DBL1a-domains. The two groups of

plasma included 1) rosettes disruptive (RD)- and 2) non-disruptive (NR) samples

(Table 1). A peptide array with 15 aa long-peptides with a 11 aa overlap covering

the NTS-DBL1a of IT4var60 and 8 complementary DBL-domains were included in

the array (Table S2). Three were NTS-DBL1a domains associated with rosetting in

lab strains, whereas IT4var9 were from R29, TM284S2 was derived from TM284,

and PAvarO which was derived from the lab strain Palo Alto [14, 15, 38]. Another

sequence NTS-DBL1a associated with severe malaria - 3D7var4, was derived from

the lab clone 3D7 [37]. Three DBL1a sequences expressed by parasites isolated

Figure 5. Peptides associated with the ability to disrupt rosettes of the FCR3S1.2 strain. Reactivity towards five peptides (indicated by green arrows in
figure 4) was correlated with plasma sample ability to disrupt FCR3S1.2 rosettes. A) Scatter plots showing the correlation between specific peptide
recognition and the ability to disrupt rosettes of FCR3S1.2 iRBC. B) Reactivity index measured in peptide array to the same peptides according to their
grouping: rosette disruptive (RD), non-rosette disruptive (Non-RD) and Swedish non-immune control samples (NI).

doi:10.1371/journal.pone.0113248.g005
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from severe Ugandan patient samples (UAS22, UAS29 and UAS31 [7] and the

NTS-DBL1a-IT4var21domain [13].

The ability to disrupt rosettes was positively correlated with 33 peptides. Five of

these peptides were from NTS-DBL1a-IT4var9 (derived from R29), five from the

NTS-DBL1a-TM284 and two from the NTS-DBL1a-PAvarO (Table 2).

Interestingly, for all three parasites strains, at least one of the identified peptides

(It4var9/PEP_293, TM284/PEP_293, PAvarO/PEP_301) was localized in the

beginning of SD3 in a relatively conserved area of DBL1a (Figure S2). This region

Figure 6. Orthogonal Partial Least Square analysis (OPLS) of peptide array data for It4var60. Distribution of samples on the OPLS model according to
their reactivity on the peptide array (top). VIP ranking score for the OPLS analysis (Bottom). Red arrows indicate the peptides correlated with the ability to
disrupt rosettes as seen in figure 5.

doi:10.1371/journal.pone.0113248.g006
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is semi-conserved and the DYVPQYLR/DYVPQFLR is present in all DBL1a

domains and is part of PoVL4 [36], which is conserved in-between DBL1a

domains from different geographical origins (Figure S1). Although the antibody

reactivity to these sequences might be a common feature in patients exposed to

malaria, this epitope is only predicted to be partially surface exposed. Additional

peptide-reactivity associated with rosette-disruption was found in NTS-DBL1a-

3D7var4 (seven peptides) (Table 2). Four linear peptides were found within the

NTS-DBL1a-IT4var21 protein. From the Ugandan sequences we also found two

(UAS22 and UAS31) or one peptide (UAS29) associated with the ability to disrupt

rosettes on FCR3S1.2.

Discussion

Here we report on antibodies naturally acquired after infections with P.

faciparum, their ability to recognize the surface of the iRBC and to disrupt rosettes

of the rosetting model parasite FCR3S1.2. Further, by using a peptide array, we

identify five antibody epitopes that correlate with rosette disrupting capacity. We

also show that the presence of antibodies towards recombinant NTS-DBL1a is

positively correlated with age (r50.2667 and p50.0023) and inversely correlated

with parasitemia (r520.4943 and p,0.0001) in malaria-infected individuals.

These results suggest that the presence of antibodies to this variable molecule is

associated with number of infections, since in malaria endemic area individuals

are infected repeatedly during their lifetime. Although the variation of the

molecules expressed on the P. falciparum iRBC-surface is high, there is evidence

that the parasite can induce cross-reactive antibodies. Previous studies showed

that after a number of infections an individual in an endemic area develops

immunity to the symptomatic disease [39, 40]. Those results encourage the search

for antibodies that can cross-react in-between distinct malaria parasites.

At least part of the pathology caused by P. falciparum is due to the adherence of

the parasite to endothelial cells and non-infected erythrocytes conferred by

PfEMP1 [41]. The repertoire of PfEMP1 is vast although it seems to be restricted

for the variants associated with severe disease [42, 43]. Severe malaria is associated

with a particular subset of PfEMP1s that are encoded by group A var genes [37].

