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ABSTRACT

EUS is an important diagnostic tool in pancreatic lesions. Performance of single‑center and/or single study artificial 
intelligence (AI) in the analysis of EUS‑images of pancreatic lesions has been reported. The aim of this study was to 
quantitatively study the pooled rates of diagnostic performance of AI in EUS image analysis of pancreas using rigorous 
systematic review and meta‑analysis methodology. Multiple databases were searched (from inception to December 2020) 
and studies that reported on the performance of AI in EUS analysis of pancreatic adenocarcinoma were selected. The 
random‑effects model was used to calculate the pooled rates. In cases where multiple 2 × 2 contingency tables were provided 
for different thresholds, we assumed the data tables as independent from each other. Heterogeneity was assessed by I2% 
and 95% prediction intervals. Eleven studies were analyzed. The pooled overall accuracy, sensitivity, specificity, positive 
predictive value, and negative predictive value were 86% (95% confidence interval [82.8–88.6]), 90.4% (88.1–92.3), 
84% (79.3–87.8), 90.2% (87.4–92.3) and 89.8% (86–92.7), respectively. On subgroup analysis, the corresponding pooled 
parameters in studies that used neural networks were 85.5% (80–89.8), 91.8% (87.8–94.6), 84.6% (73–91.7), 87.4% (82–91.3), 
and 91.4% (83.7–95.6)], respectively. Based on our meta‑analysis, AI seems to perform well in the EUS‑image analysis 
of pancreatic lesions.
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INTRODUCTION

EUS has become an indispensable investigation 
tool in the disorders of  the pancreas.[1] EUS-guided 
sampling, by means of  fine‑needle aspiration (FNA) 
and/or fine‑needle biopsy (FNB), have demonstrated 
sensitivity rates ranging from 74% to 95% in the 
diagnosis of  pancreatic malignancy.[1,2] However, 
the diagnosis of  solid pancreatic lesions continues 
to be a challenge, especially in the presence of  
background chronic pancreatitis. [1,3] Clinical 
decision‑making can be difficult when tissue sampling 
is negative and/or inconclusive. In such circumstances, 
the physician cannot conclude the lesion to be benign 
if  there is a high degree of  clinical suspicion of  
malignancy, due to the extremely poor prognosis 
associated with pancreatic malignancy.[4]

The reported sensitivity of  EUS is 50%–60% in 
the diagnosis of  solid lesions of  the pancreas.[1,3] 
Circumstances arise when EUS by itself  is not 
an adequate tool. To help improve the diagnostic 
performance, EUS-image enhancement with the 
aid of  contrast-enhanced EUS and techniques such 
as EUS-elastography have been introduced. The 
reported accuracy of  diagnosing pancreatic tumors 
with the addition of  these modalit ies is about 
80%–90%.[1-3,5,6]

The exceptional performance of  AI in medical 
diagnosis using deep learning algorithm in computer 
vision is creating a new hype, as well as hope. 
Recently, data have emerged on the use of  artificial 
intelligence (AI) in computer-aided diagnosis of  lesions 
seen on endoscopic images and multiple studies 
have summarized their pooled performances.[7-10] 
Similarly, recent evidence has emerged on the utility 
of  AI in the analysis of  EUS images of  pancreatic 
lesions.[11,12] However, the data is currently evolving and 
limited.[5,13-23]

We conducted this systematic review and meta-analysis 
to consolidate and appraise the reported literature on 
the use of  AI in EUS evaluation of  solid lesions of  the 
pancreas. Due to the evolving nature of  the topic, we 
expected potential variability in terms of  the clinical 
situation, and machine learning algorithms that might 
contribute to considerable heterogeneity. In this study, 
we aim to present descriptive pooled estimates rather 
than precise point estimates.

METHODS

Search strategy
A medical librarian searched the literature for the 
concepts of  AI in EUS analysis of  pancreatic 
disorders. The search strategies were created using a 
combination of  keywords and standardized index terms. 
Searches were run in December 2020 in ClinicalTrials.
gov, Ovid EBM Reviews, Ovid, Embase (1974+), 
Ovid Medline (1946 + including Epub ahead of  
print, in-process and other nonindexed citations), 
Scopus (1970+) and Web of  Science (1975+). Results 
were limited to the English language. All results were 
exported to Endnote X9 (Clarivate Analytics) where 
obvious duplicates were removed leaving 4245 citations. 
The search strategy is provided in Appendix 1. The 
MOOSE checklist was followed and is provided as 
Appendix 2.[24] Reference lists of  evaluated studies were 
examined to identify other studies of  interest.