This group has two cysteines within the DBL1a domain, a feature of PfEMP1

associated with a rosetting phenotype. The fact that the repertoire of PfEMP1

associated with severe malaria appears to be somehow limited opens possibilities

Figure 7. Localization of epitopes targeted by rosette disruptive on the NTS-DBL1aIt4var60 domain. A) Comparison between predicted epitopes
(predicted, in green) and epitopes correlated with rosette disruption ability (identified, in blue). Prediction of the localization of B-cell epitopes for the NTS-
DBL1aIt4var60 domain was carried out and epitopes predicted to be surface exposed are marked in green. Epitopes that correlated with the ability to disrupt
rosettes are marked in blue. B) A model of the NTS-DBL1aIt4var60 domain was generated based on the NTS-DBL1aPAvarO crystal structure [18]. The mapped
peptides targeted by antibodies that disrupted rosettes on FCR3S1.2 iRBC are highlighted in blue in the model. C) For comparison, the localization SD3-
loop, previously identified as target of rosette disruptive antibodies (12) is highlighted in red and the RDSM motif, shown to induce strain-transcending
antibodies [32], in orange.

doi:10.1371/journal.pone.0113248.g007
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to target that group of molecules with a vaccine against severe malaria. It has long

been known that naturally acquired antibodies have the ability to disrupt rosettes

[44], but here we show that this capacity correlates with the presence of naturally

acquired antibodies to NTS-DBL1a.

The ability to generate rosette disruptive antibodies is of advantage for the

infected individual as formation of rosettes in the circulation obstructs the blood

Table 2. Peptides targeted by rosette disruptive antibodies in FCR3S1.2 iRBC.

Protein Peptide Sequence Spearman r p-value

It4var60 009 NEIELSARDVLENIG 0.3768 0.0281

It4var60 097 KRFDEGQKFECGNDK 0.5132 0.0019

It4var60 105 FECGNDKIIGNSDKY 0.5268 0.0014

It4var60 125 PRRRHICDQNLEFLD 0.5264 0.0014

It4var60 293 SVPTNLDYVPQFLRW 0.3902 0.0225

It4var9 009 TVNNLSATDVLEKIA 0.4101 0.0160

It4var9 013 LSATDVLEKIATGIY 0.3722 0.0302

It4var9 017 DVLEKIATGIYNQEK 0.3465 0.0447

It4var9 097 RFSNEGEAKCGSDKI 0.3438 0.0465

It4var9 293 TNVPTNLDYVPQFLR 0.4443 0.0085

TM284 065 NPCELKYQWHTNATR 0.4592 0.0063

TM284 245 EDWWNANRQEIWKAL 0.3705 0.0310

TM284 293 PPTYFDYVPQYLRWF 0.3775 0.0278

TM284 309 EWAEDFCTKRKHKLQ 0.4333 0.0105

TM284 376 IDNQQKEFEKQKKKY 0.3418 0.0479

varO 265 WKALTCSAPYYADYF 0.3879 0.0234

varO 301 APPTYLDYVPQFLRW 0.3625 0.0351

It4var21 021 EFGQKVHDEVHGEAK 0.3854 0.0244

It4var21 053 ETAFTVKSMQTESKY 0.3434 0.0468

It4var21 181 SFADIGDIIRGRDLY 0.3835 0.0252

It4var21 273 SSYFRATCSDTGQGP 0.5312 0.012

3D7var4 061 PFSAYRPNYGNPCEL 0.4328 0.0106

3D7var4 065 YRPNYGNPCELDYRF 0.436 0.0102

3D7var4 173 YTGYGIYKSGICTSL 0.4376 0.0096

3D7var4 301 VLTNLDYVPQFLRWF 0.3449 0.0457

3D7var4 309 PQFLRWFEEWAEEFC 0.4099 0.0160

3D7var4 341 SKKLYCSHNGYDCTK 0.5318 0.0012

3D7var4 345 YCSHNGYDCTKTIRN 0.5906 0.0002

C1388/UAS22 065 NTKLQTLTLHQVREY 0.4302 0.0111

C1388/UAS22 101 IFSKNIRNGNTILFD 0.3608 0.0361

C1413/UAS31 081 AWWKAHRDQVWKAIT 0.4200 0.0134

C1413/UAS31 101 KVDYFIKNSDGSRGF 0.3627 0.0350

C1429/UAS29 148 DQVPTYFDYVPQYLR 0.4214 0.0131

List of peptides, recognized on the peptide array, with a positive correlation with the ability of the plasma sample to disrupt FCR3S1.2 rosettes. Peptides
indicated in bold are conserved between different parasite sequences and are further described in Figure S2.

doi:10.1371/journal.pone.0113248.t002
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flow [45]. In a study conducted with samples from Benin, sera from children did

not contain antibodies able to disrupt rosettes of the PAvarO model parasite [46].