Study selection
In this meta-analysis, we included studies that tested AI 
learning models for the detection and/or differentiation 
of  pancreatic mass lesions on EUS. Studies were 
included irrespective of  the machine learning algorithm, 
inpatient/outpatient setting; study sample-size, follow-up 
time, abstract/manuscript status, and geography as long 
as they provided the appropriate data needed for the 
analysis.

Our exclusion criteria were as follows: (1) nonclinical 
studies that reported on the mathematical development 
of  convolutional neural network (CNN) algorithms, 
and (2) studies not published in the English language. 
In cases of  multiple publications from a single research 
group reporting on the same patient cohort and/or 
overlapping cohorts, each reported contingency tables 
were treated as being mutually exclusive. When needed, 
authors were contacted via E‑mail for clarification of  
data and/or study-cohort overlap.

Data abstraction and definitions
Data on study-related outcomes from the individual 
studies were abstracted independently onto a predefined 
standardized form by at least two authors (BPM, 
SRK). Disagreements were resolved by consultation 
with another author (AF). Diagnostic performance 
data was extracted, and contingency tables were 
created at the reported thresholds. Contingency tables 
consisted of  reported accuracy, sensitivity, specificity, 
positive predictive value (PPV), and negative predictive 



Mohan, et al.: AI in EUS

158 ENDOSCOPIC ULTRASOUND / VOLUME 11 | ISSUE 3 / MAY-JUNE 2022

value (NPV). If  a study provided multiple contingency 
tables for the same or for different algorithms, we 
assumed these to be independent from each other. 
This assumption was accepted, as the goal of  the 
study was to provide an overview of  the pooled rates 
of  various studies rather than providing precise point 
estimates.

Assessment of study quality
The Quality Assessment of  Diagnostic Accuracy 
Studies (QUADAS-2) tool was used to assess the 
quality and potential bias of  all studies by two authors 
independently (BPM, DM).[25] Conflicts were resolved 
with discussion and involvement of  a third author (SC). 
Four domains, namely patient selection, index test, 
reference standard, flow, and timing, were assessed. Two 
categories: Risk of  bias and applicability concerns were 
assessed under the domains of  patient selection, index 
test, and reference standard. The risk of  bias was also 
assessed in the domain of  flow and timing.

Statistical analysis
We used meta-analysis techniques to calculate the 
pooled estimates in each case following the 
random-effects model.[26] We assessed heterogeneity 
between study-specific estimates by using Cochran 
Q statistical test for heterogeneity, 95% prediction 
interval (PI), which deals with the dispersion of  the 
effects, and the I2 statistics.[27,28] A formal publication 
bias assessment was not planned due to the nature 
of  the pooled results being derived from the studies. 
All analyses were performed using Comprehensive 
Meta-Analysis (CMA) software, version 3 (BioStat, 
Englewood, NJ).

RESULTS

Search results and study characteristics
The literature search resulted in 4245 study 
hits [Figure 1]. All 4245 studies were screened and 
39 full-length articles and/or abstracts were assessed 
that reported on the performance of  AI in EUS. After 
removing irrelevant articles, eleven studies were included 
in the final analysis.[5,13,15-23] Study by Kuwahara et al., 
assessed the ability of  AI to predict malignancy in 
IPMN lesions and therefore was not included.[14] The 
study selection flow chart is illustrated in Figure 1.

Based on the revised QUADAS-2 study assessment, 
unclear risk was noted with patient selection and 
flow and timing. Detailed assessment is illustrated 

in Supplementary Table 1. Seven studies evaluated 
the performance of  AI on EUS images,[13,15-17,21-23] 
three on EUS elastography[5,19,20] and one on 
contrast-enhanced harmonic EUS.[18] Majority of  the 
studies evaluated the use of  AI in help detecting 
and/or differentiating pancreatic malignancy from 
chronic pancreatitis.[13,16,17,19,21-23] Whereas the study by 
Marya et al., analyzed the ability of  AI to diagnose 
autoimmune pancreatitis and we extracted data that 
reported on the performance of  AI in pancreatic 
adenocarcinoma.[15] From the included studies, 
we were able to extract a total of  10 datasets for 
accuracy, 13 datasets each for sensitivity and specificity, 
12 datasets each for PPV and NPV. The studies used 
a composite of  pathological evaluation and expert 
evaluation of  the images as the reference standard.

Meta‑analysis outcomes
The pooled accuracy was 86% (95% confidence 
interval [CI] 82.8–88.6, I2 = 57%) [Figure 2], sensitivity 
was 90.4% (95% CI 88.1–92.3, I2 = 39%) [Figure 3], 
specificity was 84% (95% CI 79.3–87.8, 
I2 = 88%) [Figure 4], positive predictive value was 
90.2% (95% CI 87.4–92.3, I2 = 70%) [Supplementary 
Figure 1] and negative predictive value was 89.8% 
(95% CI 86–92.7, I2 = 90%) [Supplementary Figure 2].

In subgroup analysis of  studies that exclusively used 
neural networks as the machine learning algorithm, 
the pooled accuracy was 85.5% (95% CI 80–89.8, 
I2 = 69%) [Supplementary Figure 3], sensitivity was 
91.8% (95% CI 87.8–94.6, I2 = 45%) [Supplementary 
Figure 4], the specificity was 84.6% (95% CI 
73.9–91.7, I2 = 90%), [Supplementary Figure 5] 
the positive predictive value was 87.4% (95% CI 
82–91.3, I2 = 68%) [Supplementary Figure 6], and 
the negative predictive value was 91.4% (95% CI 
83.7–95.6, I2 = 85%) [Supplementary Figure 7]. Pooled 
rates are summarized in Table 2, along with the 
subgroup analysis based on analysis of  EUS-images 
and EUS-elastography.

VALIDATION OF META‑ANALYSIS RESULTS

Sensitivity analysis
To assess whether anyone study had a dominant effect 
on the meta-analysis, we excluded one study at a time 
and analyzed its effect on the main summary estimate. 
On this analysis, no single study significantly affected 
the outcome or the heterogeneity.
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Table 2. Summary of pooled rates
Pooled rate 

(95% CI)
I2% heterogeneity 

(95% PI)
Accuracy

Overall 86% (82.8‑88.6)
10 datasets

57% (71‑94)

EUS‑images 91.8% (82.3‑96.4)
5 datasets

78% (52‑99)

EUS‑elastography 85.4% (82‑88.2)
5 datasets

0% (79‑89)

Neural network 
algorithm

85.5% (80‑89.8)
5 datasets

69% (61‑97)

Sensitivity
Overall 90.4% (88.1‑92.3)

13 datasets
39% (83‑96)

EUS‑images 93.4% (88.9‑96.1)
7 datasets

60% (78‑98)

EUS‑elastography 88.9% (85.8‑91.4)
5 datasets

0% (84‑93)

Neural network 
algorithm

91.8% (87.8‑94.6)
8 datasets

45% (84‑97)

Specificity
Overall 84% (79.3‑87.8)

13 datasets
88% (51‑97)

EUS‑images 89.8% (76.3‑96)
7 datasets

92% (35‑99)

EUS‑elastography 79.9% (73.5‑85.1)
5 datasets

61% (55‑93)

Neural network 
algorithm

84.6% (73‑91.7)
8 datasets

90% (39‑97)

PPV
Overall 90.2% (87.4‑92.3)

12 datasets
70% (65‑97)

EUS‑images 87.9% (80.8‑92.6)
6 datasets

75% (54‑96)

EUS‑elastography 90% (86.6‑92.6)
5 datasets

16% (85‑95)

Neural network 
algorithm

87.4% (82‑91.3)
7 datasets

68% (59‑96)

NPV
Overall 89.8% (86‑92.7)

12 datasets
90% (51‑99)

EUS‑images 96.3% (93.3‑98)
6 datasets

37% (89‑98)

EUS‑elastography 77% (65.1‑85.8)
5 datasets

86% (27‑96)

Neural network 
algorithm

91.4% (83.7‑95.6)
7 datasets

85% (43‑98)

CI: Confidence interval; PPV: Positive predictive value; NPV: Negative 
predictive value; PI: Prediction interval

Heterogeneity
We expected a large degree of  between-study 
heterogeneity due to the broad nature of  machine 
learning algorithms, EUS modalities, and varying 
diagnosis of  pancreatic lesions included in this study. 
On subgroup analysis, the pooled rates of  EUS 
elastography and pooled rates of  studies that used 
neural network-based machine learning algorithms were 
noted be lower than the overall heterogeneity [Table 2].
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Total studies found on search of
Evidence Based Medicine reviews