In contrast with the Benin sample set, in our study we find a correlation between

surface reactivity and rosette disruption activity. The parasite of this study,

FCR3S1.2 and PAvarO [46] are both rosetting models and share some features

characterizing their rosetting ability, such as sensitivity of rosettes to sulphated

glycosaminogycans, the requirement of human serum for rosetting and a clear

ABO blood group preference for rosette formation [13, 47]. Perhaps the most

important difference between the two studies was the study area; while in Benin

malaria is seasonal, with two distinct peaks, in Buea, our study area, malaria

transmission takes place throughout the year. That might result in a higher

number of annual infections, consequently resulting in higher diversity of

acquired antibodies.

Since we found a correlation between the presence of specific antibodies to the

NTS-DBL1a domain and the ability to disrupt rosettes of FCR3S1.2 we decided to

dissect what those antibodies were targeting. Despite the limitations of the epitope

mapping technique, such as inability to reproduce protein conformation, it was

possible to map the B-cell repertoire to five peptides that correlated with

recognition by rosette disruptive antibodies. Within the NTS-DBL1a domain

from FCR3S1.2, the SD1 region carried most of the epitopes associated with the

rosette disruption ability, whereas the major epitope found was C-terminal of SD1

and N-terminal of SD2. Interestingly, the SD1-SD2 region was previously shown

to contain the heparin binding site for the rosetting parasite PAvarO [47].

Notably, those epitopes within the SD1–SD2 region were also predicted to be

surface exposed in FCR3S1.2 iRBC, suggesting a possible involvement in binding

to receptor. Indeed the lysine-residue number 97 (K97), part of one of the

peptides hereby described, has recently been identified as possibly involved in

heparin binding for It4var60 (Angeletti et al., manuscript).

Recently we showed that immunization-induced rosette disruptive mouse

antibodies predominantly target the SD3 region of the NTS-DBL1a-domain [12].

Here, only one peptide partially localized at the N-terminal end of the SD3 region

was associated with the ability to disrupt rosettes of FCR3S1.2 parasites

(PEP_293), while the majority of recognized epitopes localized in the SD1 region.

The fact that we did not detect any other epitope within the SD3 region might be

due to that the array is holding linear peptides with limited conformation; in

addition the background reactivity of non-immune sera in this region was quite

high, rendering the analysis more complex. Interestingly similar results have been

obtained while analyzing natural responses to P. vivax Duffy binding protein

(DBP) with majority of natural antibodies targeting regions in SD1 and SD2,

while antibodies induced by immunization predominantly targeted SD3 [48].

Further, during human natural infections, the SD1 region might be more

immunogenic, as compared to immunizations with recombinant antigen, or the

conserved sequences in SD1 could be boosted upon subsequent or co- infections

with distinct parasites.
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Peptide PEP_293 of IT4var60 is localized at the SD2-SD3 boundary region and

covers a conserved epitope which was earlier described as position of limited

variability 4 (PoLV4) [49]. The PoLV4 motif consists of four amino acids, which

are ‘‘PTNL’’ in the PfEMP1 encoded by IT4var60. Still, this part of the molecule is

highly conserved between different DBL1a domain variants and is not predicted

to be entirely surface exposed therefore probably not interacting with the red

blood cell surface. From the molecular model of the NTS-DBL1a-domain it is

interesting to note the structural proximity between the peptide PEP_293

identified herein and the RDSM motif, previously described as able to induce

cross-reactive antibodies [32]. Both the peptides localize towards the end of SD2

and both seem to be able to be cross-recognized by antibodies, suggesting this

region of the molecule to be an important target of strain transcending immunity

in P. falciparum. While the function of anti-RDSM antibodies still remains elusive,

here we show that presence of antibodies towards PEP_293 correlates with ability

to disrupt rosettes.