(112), Embase (2260), Medline (940),
Scopus (2805), Web of Science

(1430) [Total = 7547]

After de-duplication
(n = 4245)

Studies not relevant to current
analysis and excluded by

reading study title and abstract,
n = 4206

Records screened
(n = 4245)

Full-text articles assessed
for eligibility

(n = 39)

Studies included in
quantitative synthesis

(meta-analysis)
(n = 11)

• Review Papers = 4
• Studies on lymph node metastases = 12
• Studies on survival prediction = 11
• Non pancreatic mass study = 1

Figure 1. Study selection flow chart

Figure 2. Forest plot, accuracy
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Publication bias
Publication bias assessment largely depends on 
the sample size and the reported effect size. 
A publication bias assessment was deferred in this 
study because the studied modality was AI and the 
reported effects were diagnostic parameters, both of  
which do not conform to the basics of  publication 
bias assessment.[29]

DISCUSSION

In this systematic review and meta-analysis assessing 
AI-based machine learning in the assessment of  
pancreatic lesions on EUS imaging, we found that AI 
demonstrated a pooled accuracy of  86%, sensitivity of  
90.4%, specificity of  84%, PPV of  90.2%, and NPV of  
89.8%, albeit with expected heterogeneity.

Figure 3. Forest plot, sensitivity

Figure 4. Forest plot, specificity
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EUS is not always able to differentiate neoplasia from 
reactive changes, especially in the presence of  chronic 
pancreatitis. Pancreatic cancer is one of  the most 
heterogeneous neoplastic diseases, owing to the complex 
nature of  tissue and cell groups within the organ that 
is complicated by the extensively dense fibroblastic 
stroma and blood flow variations. In addition, there 
exists extensive spectrum of  molecular subtypes 
determined by a variable number of  gene mutations. 
Furthermore, the yield of  EUS-guided FNA and/or 
FNB is heavily dependent on accurate targeting of  the 
area of  interest-based on the interpretation of  the EUS 
images. Can AI prove to be a helpful computer aid to 
the therapeutic endoscopist in this regard?

Although premature for clinical application, this study 
demonstrates the high diagnostic performance of  AI 
in the interpretation of  lesions of  the pancreas based 
on EUS images. We report an overall pooled NPV of  
89.8% that is pretty close to the threshold proposed by 
The American Society of  Gastrointestinal Endoscopy 
Preservation Incorporation of  Valuable Endoscopic 
Innovations-2 of  90% or greater for real-time optical 
diagnosis using advanced endoscopic imaging.[30] This 
target was achieved in the subgroup analysis of  the 
assessment of  EUS-images (NPV = 96.3%) and in 
studies that exclusively used neural networks as the 
machine learning algorithm (NPV = 91.4%).

How do these results compare to the current practice 
of  EUS-FNA and/or FNB? Although we did not 
have direct comparison cohorts, we can put the results 
of  this study in perspective to the currently reported 
data in the literature. Based on meta-analyses data, 
the pooled sensitivity and specificity of  EUS‑FNA in 
the diagnosis of  pancreatic cancer are 85%–89% and 
96%–98%, respectively.[31,32] Comparable results have 
been reported with EUS-guided FNB of  pancreatic 
masses, and moreover, EUS-FNB with newer EUS 
specific core‑biopsy needles like Franseen and Fork‑Tip 
needles have demonstrated superior accuracy rates.[33-37] 
Based on the results of  this study, one can hypothesize 
superior diagnostic results with the combination of  AI 
and newer core-biopsy needles in the EUS evaluation 
of  solid pancreatic lesions.

The type of  machine learning algorithm developed 
is important and deep learning by means of  CNN 
has been shown to be exceptionally superior 
when compared to other algorithms in the 
computer-vision-based analysis of  images.[38] CNNs 

are able to process data in various forms and of  
particular interest to the medical field is the image 
and video-based learning. The architecture of  
CNN is designed as a series of  layers, particularly 
convolutional and pooling layers, followed by fully 
connected layers.[38] The important prerequisite for a 
high-performing algorithm is huge amounts of  training 
data. Based on this analysis, neural network-based 
analysis of  EUS in lesions of  the pancreas 
demonstrated an accuracy of  85.5%, sensitivity of  
91.8%, specificity of  84.6%, PPV of  87.4%, and 
NPV of  91.4%. In the recently published study 
by Tonozuka et al., authors used a CNN to train 
EUS-images in the detection of  pancreatic cancer 
and reported high diagnostic parameters that were 
comparable to a human’s ability of  image recognition.[21]