The ability to disrupt rosettes of the FCR3S1.2 parasite strain was here used as a

parameter to group the plasma samples into rosette disruptive (RD) or non-

rosette disruptive (non-RD). It is known from previous studies, that the presence

of rosette disrupting antibodies is considered a protective factor against severe

disease [4, 40].

The antibody repertoire of the two groups (RD and non-RD) was analyzed on a

peptide array that contained DBL domains from different P. falciparum parasite

strains. Three of them were obtained from parasites with a rosetting phenotype

(NTS-DBL1a-IT4var9, NTS-DBL1a-TM284S2 and NTS-DBL1a-PAvarO); NTS-

DBL1a-IT4var9, NTS-DBL1a-TM284S2, but not NTS-DBL1a-PAvarO harbored

peptides recognized by antibodies with the ability to disrupt rosettes. Four out of

five peptides found within NTS-DBL1a-IT4var9 are localized in the SD1 domain,

mostly at the N-terminus of NTS sequence.

The fact that we found reactivity to peptides on the array associated with the

rosette disruption capacity that cross-reacted with sequences derived from

heterologous parasites might be explained by the fact that patients with

uncomplicated malaria carry a broader antibody repertoire. Interestingly, of seven

DBL1a domains analyzed we found peptides recognized at the C-terminus of the

SD2 and N-terminus of the SD3 region. This common reactivity corresponds to

the PoLV4 conserved region. Although the peptide DYVPQYLR/DYVPQFLR was

correlated with recognition by plasma from the RD group, this sequence is not

entirely surface exposed and therefore it is not clear whether it could not mediate

the binding to uninfected erythrocytes during rosetting. However, this peptide

might be a marker of exposure to P. falciparum, as the plasma samples containing

antibodies recognizing those peptides were also able to disrupt rosettes.

Our study suggests that naturally acquired antibodies that are able to disrupt

rosettes target a number of different epitopes on the DBL1a domains of PfEMP1

encoded by IT4var60 with the majority located within SD1-SD2 region. These

results should be taken into consideration in the design of a vaccine against severe

malaria targeting the formation of rosettes.
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Materials and Methods

Ethical approval

Informed consent was obtained from patients or their guardians. Ethical

permissions for the study were obtained both in Cameroon and Sweden (numbers

G379/900 and 2006/1323-31, respectively) and in China (number

IRB#KMC20080001).

Sample collection and study areas

The plasma collection was carried out in Buea, Cameroon as described before

[34]. In Buea, malaria transmission takes place throughout the year but peaks

during the rainy season that lasts from April to October. The entomological

inoculation rate (EIR) has been shown to be approximately one infected Anopheles

mosquito bite per person per night in this area during the rainy season.

Briefly, the study included Plasmodium-infected children between 6 months

and 14 years of age that had a parasitemia above 10,000 iRBC/ml. The diagnosis

was based on Giemsa-stained blood smears and clinical examination. Severe P.

falciparum malaria was defined as a malaria infection requiring hospital admission

and quinine or artemether infusion because of anemia, hyperparasitemia

(parasitemia .5%), or severe symptoms including hyperpyrexia, seizures,

prostration, and/or vomiting. Anemia was defined as hemoglobin less or equal to

55 g/l and hyperpyrexia as a body temperature over 41.5 C˚. Cases with a positive

blood smear for P. falciparum without complicating manifestations were classified

as uncomplicated malaria and treated as outpatients with treatment per os. Blood

was withdrawn from all patients with parasitemia above 10,000 iRBC/ml and

collected in ethylene diamine tetraacetic acid (EDTA) tubes. Blood samples were

centrifuged at 4006g for 5 min to separate RBCs, leukocytes, and plasma. The

plasma was collected and stored at 270 C̊. Six samples from individuals living in

low endemic area were also collected with the same procedure and used in the

analysis. The samples were taken from Chinese individuals living in the low

endemic region of Yunnan, close to the Burmese border.

Parasite culture

Parasites were cultivated using standard methods [50]. Parasites were kept

synchronous using 5% sorbitol (w/v). The parasitemia was counted and the

rosetting rate was determined by calculating the number of trophozoite iRBCs

forming rosettes, relative to the total number of trophozoite iRBCs present in the

culture. A rosette was defined as at least two uninfected RBCs bound to one iRBC.