Although, an AI-based computer-aid seems promising 
in the analysis of  EUS images of  pancreatic lesions, 
current data needs to be interpreted with caution and 
the following limitations of  machine learning need 
to be acknowledged. The included studies evaluated 
the performance of  AI in experimental conditions. 
Prospective real-life scenario studies do not exist at this 
time. There was the lack in uniformity of  validating the 
training process of  the algorithm before using it for 
testing. Moreover, studies varied between differentiation 
of  pancreatic malignancy from chronic pancreatitis 
and detection of  lesions of  EUS. In the near future, 
we can expect further studies exploring deep learning 
algorithms by means of  CNN in EUS-image analysis 
of  pancreatic lesions. To enable robust training of  
such algorithms, a global, open-source, correctly labeled 
EUS-image repository akin to Google-ImageNet should 
be explored.

We acknowledge that the data were heterogeneous. 
However, the high heterogeneity should not be 
considered of  a major issue here as it is well-known 
that I2% statistics is higher when considering continuous 
variables as compared to categorical outcomes due 
to the intrinsic numeric nature of  these variables.[39] 
Therefore, I2% values should be interpreted with 
caution here and moreover, in a proportion 
meta‑analysis like ours, heterogeneity does not reflect a 
different direction in the pooled effects. Nevertheless, 
this study demonstrates descriptive pooled estimates 
of  diagnostic parameters achievable by well-conducted 
studies in future, and variables such as the EUS 
modality, machine learning algorithm, and underlying 
disease should be kept consistent as much as possible.
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CONCLUSIONS

Based on our analysis, AI seemed to perform well in 
the analysis of  EUS images of  pancreatic lesions. The 
prerequisites are to achieve high sensitivity and NPV, 
which our study demonstrates, however real-life clinical 
scenario studies are warranted to establish the role of  
AI in daily EUS practice of  analyzing the pancreas.
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APPENDICES

Appendix 1. Literature search strategy
Number of results before and after de‑duplication

Database Number of initial hits After de‑duplication
EBM reviews 112 38
Embase 2260 1508
Medline 940 874
Scopus 2805 1512
Web of science 1430 313
Totals 7547 4245

EBM reviews

(((digestive or gastr* or GI or alimentary or esophag* or oesophag* or stomach or intestin* or bowel* or 
colon* or colorectal or rectal or rectum or sigmoid or duoden* or ileum or ileal or jejun* or anal or anus) 
adj3 (polyp* or mass* or lesion* or tumor* or tumour* or carcin* or adeno* or neoplas* or cancer* or malignan* 
or sarcoma* or lymphoma* or leiomyosarcoma*)).ab, hw, ti.) AND ((endoscop* or enteroscop* or gastroscop* 
or colonoscop* or duodenoscop* or rectoscop* or sigmoidoscop* or ileocolonoscop* or chromoendoscop* or 
esophagogastroduodenoscop* or esophagoscop* or oesophagogastroduodenoscop* or proctoscop* or ERCP 
or anoscop* or endomicroscop* or oesophagoscop* or gastroduodenoscop* or sigmoidoscop* or diagnos* 
or patholog*).ab, hw, ti.) AND ((“artificial intelligence” or “machine learning” or “machine intelligen*” or 
computer‑aided or “computational intelligen*” or “deep learning” or “deep unified network*” or “data mining” 
or datamining or “supervised learning” or “semi-supervised learning” or “unsupervised learning” or “automated 
pattern recognition” or “Bayesian learning” or “computer heuristics” or “hidden Markov model*” or “k-nearest 
neighbor*” or “kernel method*” or “learning algorithm*” or “natural language processing” or “support vector” or 
“vector machine” or Gaussian or Bootstrap or “regression tree*” or “linear discriminant analysis” or “naive Bayes” 
or “learning vector” or “random forest*” or “Chi-square automatic interaction detection” or “iterative dichotom*” 
or fuzzy or “neural network*” or perceptron* or (computer adj1 heuristic*)).ab, hw, ti.)