The rosetting rate was maintained with Ficoll enrichment as previously described

[50].
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Rosette disruption assay

The ability of patient plasma to disrupt rosettes was assayed as described before

[4]. As a control a purified IgG fraction of a Malawian hyper-immune plasma

pool was used [51]. Malaria naïve Swedish plasma was analyzed as negative

control. Briefly, plasma was tested in 1:5 dilution in 20 ml parasite culture, 5%

hematocrit and 5% parasitemia. After incubating the samples at 37 C̊ for

60 minutes, the parasites were stained with acridine orange and the rosettes were

counted. For each sample at least 200 iRBC were analyzed.

Flow cytometry assay on infected erythrocytes

Antibody binding to iRBC in trophozoite stage (24–30 hours post invasion) was

tested using flow cytometry as previously described [13]. Briefly, the iRBCs were

incubated with Cameroon patient plasma in dilution 1:5 for 60 min at room

temperature (RT). The iRBCs were washed trice with PBS/FCS 2% followed by

30 min incubation with a goat anti-human IgG antibody coupled to ALEXA488

(dilution 1:100). For nuclear staining ethidium bromide was added at a final

concentration of 2.5 mg/ml and the iRBCs were resuspended in PBS/FCS 2%. The

cell count was done using flow cytometry (FACSCalibur, BD Bioscience, NJ USA)

where 5000 iRBC were counted. The analysis was performed using the FlowJo

software (Tree Star, Inc. Oregon, USA). All assays were done in duplicates.

Reactivity against the iRBC was scored as mean fluorescence. The cut off value was

determinate by the mean of the reactivity of 20 non-immune plasma samples

(donors from Sweden, obtained from the blood bank) plus two standard

deviation.

Production of recombinant NTS-DBLa domains in E.coli

E. coli codon optimized NTS-DBL1aIt4var60 domain of the parasite clone

FCR3S1.2 were expressed as a C-terminal 6x histidine tagged recombinant

proteins in the E. coli strain BL21 DE3 (DslyD) as described in [12]. Bacteria

cultures were grown to OD60050.8, then induced for 3 h at 37 C̊ with 0.1 mM

IPTG. Proteins were purified by Immobilized Metal Affinity Chromatography

over Ni-NTA columns (Qiagen), eluted with 500 mM imidazole and further

purified to homogeneity by size exclusion chromatography on a HiLoad 16/60

Superdex 75 pg colum (GE-Healthcare) [12].

Enzyme-linked immunosorbent assay –ELISA with NTS-DBLa
domains

Antibodies to the recombinant NTS-DBL1aIt4var60 domain were analyzed by

ELISA as described [52]. Briefly, maxisorp plates (Nunc, Roskild, Denmark) were

coated with 0,2 mg of recombinant antigens over night at 4 C̊ dissolved in 15 mM

Na2CO3 and 35 mM NaHCO3 (pH 9.6). Plates were blocked with 1% bovine

serum albumin (BSA) in PBS containing 0.1% Tween 20 (PBS-T) for 2 h at room
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temperature. Plasma samples (dilution: 1:500) were added in duplicates and

allowed to bind for 1 h at 37 C̊. Plates were washed five times with PBS-T and

bound Immunoglobulin G (IgG) was detected by incubation for 1 h at 37 C̊ with

alkaline phosphatase–conjugated goat anti-human IgG (Sigma, St Louis, MO,

USA) diluted 1:1000 in PBS-T. The plates were washed and the assay developed by

adding p-nitrophenyl phosphate (Sigma) as a substrate for 15 min. The optical

density (OD) was read at 405 nm in an ELISA plate reader (Multiskan EX Version

1.0, Labsystems, Stockholm, Sweden). On each plate, a pool of plasma from 20

non-malaria exposed Swedish donors was assayed as well as control wells without

plasma (background level). Cut off threshold for seropositivity was determined as

the mean OD405 value from 20 individual non-immune Swedish donors plus two

standard deviation.

Peptide array

For detailed mapping of antibody binding sites, peptide-arrays of overlapping

peptides were produced. The peptides were bound chemoselectively to the

microarray surface by coupling an active amine of the peptide to an epoxy-group

on the slide surface. The peptide microarrays were manufactured by JPT (JPT

Peptide Technologies, Berlin, Germany) and each slide contained three identical

sub-arrays. The arrays hold DBL-domains from long-term cultivated parasites as

well as from Ugandan isolates (Table S2). The peptides are 15 amino acids long,

with an overlap of 11 amino acids. The slides were incubated for 16 hours with

human plasma (dilution: 1:100) at 4 C̊ in a humid chamber in PBS buffer

containing 3% of FCS and 0.5% of Tween (T-PBS). Five washing steps followed

the incubation step: two with T-PBS, followed by three washing steps with

distillated water (all solutions were filtered). The slides were then incubated with

1:500 goat anti-human Cy5 secondary antibody (Jackson ImmunoResearch) for

two hours at room temperature, in a humid chamber, followed by washing steps.