Embase (1974+)

(digestive system cancer/or exp esophagus cancer/or exp intestine cancer/or exp stomach cancer/or digestive system 
tumor/or exp esophagus tumor/or exp gastrointestinal tumor/or exp intestine tumor/or exp stomach tumor/
or ((digestive or gastr* or GI or alimentary or esophag* or oesophag* or stomach or intestin* or bowel* or colon* 
or colorectal or rectal or rectum or sigmoid or duoden* or ileum or ileal or jejun* or anal or anus) adj3 (polyp* 
or mass* or lesion* or tumor* or tumour* or carcin* or adeno* or neoplas* or cancer* or malignan* or sarcoma* 
or lymphoma* or leiomyosarcoma*)).ab, kw, ti.) AND (digestive tract endoscopy/or exp chromoendoscopy/or exp 
endoscopic retrograde cholangiopancreatography/or exp esophagogastroduodenoscopy/or exp esophagoscopy/or 
exp gastrointestinal endoscopy/or digestive endoscope/or exp anoscope/or exp balloon enteroscope/or exp capsule 
endoscope/or exp colonoscope/or exp digestive endomicroscope/or exp duodenoscope/or exp esophagoscope/or 
exp gastroduodenoscope/or exp gastroscope/or exp proctoscope/or exp sigmoidoscope/or

(endoscop* or enteroscop* or gastroscop* or colonoscop* or duodenoscop* or rectoscop* or sigmoidoscop* 
or ileocolonoscop* or chromoendoscop* or esophagogastroduodenoscop* or esophagoscop* or 
oesophagogastroduodenoscop* or proctoscop* or ERCP or anoscop* or endomicroscop* or oesophagoscop* or 
gastroduodenoscop* or sigmoidoscop* or diagnos* or patholog*).ab, kw, ti.) AND (exp artificial intelligence/or 
exp machine learning/or (“artificial intelligence” or “machine learning” or “machine intelligen*” or computer‑aided 
or “computational intelligen*” or “deep learning” or “deep unified network*” or “data mining” or datamining or 
“supervised learning” or “semi-supervised learning” or “unsupervised learning” or “automated pattern recognition” 
or “Bayesian learning” or “computer heuristics” or “hidden Markov model*” or “k-nearest neighbor*” or “kernel 
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method*” or “learning algorithm*” or “natural language processing” or “support vector” or “vector machine” or 
Gaussian or Bootstrap or “regression tree*” or “linear discriminant analysis” or “naive Bayes” or “learning vector” 
or “random forest*” or “Chi-square automatic interaction detection” or “iterative dichotom*” or fuzzy or “neural 
network*” or perceptron* or (computer adj1 heuristic*)).ab, kw, ti.) NOT (exp animal/not exp human/, exp child/
not exp adult/, “case report”.kw, pt, ti.) Limit to English

Ovid MEDLINE (R) 1946 to Present and Epub Ahead of  Print, In‑Process and Other Nonindexed 
Citations and Ovid MEDLINE (R) Daily

(exp Gastrointestinal Neoplasms/or ((digestive or gastr* or GI or alimentary or esophag* or oesophag* or 
stomach or intestin* or bowel* or colon* or colorectal or rectal or rectum or sigmoid or duoden* or ileum or 
ileal or jejun* or anal or anus) adj3 (polyp* or mass* or lesion* or tumor* or tumour* or carcin* or adeno* 
or neoplas* or cancer* or malignan* or sarcoma* or lymphoma* or leiomyosarcoma*)).ab, kf, ti.) AND (exp 
Endoscopy, Digestive System/or exp Endoscopes, Gastrointestinal/or (endoscop* or enteroscop* or gastroscop* 
or colonoscop* or duodenoscop* or rectoscop* or sigmoidoscop* or ileocolonoscop* or chromoendoscop* or 
esophagogastroduodenoscop* or esophagoscop* or oesophagogastroduodenoscop* or proctoscop* or ERCP 
or anoscop* or endomicroscop* or oesophagoscop* or gastroduodenoscop* or sigmoidoscop* or diagnos* or 
patholog*).ab, kf, ti.) AND (exp Artificial Intelligence/or (“artificial intelligence” or “machine learning” or “machine 
intelligen*” or computer‑aided or “computational intelligen*” or “deep learning” or “deep unified network*” or 
“data mining” or datamining or “supervised learning” or “semi-supervised learning” or “unsupervised learning” or 
“automated pattern recognition” or “Bayesian learning” or “computer heuristics” or “hidden Markov model*” or 
“k-nearest neighbor*” or “kernel method*” or “learning algorithm*” or “natural language processing” or “support 
vector” or “vector machine” or Gaussian or Bootstrap or “regression tree*” or “linear discriminant analysis” or 
“naive Bayes” or “learning vector” or “random forest*” or “Chi-square automatic interaction detection” or “iterative 
dichotom*” or fuzzy or “neural network*” or perceptron* or (computer adj1 heuristic*)).ab, kf, ti.) NOT (exp 
Animals/not Humans/, exp CHILD/not exp ADULT/, “case report”.kf, pt, ti.) Limit to English