The microarrays slides were scanned at wavelength of 635 nm using a GenePix

4000B microarray scanner (Axon Instruments, CA, USA). The images were saved

as TIFF and JPG format and analyzed using GenePixPro 7.0 software in

combination with the.GAL file provided by JPT.

The image analysis was done as described at [53]. Quality control and data

preprocessing were carried out as in [54]. Briefly, spots quality flags were assigned

by GenePix and manually reviewed. The intensity data extracted from each

subarray was saved as a GPR (GenePix result) file, and the median foreground and

background intensities for the 635-nm wavelength from individual peptide spots

were used in the analysis of the responses. All GPR files were imported into the R/

BioConductor work environment [55]. Images from the individual subarrays were

created and inspected in order to evaluate and exclude false positives from the

analysis. For a measure of the strength of the response, we chose the ratio of

median foreground to background (on a log scale). This response index was

computed for all spots with a background greater than zero, and any spots with

zero background were excluded. Any peptide with a high response on slides
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incubated only with buffer and the secondary Cy5-labeled was considered false

positive and discarded for analysis. The array data was then normalized by using a

linear model method as in [53]. The data for each of the four groups of slides were

arranged in a large matrix, with columns identifying slide, subarray, and block,

and all the analyses described below used these master data sets.

Statistical Analysis

Principal Component Analysis (PCA) and Orthogonal Partial Least Squares

(OPLS) from SIMCA package (Umetrics) were used to analyze multiple

parameters. Values are expressed as mean ¡ SD. Comparisons between different

groups were done by Mann-Whitney test for non-normally distributed samples.

Spearman non-parametric correlation was used to correlate IgG levels and rosette

disruption ability. Contingency table whereas samples were considered positive or

negative for surface recognition and rosetting disruption followed by Fischer’s

exact test was applied using GraphPad Prism version 5.0 (GraphPad Software, CA,

US).

Protein modeling

The 3D structure of NTS-DBL1a It4var60 was modeled using the Phyre2 server.

Structural visualizations and high-resolution images were generated using PyMol

(The PyMOL Molecular Graphics System, Version 1.3, Schrödinger, LLC.).

Prediction of B cell epitopes

Prediction of B cell epitopes was carried out by submitting the protein sequences

to Bepipred server [35]. Cut off for positivity was set to 0.5.

Supporting Information

Figure S1. Alignment of NTS-DBL1a sequences and their reactivity on peptide

array. Peptides covering NTS-DBL1a sequences from different parasite lines were

tested for reactivity with rosette disruptive or non-disruptive plasma samples.

Peptides that correlated with the ability to disrupt rosettes on FCR3S1.2 parasites

are colored in red. The sequences on the highlighted box correspond to the SD2–

SD3 region.

doi:10.1371/journal.pone.0113248.S001 (PDF)

Figure S2. Correlation of SD2–SD3 immune recognition and the ability to

disrupt rosettes on FCR3S1.2. Sequences at the C-terminus of SD2 and N-

terminus of SD3 of six different DBL1a were correlated with the ability to disrupt

rosettes on FCR3S1.2.

doi:10.1371/journal.pone.0113248.S002 (PDF)

Table S1. Experimental and clinical parameters of the plasma samples included

in the study. Summary of parameters of the 74 plasma samples analyzed in the
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study. RD: ability of the sample to disrupt FCR3S1.2 rosettes (%); MFI:

recognition of the FCR3S1.2 iRBC surface by flow cytometry; It4var60 reactivity:

ELISA reactivity towards the recombinant NTS-DBL1aIt4var60 domain.

doi:10.1371/journal.pone.0113248.S003 (PDF)

Table S2. List of proteins included in the peptide array. PfEMP1 domains

analyzed in the array are fragmented in overlapping peptides whereas each peptide

is 15 amino acids long overlapping by 11 amino acids.

doi:10.1371/journal.pone.0113248.S004 (PDF)
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