Scopus

(TITLE-ABS-KEY ((digestive OR gastr* OR gi OR alimentary OR esophag* OR oesophag* OR stomach OR 
intestin* OR bowel* OR colon* OR colorectal OR rectal OR rectum OR sigmoid OR duoden* OR ileum OR 
ileal OR jejun* OR anal OR anus) W/3 (polyp* OR mass* OR lesion* OR tumor* OR tumour* OR carcin* 
OR adeno* OR neoplas* OR cancer* OR malignan* OR sarcoma* OR lymphoma* OR leiomyosarcoma*))) 
AND (TITLE-ABS-KEY (endoscop* OR enteroscop* OR gastroscop* OR colonoscop* OR duodenoscop* OR 
rectoscop* OR sigmoidoscop* OR ileocolonoscop* OR chromoendoscop* OR esophagogastroduodenoscop* 
OR esophagoscop* OR oesophagogastroduodenoscop* OR proctoscop* OR ercp OR anoscop* OR 
endomicroscop* OR oesophagoscop* OR gastroduodenoscop* OR sigmoidoscop* OR diagnos* OR patholog*)) 
AND (TITLE-ABS-KEY (“artificial intelligence” or “machine learning” OR “machine intelligen*” OR 
computer-aided OR “computational intelligen*” OR “deep learning” OR “deep unified network*” OR “data 
mining” OR datamining OR “supervised learning” OR “semi-supervised learning” OR “unsupervised learning” OR 
“automated pattern recognition” OR “Bayesian learning” OR “computer heuristics” OR “hidden Markov model*” 
OR “k-nearest neighbor*” OR “kernel method*” OR “learning algorithm*” OR “natural language processing” OR 
“support vector” OR “vector machine” OR gaussian OR bootstrap OR “regression tree*” OR “linear discriminant 
analysis” OR “naive Bayes” OR “learning vector” OR “random forest*” OR “Chi-square automatic interaction 
detection” OR “iterative dichotom*” OR fuzzy OR “neural network*” OR perceptron* OR (computer AND W/1 
AND heuristic*))) AND (LIMIT-TO (LANGUAGE, “English”))

Web of  Science

TS=((digestive or gastr* or GI or alimentary or esophag* or oesophag* or stomach or intestin* or bowel* or 
colon* or colorectal or rectal or rectum or sigmoid or duoden* or ileum or ileal or jejun* or anal or anus) 
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NEAR/3 (polyp* or mass* or lesion* or tumor* or tumour* or carcin* or adeno* or neoplas* or cancer* or 
malignan* or sarcoma* or lymphoma* or leiomyosarcoma*)) AND TS=(endoscop* or enteroscop* or gastroscop* 
or colonoscop* or duodenoscop* or rectoscop* or sigmoidoscop* or ileocolonoscop* or chromoendoscop* or 
esophagogastroduodenoscop* or esophagoscop* or oesophagogastroduodenoscop* or proctoscop* or ERCP 
or anoscop* or endomicroscop* or oesophagoscop* or gastroduodenoscop* or sigmoidoscop* or diagnos* or 
patholog*) AND TS=(“artificial intelligence” or “machine learning” or “machine intelligen*” or computer‑aided 
or “computational intelligen*” or “deep learning” or “deep unified network*” or “data mining” or datamining or 
“supervised learning” or “semi-supervised learning” or “unsupervised learning” or “automated pattern recognition” 
or “Bayesian learning” or “computer heuristics” or “hidden Markov model*” or “k-nearest neighbor*” or “kernel 
method*” or “learning algorithm*” or “natural language processing” or “support vector” or “vector machine” or 
Gaussian or Bootstrap or “regression tree*” or “linear discriminant analysis” or “naive Bayes” or “learning vector” 
or “random forest*” or “Chi-square automatic interaction detection” or “iterative dichotom*” or fuzzy or “neural 
network*” or perceptron* or (computer NEAR/1 heuristic*)) Limit to English
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Appendix 2. Meta‑analysis of observational studies in epidemiology checklist
Item number Recommendation Reported on page number

Reporting of background should include
1 Problem definition 6
2 Hypothesis statement NA
3 Description of study outcome (s) 6
4 Type of exposure or intervention used 6
5 Type of study designs used 6
6 Study population 6

Reporting of search strategy should include
7 Qualifications of searchers (e.g., librarians and investigators) 8, Appendix 1
8 Search strategy, including time period included 

in the synthesis and key words
8, Appendix 1

9 Effort to include all available studies, including contact with authors 8
10 Databases and registries searched 8, Appendix 1
11 Search software used, name and version, including 

special features used (e.g., explosion)
Appendix 1

12 Use of hand searching (e.g., reference lists of obtained articles) NA
13 List of citations located and those excluded, including justification Appendix 1
14 Method of addressing articles published in languages other than English 8
15 Method of handling abstracts and unpublished studies 8
16 Description of any contact with authors 8

Reporting of methods should include
17 Description of relevance or appropriateness of studies 

assembled for assessing the hypothesis to be tested
8

18 Rationale for the selection and coding of data (e.g., 
sound clinical principles or convenience)

8

19 Documentation of how data were classified and coded (e.g., 
multiple raters, blinding, and inter‑rater reliability)

NA

20 Assessment of confounding (e.g., comparability of cases 
and controls in studies where appropriate)

NA

21 Assessment of study quality, including blinding of quality assessors, 
stratification or regression on possible predictors of study results

9

22 Assessment of heterogeneity 9
23 Description of statistical methods (e.g., complete description of 

fixed or random‑effects models, justification of whether the chosen 
models account for predictors of study results, dose‑response models, 
or cumulative meta‑analysis) in sufficient detail to be replicated

9

24 Provision of appropriate tables and graphics Tables 1, 2, supplemental materials
Reporting of results should include

25 Graphic summarizing individual study estimates and the overall estimate Figure 1, 2, 3, supplementary materials
26 Table giving descriptive information for each study included Table 1
27 Results of sensitivity testing (e.g., subgroup analysis) 11, Table 2
28 Indication of statistical uncertainty of findings 11

Reporting of discussion should include
29 Quantitative assessment of bias (e.g., publication bias) 13
30 Justification for exclusion (e.g., exclusion of non‑English language citations) NA
31 Assessment of quality of included studies 12, Supplementary Table 1

Reporting of conclusions should include
32 Consideration of alternative explanations for observed results 14‑16
33 Generalization of the conclusions (i.e., appropriate for the data 

presented and within the domain of the literature review)
14‑16

34 Guidelines for future research 16



Supplementary Figure 1. Forest plot, positive predictive value. Heterogeneity: I2% = 70%, 95% prediction interval = 65 to 97

Supplementary Figure 2. Forest plot, negative predictive value. Heterogeneity: I2% = 90%, 95% prediction interval = 51 to 99



Supplementary Figure 3. Forest plot, accuracy – neural networks. Heterogeneity: I2% = 69%, 95% prediction interval = 61 to 97

Supplementary Figure 4. Forest plot, sensitivity – neural networks. Heterogeneity: I2% = 45%, 95% prediction interval = 84 to 97

Supplementary Figure 5. Forest plot, specificity – neural networks. Heterogeneity: I2% = 90%, 95% prediction interval = 39 to 97



Supplementary Figure 6. Forest plot, positive predictive value – neural networks. Heterogeneity: I2% = 68%, 95% prediction interval = 59 to 96

Supplementary Figure 7. Forest plot, negative predictive value – neural networks. Heterogeneity: I2% = 85%, 95% prediction interval = 43 to 98



Supplementary Table 1. Quality assessment of diagnostic accuracy studies study quality assessment
Study Risk of bias Applicability concerns

Patient 
selection

Index 
test

Reference 
standard

Flow and 
timing

Patient 
selection

Index 
test

Reference 
standard

Carrara, 2018

Das, 2008

Marya, 2020

Norton, 2001

Ozkan, 2016 ?

Saftoiu, 2008

Saftoiu, 2012

Saftoiu, 2015

Tonozuka, 2020

Zhang, 2010

Zhu, 2013

Low risk; High risk;  Unclear risk
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